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Abstract— Many self-driving vehicles use a multi-sensor sys-
tem comprising multiple 3D LiDAR and radar sensors for
robust all-round perception. Precise calibration of this multi-
sensor system is a critical prerequisite for accurate perception
data which facilitates safe operation of self-driving vehicles in
highly dynamic urban environments. This paper proposes the
first-known automatic targetless method for extrinsic calibra-
tion of multiple 3D LiDAR and radar sensors, and which only
requires the vehicle to be driven over a short distance. The
proposed method first estimates the 6-DoF pose of each LiDAR
sensor with respect to the vehicle reference frame by minimizing
point-to-plane distances between scans from different LiDAR
sensors. In turn, a 3D map of the environment is built using
data from all calibrated LiDAR sensors on the vehicle. We
find the 6-DoF pose of each radar sensor with respect to
the vehicle reference frame by minimizing (1) point-to-plane
distances between radar scans and the 3D map, and (2) radial
velocity errors. OQur proposed calibration method does not
require overlapping fields of view between LiDAR and radar
sensors. Real-world experiments demonstrate the accuracy and
repeatability of the proposed calibration method.

I. INTRODUCTION

LiDARSs and radars are popular choices of sensors on self-
driving vehicles because of their ability to perceive in 3D
and both day and night. Whereas a LiDAR sensor generates
a dense point cloud of the environment, a radar sensor
generates a very sparse point cloud but with radial velocity
information which is beneficial for moving object detection
and tracking. In addition, radar sensors are able to see
through fog, rain, and snow unlike their LiDAR counterparts,
and enable self-driving vehicles to operate safely in adverse
weather conditions. With advances in sensor technology,
LiDAR and radar sensors are able to capture environmental
details at higher resolutions and at longer ranges. In addition,
today’s radar sensors can record the elevation for each
point measurement in addition to range, azimuth, and radial
velocity. This recent development in radar sensor technology
allows us to register radar scans to LiDAR scans in 3D space,
and thus, makes possible 6-DoF extrinsic calibration between
multiple 3D LiDAR and radar sensors.

Robust operation of self-driving vehicles in highly dy-
namic urban environments requires omni-directional sensing.
Hence, a self-driving vehicle is typically equipped with both
an all-surround multi-LiDAR system and an all-surround
multi-radar system. For fusion of sensor data from multiple
sensors of the same or different sensing modalities to happen,
these multiple sensors have to be calibrated accurately with
respect to a common reference frame.
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Target-based calibration methods are often time-
consuming and labor-intensive, and require the presence
of a calibration target for each round of calibration. In
this paper, we propose a fully automatic and targetless
calibration method for multiple 3D LiDAR and radar sensors
and which allows the vehicle to be calibrated anywhere
and anytime. By exploiting the capability of both LiDAR
and radar sensors to capture information about the 3D
geometry of the environment and using this 3D information
for inter-sensor registration, we eliminate the need for a
calibration target.

We list the novel contributions of our paper:

1) Our proposed method is the first-known method for
automatic targetless extrinsic calibration of multiple
3D LiDAR and radar sensors.

2) For non-linear least-squares optimization in extrinsic
multi-radar calibration, we formulate novel residuals
which exploit all the properties of radar measurements:
range, azimuth, elevation, and radial velocity, allowing
us to maximize calibration accuracy and repeatability.

II. RELATED WORK

Automatic targetless methods exist for extrinsic calibration
of multiple 3D LiDAR sensors [1], extrinsic calibration
of multiple 2D and 3D LiDAR sensors [2], extrinsic cal-
ibration of multiple cameras [3], extrinsic calibration of a
camera-LiDAR sensor pair [4], and extrinsic calibration of a
camera-radar sensor pair [5]. For extrinsic multi-3D-LiDAR
calibration, Jiao et al. [1] perform hand-eye calibration to
find the initial extrinsic parameters, and refine them through
the point-to-plane Iterative Closest Point (ICP) algorithm. It
is worth noting that point-to-plane ICP cannot be directly
applied to extrinsic multi-radar sensors. Radar range mea-
surements are more sparse and less accurate than LiDAR
range measurements by at least an order of magnitude. As a
result, plane normals computed from single or accumulated
radar scans are inaccurate, and prevent convergence of point-
to-plane ICP. Our approach overcomes this issue by using
a highly precise 3D map built with 3D LiDAR sensors to
calibrate each radar sensor; calibration is based on registra-
tion of the radar scans with the 3D map. Maddern et al.
[2] find the pose of each 3D LiDAR sensor with respect
to the vehicle reference frame by maximizing an entropy-
based cost function, subsequently construct a 3D map of
the environment from all 3D LiDAR sensors, and find the
pose of each 2D LiDAR sensor with respect to the vehicle
reference frame by maximizing a cross-entropy-based cost
function based on the 3D map. Our calibration method is
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similar in spirit; we calibrate each 3D LiDAR sensor to
the vehicle reference frame, build a 3D map from all 3D
LiDAR sensors, and calibrate each radar sensor to the vehicle
reference frame using the 3D map. Heng et al. [3] calibrate
a multi-camera system to the vehicle reference frame by
running stereo visual odometry for each pair of cameras
with overlapping fields of view and minimizing the sum of
squared reprojection errors over all feature tracks from stereo
visual odometry. Pandey et al. [4] calibrate a camera to a
2D/3D LiDAR sensor by leveraging reflectivity values from
LiDAR returns and intensity values from camera images
and maximizing a mutual-information-based cost function.
Scholler et al. [5] calibrate a camera to a radar sensor
by feeding camera images and projected radar detections
into a deep network, which in turn, outputs a quaternion
representing the relative rotation between the camera and
radar sensor. We note that no automatic targetless method
exists for extrinsic calibration of multiple 3D LiDAR and
radar sensors.

There are existing target-based methods for extrinsic cal-
ibration of 3D LiDAR and radar sensors. PerSi¢ et al.
[6] use a trihedral corner reflector with a flat styrofoam
triangle board in front as a calibration target. The LiDAR
scan is segmented into planes, and the plane corresponding
to the triangle board corresponds to the 3D position of
the calibration target in the LiDAR sensor frame. At the
same time, point measurements with high radar-cross-section
values and from the radar sensor are selected and averaged
to yield the 3D position of the calibration target in the
radar sensor frame. The extrinsic calibration parameters are
found through minimization of the squared distances between
multiple pairs of target position measurements from LiDAR
and radar. Domhof et al. [7] employ a similar approach with
a calibration target comprising a trihedral corner reflector and
a flat styrofoam board with cut-out circles. Our calibration
method does away with the need for a calibration target
by leveraging information about the 3D geometry of the
environment. In addition, as our calibration method exploits
a 3D map built from accumulation of 3D LiDAR scans over
a short distance to calibrate individual radar sensors, it does
not require overlapping fields of view between a 3D LiDAR
and a radar sensor.

Izquierdo et al. [8] propose a targetless approach for
extrinsic calibration of multiple radar sensors using a high-
definition (HD) map storing the positions of objects with
specific classes and high radar cross-section: street lights and
traffic signs. They assume that the vehicle is able to localize
in the HD map with less than 2 cm accuracy using RTK
GNSS, and register the radar scans to the calibration targets
to obtain the extrinsic calibration. Our calibration method
avoids the need for high-precision localization and a HD
map by building a local HD map with 3D LiDAR sensors
on the fly.

Kellner et al. [9] find the rotation of a radar sensor with re-
spect to the vehicle reference frame; the translation is known
beforehand from a CAD model. They estimate the linear
velocity of the radar sensor from stationary point measure-

ments by minimizing the errors between the measured and
expected radial velocities, and in turn, estimate the relative
rotation between the radar and vehicle reference frames by
comparing lateral velocity measurements from a gyroscope
to the lateral velocity estimates for the radar sensor. In
contrast, our calibration method is able to recover the full
6-DoF pose of each radar sensor with respect to the vehicle
reference frame. Instead of indirectly using radial velocity
measurements for the estimation of the radar sensor pose,
we find the radar sensor pose by directly minimizing the
errors between the measured and expected radial velocities in
addition to point-to-plane distances between the radar scans
and a 3D map.

III. NOTATION

We briefly define the notation to be used throughout this
paper. We denote the world reference frame as i—)W? the
vehicle reference frame as £V’ and the sensor reference
frame as F g.

We denote the sensor pose with respect to l';V as a rigid
body transformation Ty g € SE(3) from 55 to l';V and
whose rotation matrix part is Ry g and translation part is
tys. Likewise, we denote the sensor pose in i;W as Tws =
Twyv Tyvs where Ty is the vehicle pose in £W and can
be obtained from a GNSS/INS system or any similar system
that provides locally and metrically accurate vehicle pose
estimates.

IV. METHOD

Our calibration method comprises three steps. The first
step involves extrinsic calibration of multiple LIDAR sensors
to £>V- In the second step, we build a 3D map of the
environment by transforming the LiDAR scans into K
based on the extrinsic calibration parameters for the LIDAR
sensor and known vehicle poses. In the third and final step,
we calibrate each radar sensor to the vehicle reference frame
by finding the radar sensor pose with respect to f>v and
which minimizes point-to-plane distances between the radar
scans and the 3D map and radial velocity errors between
the measured and expected radial velocities assuming that
the environment is static. We assume that known vehicle
poses Ty are provided by a GNSS/INS system or a similar
system that provides locally and metrically accurate poses,
i.e. LiDAR/visual odometry and a IMU-wheel-odometry
system.

A. Extrinsic Calibration of Multiple LiDARs

We take a two-step approach to extrinsic calibration of
multiple LIDAR sensors. The first step is extrinsic calibration
of a single LiDAR sensor which entails estimation of the sen-
sor’s 6-DoF pose with respect to f>V~ As this single-LiDAR
calibration does not take other LiDAR sensors into account,
the estimated sensor poses from individual calibration of
multiple LiDAR sensors may not necessarily lead to pair-
wise geometric consistency between scans from different
LiDAR sensors. This issue necessitates the additional and
second step of refining the sensor poses such that we enforce
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geometric consistency between scans from different LIDAR
Sensors.

1) Extrinsic Calibration of a Single LiDAR: Our single-
LiDAR calibration approach is based on that of Levinson and
Thrun [10]. To speed up the calibration by leveraging seed
calibration parameter values, instead of performing alternat-
ing grid search over translation and rotation parameters, we
employ non-linear least-squares optimization. We find the
sensor’s 6-DoF pose Ty g that minimizes the following cost
function:

B bi+N

Z Z Zwkp((Wnk (wpr —wmg))?) (1)

bi=1b;j=b;—N k

where
wPkr = Twv Tys spe. )

B is the number of beams in the LiDAR sensor, N is
the number of neighboring beams we align each beam to,
k iterates over the points observed by beam b;, and  pyg
is the 3D world coordinates of the kth point observed by
beam b; and transformed into £y via Tywy and Ty g. We
find the n points from the neighboring beams and closest
to pg, and fit a plane to the n points such that yyny, is the
unit normal of the plane in the world reference frame and
wmy, is the 3D world coordinates of the point belonging to
the set of n points and closest to ypg. p is a robust loss
function that reduces the influence of outliers, and w, = 1
if l[wpr — wmgk| < dmaz or wp = 0 otherwise. In our
implementation, we use d,q,; = 1.

2) Refinement: The previous step yields the pose of each
LiDAR sensor with respect to £V- Keeping the pose of the
first LIDAR sensor fixed, we refine the pose of every other
LiDAR sensor by minimizing the following cost function:

Zwip((an’ (wpi — wmy))?). 3)

1 iterates over the points observed by the LiDAR sensor,
and wp; is the 3D world coordinates of the ith point
observed by the LiDAR sensor. We find the n points from
the first LiDAR sensor and closest to yp;, and fit a plane
to the n points with yyn; and yym; as the plane parameters.

B. Extrinsic Calibration of Multiple Radars

After obtaining the calibration parameters from extrinsic
multi-LiDAR calibration, we build a 3D map of the environ-
ment by accumulating LiDAR scans from all calibrated Li-
DAR sensors. We leverage this map for extrinsic calibration
of multiple radar sensors by finding the radar sensor poses
that register the radar scans to the map as closely as possible.
Given that the map is locally and metrically consistent, we
can simplify the extrinsic multi-radar calibration problem to
an extrinsic single-radar calibration problem which we solve
for each radar sensor.

A radar scan corresponds to a set of point measurements
21, ..., 2y where z = [r 6 ¢ v,]T and 7, 0, ¢ and v, are
the range, azimuth, elevation, and radial velocity respectively

of the point. We obtain the 3D coordinates p of a point
measurement:

T r 7 cos  cos ¢
p=|y| =f] |0 = | rsinfcos ¢ ()
z ¢ rsin ¢
Given the measurement covariance matrix C,:
a2 0 0
C,=|0 o 0], ®)
2
0 0 oy
we obtain the covariance matrix Cp corresponding to p:
Cp = J¢C,J}. (6)

where Jg is the Jacobian of the function f from Equation
4. Given the known linear velocity vy of the vehicle in
l';W’ we obtain the linear velocity vgg of the radar sensor
in l';S:

vss = Rsv(Ryvw vivy +wy X tyg) @)

where wy is the angular velocity of the vehicle. Assuming
that the environment is static, the linear velocity of a point
measurement with respect to 55 is equal to —vgg.

For each radar sensor, we find the 6-DoF pose of the
sensor with respect to i;v by minimizing the following
cost function which is the sum of squared weighted point-to-
plane distance residuals and squared weighted radial velocity
residuals:

> (wip(wa,di?) + p(we,e:?)) (®)
where
di =wn; - (wp; — wm;) )
1
= 10
Y T Cp, (4o
cos 6 cos ¢
e; =v; +Vgg - | sinfcos ¢ (11)
sin ¢
1
We; = o (12)

v,
1 iterates over the point measurements observed by the radar
sensor. d; is the point-to-plane residual, v p; is the 3D world
coordinates of the ith point observed by the radar sensor,
and wn; and ywm; are the parameters of the plane fitted
to the n points from the LiDAR map and closest to p;.
wgq, is the inverse of the projection of Cp onto the line
with direction vector yn;. e; is the radial velocity residual,
v; is the measured radial velocity corresponding to point
measurement 7, and we, is the inverse of the variance of the
measured radial velocity. We obtain the standard deviation
oy, of the measured radial velocity from the radar sensor’s
published specifications [11]. The point-to-plane distance
residuals based on position measurements from radar enforce
the constraint that the point measurements are aligned with
the LiDAR map, and the radial velocity residuals based on
radial velocity measurements radar enforce the constraint that
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the point measurements are stationary in K. The use of
both residual types allows us to fully utilize all elements of
the point measurement vector for extrinsic calibration. The
robust loss function p reduces the influence of outliers that
may result partly from moving objects in the environment.
All non-linear least-squares optimizations described in this
section are implemented using the Ceres Solver library [12].

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

We use the Isuzu D-Max vehicle platform for our ex-
periments and which is shown in Fig. 1. A dual-antenna
GNSS/INS system with a tactical-grade IMU is installed in
the vehicle, and provides state measurements at 200 Hz. We
designate the reference frame of the GNSS/INS system as
l‘;v- Four Velodyne HDL-32E LiDAR sensors are situated
on the four corners of the roof rack, and each 3D LiDAR
sensor yields a 360° scan with 2 cm range accuracy at
10 Hz. Four smartmicro UMRR-8F T146 radar sensors are
installed in an all-surround configuration: two behind the
front bumper, and two on the rear bumper. Each radar sensor
provides a scan containing up to 255 points at 20 Hz; from
the product datasheet [11], the range accuracy is the larger of
0.15 m and 1% of the measured range, the azimuth accuracy
is 1°, and the elevation accuracy is 2°. For maximum
calibration accuracy, the radar sensors are set to short-range
mode which yields the highest range accuracy and limits
the maximum range to 20 m. Otherwise, we set the radar
sensors to long-range mode in everyday operating conditions.
Given that our calibration method depends on features in
the environment, to ensure calibration accuracy, each radar
sensor should cumulatively observe a sufficient number of
objects over the period during which the calibration data is
collected. All sensor data is hardware-timestamped to sub-
microsecond precision; such accurate time synchronization
is made possible through the use of a time server.

To show that our extrinsic calibration method does not
require overlapping fields of view between LiDAR and radar
sensors, we only use the front two LiDAR sensors on the
vehicle in our experiments. The front two radar sensors have
wide overlapping fields of view with the front two LiDAR
sensors. In contrast, the rear two radar sensors have minimal
overlapping fields of view with the front two LiDAR sensors,
and also, the front two radar sensors. Target-based methods
for extrinsic calibration [6, 7] require a wide overlapping
field of view between a LiDAR sensor and a radar sensor,
and thus, cannot be easily performed for the sensor pair of
a front LiDAR sensor and a rear radar sensor due to the
minimal overlapping field of view.

For extrinsic multi-LiDAR calibration, data from the
GNSS/INS system and the front two LiDAR sensors was
recorded over a 100-meter run in an outdoor parking lot.
To ensure that the 6-DoF pose of each LiDAR with respect
to f>v was fully observable, the vehicle was driven in
constantly changing directions and driven over a curb that
induced changes in the vehicle’s roll or pitch. If the vehicle
moves in a straight line, the = and y components of the

Fig. 1. The vehicle platform. Four 3D LiDAR sensors are mounted on the
roof rack. Red circles mark the locations of a radar located behind the front
bumper and two radars mounted on the rear bumper.

position of the LiDAR sensor with respect to £V is not
observable. Similarly, if the vehicle moves on a flat plane,
the height of the LiDAR sensor with respect to Ky is
not observable. For extrinsic multi-RADAR calibration and
repeatability analysis, data from the GNSS/INS system, the
two front LiDAR sensors, and all radar sensors was recorded
over ten 100-meter runs over a L-shaped trajectory in the
same outdoor parking lot.

B. Calibration Results

We run the extrinsic multi-LiDAR calibration, and with
the inferred calibration parameters corresponding to the 6-
DoF pose of each LiDAR sensor with respect to the vehicle
reference frame, we build a 3D map of the outdoor parking
lot by transforming each scan from each LiDAR sensor into
the world reference frame and accumulating all scans. Fig. 2
shows the resulting 3D map of the outdoor parking lot.
The point cloud map appears crisp visually with no signs
of smearing, indicating the high accuracy of the calibration
parameters.

For each of the ten runs, we built a LIDAR map of the
outdoor parking lot, and used the LiDAR map to perform
extrinsic multi-radar calibration. From the ten runs, we
obtained ten sets of calibration parameters corresponding to
the 6-DoF pose of each radar sensor with respect to the
vehicle reference frame.

The mean and standard deviation of each calibration
parameter is recorded in Table I. Fig. 3 visualizes the mean
position and orientation of each radar sensor with respect
to £V~ The low standard deviations of the calibration pa-
rameters show that our calibration method produces accurate
and highly repeatable results. The observation that the y
and z components of the translation and rotation parameters
have larger standard deviations than the x component can be
attributed to the fact that the elevation measurement accuracy
is 2 times worse than the azimuth measurement accuracy
for the radar sensors. From comparing the mean of each
calibration parameter with the seed value, we observe that
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Fig. 2. A 3D map of the outdoor parking lot and built using the front
two 3D LiDAR sensors on the vehicle. Map points are colored from blue to
red in order of increasing height. A red line marks the vehicle’s trajectory
during the data collection process.
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Fig. 3. A visualization of the mean position and orientation of each
radar sensor with respect to the vehicle frame and as computed from our
calibration method.

although seed translation and rotation parameters may differ
by up to 1.8 m and 10° respectively from the final values, our
calibration method is able to converge all the time, indicating
a large convergence basin. The box plots shown in Fig. 4
show the spread of the calibration parameters. To facilitate
ease of comparison, each calibration parameter has its mean
subtracted away.

We perform an ablation experiment to determine the
contributions of the point-to-plane distance residuals and the
radial velocity residuals to the calibration accuracy and re-
peatability. For extrinsic multi-radar calibration, we minimize
the following three different cost functions:

Front Left Radar

60

40
20 1
-20

-60

0.2

mm
o
degrees
o

-0.2

04 -
X y z roll pitch yaw

()

Front Right Radar
0.8

60
0.6
40
+ 0.4
20
0.2

0

mm
o
degrees

-0.2
-20

-0.4
-40

-0.6

-60 08 -
X y z roll pitch yaw

(b)

Rear Right Radar
0.4

40

+

20

-0.2

degrees

mm
=)

0.4 +
-20
0.6

-40 08 -
X y z roll pitch yaw

(©

Rear Left Radar

80

60 0.6

40 0.4

mm

20 0.2

degrees

i3

-20 -0.2

-40 04 -
X y z roll pitch yaw

(d

Fig. 4. Box plot of each extrinsic calibration parameter about its mean for
10 different calibration runs.
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Front Left Radar Front Right Radar Rear Left Radar Rear Right Radar
Seed [ Mean [ Std Dev [[ Seed [ Mean | Std Dev || Seed | Mean | Std Dev || Seed | Mean [ Std Dev
x (m) 2 3.742 0.008 2 3.695 0.013 0 -1.087 0.011 0 -1.082 0.018
y (m) 0 0.607 0.014 0 -0.712 0.013 0 0.759 0.013 0 -0.689 0.015
z (m) 0 0.440 0.034 0 0.280 0.028 0 0.156 0.031 0 0.240 0.019
roll (°) 0 1.931 0.161 0 -0.216 0.183 0 -0.400 0.224 0 2.357 0.151
pitch (°) 0 -3.989 0.214 0 -2.851 0.259 0 -0.609 0.272 0 1.055 0.169
yaw (°) 45 37.829 0.141 -45 -37.006 0.122 135 142.637 0.158 -135 | -146.391 0.110
TABLE I

EXTRINSIC CALIBRATION PARAMETERS FOR EACH OF THE FOUR RADAR SENSORS ON THE VEHICLE. THE MEANS AND STANDARD DEVIATIONS ARE

DERIVED FROM TEN RUNS.

Standard Deviation (x)

35
B Front Left Radar
B Front Right Radar _|
30 B Rear Left Radar
Rear Right Radar
25
20
£
1S

PP RV PP+RV

Fig. 5. PP: Minimization of point-to-plane distance residuals. RV: Mini-
mization of radial velocity residuals. PP+RV: Minimization of both point-
to-plane distance and radial velocity residuals.

1) Jpp =, wip(d] D;d;)

2) Jrv =3, ple] Biei)

3) Jepyrv = > ;(wip(d] Did;) + ple] Eie))

Jpp only contains point-to-plane distance residuals, Jry
only contains radial velocity residuals, and Jpp4 gy contains
both types of residuals. Fig. 5 shows the standard deviation
of the z-translation component of the calibration parameters
for each cost function. From the figure, we observe that using
both types of residuals gives the lowest standard deviation.
This observation shows that utilizing all properties of radar
measurements enables us to maximize calibration accuracy
and repeatability.

To facilitate a qualitative analysis of the calibration accu-
racy, we show the point cloud maps built by accumulating
scans from all four radar sensors on the vehicle, and with
seed and optimized calibration parameters. Fig. 6 shows the
point cloud map based on seed calibration parameters, and
Fig. 7 shows the point cloud map based on the optimized
calibration parameters. The visually sharp outlines of the
parked cars in the point cloud map corresponding to the
optimized calibration parameters point to the high accuracy
of our calibration method. We show a scan from the front
left radar sensor interposed against the LiDAR map in
Fig. 8. From visual inspection, the scan is aligned well with
the LiDAR map due to the accurate calibration parameters
estimated by our extrinsic calibration method.

Fig. 6. A 3D map from accumulated radar scans with seed calibration
parameters. There is significant smear across the entire map, and parked
cars cannot be clearly seen.

Fig. 7. A 3D map from accumulated radar scans with estimated calibration
parameters. The outlines of parked cars can be clearly seen.
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Fig. 8. A radar scan from the front left radar superimposed against the 3D
LiDAR map. Red points denote the radar scan while a black square on the
vehicle’s trajectory represented as a red line marks the vehicle’s position
corresponding to the time of the radar scan.

VI. CONCLUSIONS

Through real-world experiments, we have demonstrated
our extrinsic calibration method for multiple LiDAR and
radar sensors to be highly accurate and repeatable. To the
best of our knowledge, our method is the first published
method for automatic targetless calibration of multiple Li-
DAR and radar sensors. The automatic and targetless nature
of our calibration method allows a vehicle equipped with
LiDAR and radar sensors to be easily calibrated anywhere
and anytime without the need for a calibration target and
human intervention. In addition, our calibration method
does not require overlapping fields of view between LiDAR
and radar sensors. Future work will focus on all-weather
localization and perception with calibrated radar sensors.
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