
Tactile Event Based Grasping Algorithm using Memorized Triggers and
Mechanoreceptive Sensors

Won Dong Kim and Jung Kim

Abstract— Humans perform grasping by breaking down the
task into a series of action phases, where the transitions between
the action phases are based on the comparison between the
predicted tactile events and the actual tactile events. The
dependency on tactile sensation in grasping allows humans to
grasp objects without the need to locate the object precisely,
which is a feature desirable in robot grasping to success-
fully grasp objects when there are uncertainties in localizing
the target object. In this paper, we propose a method of
implementing a tactile event based grasping algorithm using
memorized predicted tactile events as state transition triggers,
inspired by the human grasping. First, a simulated robotic
manipulator mounted with pressure and vibration sensors
on each finger, analogous to the different mechanoreceptors
in humans, performed ideal grasping tasks, from which the
tactile signals between consecutive states were extracted. The
extracted tactile signals were processed and stored as predicted
tactile events. Secondly, a grasping algorithm composed of
eight discrete states, Reach, Re-Reach, Load, Lift, Hold, Avoid,
Place, and Unload was built. The transition between consecutive
states is triggered when the actual tactile events match the
predicted tactile events, otherwise, triggering the corrective
actions. Our algorithm was implemented on an actual robot,
equipped with capacitive and piezoelectric transducers on
the fingertips. Lastly, grasping experiments were conducted,
where the target objects were deliberately misplaced from their
expected positions, to investigate the robustness of the tactile
event based grasping algorithm to object localization errors.

I. INTRODUCTION

Dexterous object manipulation is one of many key features
that distinguish humans from all other living animal species.
Although it is usually taken for granted in humans, an object
manipulation task is an extremely sophisticated act, since
the synthesis of several sensorimotor systems is required
[1]. Thus, robots have only successfully replaced humans
in environments where the human and robot workspaces
are separated, where the robot workspaces are completely
modeled or predictable [2].

Researchers have focused on using visual sensors to ad-
dress the problem of using robots in uncertain environments.
The rapid development of camera-based and deep learning
approaches allowed robots to use object localization or seg-
mentation techniques to recognize and localize objects [3].
The localization information, along with the target object’s
properties, such as stiffness and weight, are estimated from

*This work was supported by the Korea Institute of Machinery and
Materials (KIMM) in 2020 [NK224G, Development of core machinery
technologies for autonomous operation and manufacturing].

Won Dong Kim and Jung Kim are with the Department of Mechan-
ical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea. (e-mail: kwd92@kaist.ac.kr,
jungkim@kaist.ac.kr)

Fig. 1. Extraction of predicted tactile events from a simulated grasping
task and using the memorized predicted tactile events for state transition
trigger in the tactile event based grasping.

object recognition results and used to plan and execute object
manipulation actions [4]. Although the grasping method
based on visual data seems ideal, its performance can be
deteriorated for several reasons. First, there is a substantial
possibility that the object localization is not accurate, due
to light conditions and wrongly calibrated cameras [5].
Secondly, as the manipulator approaches the target object, the
object’s occlusion from the camera’s field of view amplifies
the problem of imperfect object localization, hindering the
manipulator from performing corrective actions using only
visual information. Lastly, there are inevitable errors in the
robot’s physical model or control, which lead to positional
errors during the control of the manipulator. This error is
sometimes large enough to cause failures in delicate grasping
tasks [6].

Humans can overcome the previously mentioned uncer-
tainties by utilizing tactile sensations and visual sensations
to manipulate an object. The tactile sensation inevitably plays
a critical role in object manipulation because it is an action
that requires direct physical contact with the environment.
Many information can be deduced from the tactile sensations,
including not only information on the physical properties of
the object, such as the shape, weight, and stiffness, but also
information on the tactile events that occur as a result of
physical interactions between the skin and the environment
[7].
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Fig. 2. Human grasping method using tactile events [12].

Acknowledging the importance of tactile sensation in
grasping, many research groups have developed tactile sen-
sors integrated with robotic hands or grippers. The variety of
tactile sensors that have been developed is described in detail
in [7], [8], [9]. There have been researches to implement
robot grasping algorithms using these tactile sensors that
resemble the human grasping method. Romano et al. [10]
used capacitive pressure sensors and accelerometer to detect
tactile events between states in a human-inspired grasping
algorithm. Su et al. [11] used tactile signals from BioTac
(SynTouch, USA) sensors to detect slip events to drive
their grip force controller. In both works, the transition
between the states in the algorithm is triggered by a preset
threshold, which is heuristically determined by the operator.
The heuristic method is applicable in a simple grasping
task because the predicted tactile events during a grasping
task were made well known through researches introduced
by Johansson and Flanagan [1], [12]. This method shows
inherent limitations when it is expanded to a more complex
object manipulation task because the predicted tactile events
are not known by the operator.

This paper introduces the implementation of the tactile
event based grasping algorithm using memorized predicted
tactile events from extracted from simulations. The graph-
ical summary of our method is shown in Fig. 1. First, in
Section II, the human grasping and an overview of the
implementation of our tactile event based grasping algorithm
is introduced. Secondly, in Section III, the simulation scene
settings are described, along with the extraction and pro-
cessing method of the tactile signals into discrete memorized
tactile events. In the latter part of Section III, we describe the
components and working principle of our grasping algorithm
in detail. Thirdly, the robot system mounted with mechanore-
ceptive tactile sensors and the grasping experiment, where
the target objects’ positions are slightly varied to emulate
positional uncertainties, with its results are shown in Section
IV. Lastly, we conclude the paper in Section V.

II. TACTILE EVENT BASED GRASPING

First, the background of the human grasping method is
explained. Then, the overview of our tactile event based
grasping algorithm is described in detail.

A. Human grasping

The human tactile sensation is a result of the transduction
of mechanical stimuli to neural signals in the mechanorecep-

Fig. 3. Overview of the usage of simulated tactile signals as predicted
tactile events for the human-inspired grasping algorithm.

tors. The different types of mechanoreceptors have distinct
rates of adaptation, separating them into Slowly Adapting
(SA) and Rapidly Adapting (RA) types, which are spe-
cialized at sensing mechanical stimuli of low and high
frequencies, respectively [13], [14], [15]. The combination
of different frequency bands of the mechanoreceptors allows
humans to sense and distinguish mechanical stimuli of dif-
ferent frequencies with ease, due to the separate encoding.

Object manipulation tasks, due to their complexity, are
broken into a series of action phases [12], which are anal-
ogous to states in a finite state machine (FSM). The action
phases are often separated by sets of predicted tactile events
[12], depicted in Fig. 2. The tactile events are ensembles of
tactile signals from the different mechanoreceptors, which
gives information on specific subgoals that have been or
must be reached during the manipulation task. The predicted
tactile events are embedded in human memory through the
repetitive experience of the manipulation task. If the actual
tactile events match the predicted tactile events, the following
action phase is initiated. On the other hand, if there is a
mismatch, the sensorimotor system quickly reacts to amend
for the error through corrective actions.

B. Tactile event based grasping algorithm

Our proposed method of implementing a tactile event
based grasping algorithm is shown in Fig. 3. From an ideally
simulated grasping task, the tactile signals are extracted
and processed into sets of window functions. These sets of
signals are stored in the main controller as the memorized
predicted tactile events. Alongside the memorized predicted
tactile events, a grasping algorithm similar to the human
grasping method is implemented in the form of an FSM
in the main controller. It comprised six main states-Reach,
Load, Lift, Hold, Place, and Unload-and two additional states
for performing corrective actions: Re-Reach and Avoid.

A state transition in the grasping algorithm is triggered
by the result of the comparison between the corresponding
memorized predicted tactile event and the actual tactile sig-
nals, which arise from the pressure and vibration transducers
on the tactile sensor mounted on the gripper fingers. The
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Fig. 4. (a) The simulated grasping scene with 2F-85 gripper, JACO2

arm, and three rigid objects. (b) Twelve force sensors and (c) accelerometer
embedded onto the gripper pad.

pressure and vibration transducers are analogous to the SA
and RA mechanoreceptors, respectively.

Unlike the previous works that replicated the human
grasping method [10], [11], using a simulation to store the
predicted tactile events frees the operator from having to
have a precise knowledge of the predicted tactile signal. The
advantages of using simulators to memorize the predicted
tactile events are that the ideal predicted tactile events could
be easily found, which takes several years for a human being
[16] or extensive number of trial-and-error for threshold
setting in a heuristic tactile event based algorithm.

III. IMPLEMENTATION OF THE TACTILE EVENT
BASED GRASPING ALGORITHM

We describe the procedure of extracting and processing
the tactile signals used as the predicted tactile events, from
the simulation. Then, the methodology for comparing the
predicted tactile events to the actual tactile events is ex-
plained. Lastly, to complete our algorithm, the addition of
states corresponding to corrective actions is described.

A. Extracting and processing the predicted tactile signals

For simulating the object grasping task, the CoppeliaSim
(formerly V-REP) [17] simulator was used. As shown in Fig.
4a, the model of 2F-85 gripper (Robotiq, Canada) connected
on to the JACO2 6-DOF arm (Kinova, Canada) was created
on the simulator, along with different rigid objects. Also,
twelve force sensors and an accelerometer were attached to
each finger pad of the simulated gripper, shown in Fig. 4b
and 4c.

An ideally executed object grasping was simulated for
grasping each object. The grasping task was pre-programmed
into the simulator and was executed in an open-loop manner.
The force sensor and accelerometer signals during the grasp-
ing task were exported using the Python remote API. Fig. 5a
shows an example of the tactile signals that appeared during a
simulated grasping task. Using ideal simulation signals does

(a)

(b)

(c)

Fig. 5. (a) The raw force and accelerometer signals, (b) the processed tactile
signals, and (c) the signals that are stored as the memorized predicted tactile
events from the left finger of the simulated grasping task.

not raise problems, since it is the general trend of the signals
within the trigger window that is important.

In the simulator, each force sensor provide 6 signals: Fx,
Fy , Fz , Tx, Ty , and Tz . In this work, we neglected the effect
of shear forces on the proposed algorithm, and thus, only
the force signal corresponding to the normal force, Fz , was
used. Next, the normal force values were summed up for
each finger, which can be expressed as,

SAi =
N∑

k=0

Fz,k, (1)

where i refers to the finger number, k refers to the force
sensors’ indices on each finger, and N is the total number of
force sensors on the finger. The reason for using the sum of
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the normal forces instead of individual values was to neglect
the effect of the errors in the gripper position or orientation at
the moment of grasping. By considering only the magnitude
of the normal force, these errors are ignored, allowing the
robot to grasp the object despite the uncertainty.

The simulated accelerometer provides a three-dimensional
signal, [ax, ay, az], at each time step. Since only a scalar
quantity is required, the total magnitude of the accelerometer
signals was used, which is expressed as,

RAi =
√
a2x + a2y + a2z. (2)

The graph in Fig. 5b is the processed version of the tactile
signals in Fig. 5a, processed according to Equation (1) and
(2).

Lastly, the processed signals were cut out from the transi-
tion points at a window length of 0.5 seconds. To generalize
the use of the predicted tactile events to robots with different
types of pressure and vibration sensors or grip force, the
signals were normalized based on the maximum signal value
in the window. The resulting memorized predicted tactile
events are shown in Fig 5c.

B. Comparison between the predicted and actual tactile
events

The memorized predicted tactile events are compared to
the actual tactile signals to decide whether a state transition
in the grasping algorithm should occur. In this work, the
cross-correlation between the predicted and actual tactile
event signals is used to compare the similarity of the events.

Similar to how the memorized predicted tactile signals
were normalized, the actual tactile signals were also normal-
ized in batches of 0.5 seconds in real-time. The normalized
actual signals were cross-correlated with the signals of the
predicted tactile events. The normalized cross-correlation is
found by using,

RXY,normalized(n) =
RXY (n)√

RXX(0)RY Y (0)
, (3)

where RXX(0) and RY Y (0) refer to the autocorrelation of
the predicted and expected signals.

The lag in the cross-correlation output was not considered
to give flexibility to the tactile signals’ timing, as the relative
timing between the actual SA and RA signals might not
always be the same. The two events were considered to
be similar when all the actual tactile signals, which are
SAright, SAleft, RAright, and RAleft, showed a maximum
normalized cross-correlation value greater than 0.9 and 0.7
for SA and RA, respectively.

C. Corrective actions for tactile event based grasping algo-
rithm

When the predicted and the actual tactile events fail to
match, the manipulator must take corrective action to adjust
itself for a stabler grasp. In our algorithm, three corrective
actions were added: Re-Reach, Lift-Load, and Avoid. Fig. 6a
shows the detailed actions taken in each of the corrective ac-
tions. The triggers for the execution of the corrective actions

(a)

(b)

Fig. 6. (a) The programmed corrective actions. b) The complete state
diagram for our grasping algorithm. The red transitions denote transitions
that are triggered through tactile events.

were not collected from simulation but added heuristically
through hard-coding.

By combining these corrective actions with the main six
states of the algorithm, we obtained a complete tactile event
based grasping algorithm with eight states. The resulting
algorithm is depicted in Fig. 6b in the form of a state machine
diagram. The state transitions that are triggered through the
tactile events are depicted as red arrows.

IV. EXPERIMENTAL RESULT

We introduce the robot system that used the proposed
tactile event based grasping algorithm to perform grasping
tasks, describing the assembly of each robot components.
Then, the grasping experiment setup and the results are
demonstrated.

A. Manipulator with mechanoreceptive tactile sensors

For the robot system, shown in Fig. 7a, a 2F-85 gripper
attached to the JACO2 6-DOF arm was used, identical to
the manipulator model used in the simulation. The original
gripper fingers were replaced with customized fingers with
tactile sensor pads, composed of capacitive and piezoelectric
transducers for pressure and vibration sensing, respectively.

The twelve electrodes shown in Fig. 7c are capacitive
electrodes, which work as transducers corresponding to the
SA mechanoreceptors. The electrodes construct a parallel
plate capacitor with the conductive fabric that covers the
finger. When there is a pressure applied onto the fingertip,
the elastomer and the conductive fabric is deformed so that
the distance between the conductive fabric and the capacitive
electrodes decreases. This creates a change in capacitance,
which can be expressed as,

∆C = εrε0A(
1

d1
− 1

d0
), (3)

where εr is the relative permittivity, ε0 is the permittivity of
free space, A is the area of the electrode, d1 and d0 are the fi-
nal and initial distance between the conductive fabric and the
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Fig. 7. (a) The robot system with fingertips with tactile sensors. (b) The
schematic diagram of the robot system. (c) The exploded view of the tactile
sensor structure.

electrode. The capacitance is measured using a capacitance-
to-digital converter (CDC) chip, AD7147 (Analog Devices,
USA), placed at the base of the fingertips. The pressure
applied on the finger is inferred from ∆C.

The sensor for acquiring stimuli of high frequencies,
which is equivalent to RA mechanoreceptors, was made
from a silver ink metalized PVDF film sheet (TE Connec-
tivity, Switzerland). The piezoelectric film sheet was cut
into a small piece and pasted onto the large electrode on
the backside of the PCB, shown in Fig. 7c, which is a
grounded electrode, using silver paste. The opposite side
of the piezoelectric film was wired to a charge amplifier
to convert the charge output of the piezoelectric film to
voltage. The relationship between the charge produced on
the piezoelectric film and the voltage output from the charge
amplifier is

Vpiezoelectric = − Q

Cf
, (4)

where Q is the charge produce on the film and Cf is the
feedback capacitance in the charge amplifier.

The CDC chip and the charge amplifier were both con-
nected to myRIO-1900 (National Instruments, USA). The
tactile signals are sent from myRIO to the main controller,
where the memorized predicted tactile events are stored
and the tactile event based grasping algorithm is run. The
electronic schematic of the robot system is shown in Fig.
7b.

B. Experiment setup for grasping under positional uncer-
tainties

To evaluate the performance of our tactile event based
grasping algorithm, we conducted grasping experiments on
three different objects, shown in Fig. 8a. The objects are
placed on their corresponding markers, of which the markers
in the center are the expected ideal position of the objects.
The manipulator’s initial position and orientation are set so
that it performs an ideal grasping with respect to objects

(a) (b) (c)

Fig. 8. (a) Objects placed on the marked positions and their dimensions.
(b) Object placed on its expected position. (c) Object that is intentionally
misplaced.

Fig. 9. The full tactile signal during a grasping task.

placed at the central marker. Fig. 8b shows an example of
when the object is placed at the center marker, which is its
expected position.

For deliberately misplacing objects, eight markers for the
misplaced positions were marked around the central marker.
The misplaced positions were set to ±1.5cm within the
direction of the finger stroke and ±1cm in the direction
normal to the palm of the gripper, which were set by
considering the gripper’s maximum stroke and dimensions of
the tactile sensor. Fig. 8c shows an example of a misplaced
object. Three grasping attempts were made at each position,
resulting in 27 grasping trials per object and a total of 81
grasping trials.

C. Results

Fig. 9 shows the tactile signals collected when the robot
grasped the cylindrical object placed at its expected position.
The Reach-Load, Load-Lift, and Place-Unload transitions
were triggered through a cross-correlation comparison to the
predicted tactile events stored in the controller’s memory.

To evaluate our method’s grasping performance, the grasp
success rate was computed from the results. A grasp was
noted as successful when the gripper was able to both hold
the object for at least 3 seconds and also place the object
down without the object falling over. Table I shows the
grasp success rate of our method for each object. The larger
objects showed perfect performance when they were at their
expected positions. The gripper often failed to stably grasp
the thick cylinder when the object was misplaced outwards
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TABLE I
GRASPING SUCCESS RATE FOR EACH OBJECT.

Object Well-placed Misplaced
∼Hold ∼Unload ∼Hold ∼Unload

Box 100% 100% 100% 100%
Thick cylinder 100% 100% 83% 83%
Thin cylinder 100% 67% 75% 25%

Average 100% 89% 86% 69%

Fig. 10. Detecting object collision from RA signals and reacting to the
collision in the Avoid state.

from the gripper. In the case of grasping the thin cylindrical
object, most of the failure occurred from failing to place
the object in an upright orientation correctly. Disregarding
the placing task, if only the picking phase is considered,
the algorithm showed perfect performance when picking up
objects at their expected positions and an average of 86%
success rate when picking up misplaced objects.

Since the effect of the Avoid state is not shown in the
object grasping experiment, a separate demonstration was
performed. The manipulator was held at the Hold state and
the operator hit the object. Unlike in other state transitions,
the predicted tactile events for the transition between Hold
and Avoid were not memorized. Therefore, a threshold
trigger was used to make the transition. Fig. 10 shows the
manipulator in the Avoid state.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a method to implement a tactile
event based grasping algorithm using memorized predicted
tactile events. The tactile events extracted from the sim-
ulation are stored in memory and referred to when they
perform a grasping task based on the human-like grasping
algorithm. The performance of the proposed method was
evaluated through real-life experiments. We found that our
proposed method was able to pick up objects with 86%
success rate. This implies that our proposed method allows
for the grasping of objects even if there are uncertainties in
the object localization or robot control.

Improvements in the tactile sensor are desirable for a
better grasping performance. There were several cases where
the piezoelectric film failed to identify very weak dynamic
stimuli, leading to grasp failures. Using more realistic noise-
included simulation signals could also increase the robust-

ness of the method when implemented on a real robot.
Deleting heuristic parts in the method can be made possible
using learning techniques, which we will deeply investigate.
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