
  

  

Abstract— Electric motors have been widely used as the 

actuators of robot and automation systems. This paper aims at 

achieving the high-precision position control of motor drive 

systems. For this purpose, a robust control scheme is presented 

by combining the internal model principle, the sliding mode 

technique and the extended state observer (ESO). The PID-type 

controller is firstly designed by using the internal model control 

(IMC) rules. Since the analysis of the IMC system is performed 

via a sliding surface, a robust sliding mode control (SMC) law is 

then synthesized to enhance the control ability of the system to 

uncertainties. However, this robust solution should make a 

trade-off between the chattering attenuation and the control 

accuracy. To handle this drawback, a linear ESO is employed to 

compensate the modeling errors for a higher control accuracy. 

The stability analysis is provided via a Lyapunov-based method, 

and the superiority of the proposed approach was validated by 

comparative experiments on a motor drive platform. 

I. INTRODUCTION 

Electric motors have been extensively utilized for robot and 

automation systems in industry and healthcare [1-3], owing to 

their merits such as low noise, excellent control capability, 

high torque production, high-dynamic response, etc. [4, 5]. 

However, it is still a challenging problem to design high- 

performance controller for motor systems. Many factors such 

as modeling errors and unexpected disturbances inevitably 

exist in actual systems, which may have a great impact on the 

control accuracy, even excite unstable dynamics [6].  

Among existing control approaches, internal model control 

(IMC) establishes a model-based framework for the controller 

design and analysis [7]. In general, there are two directions for 

the development of IMC. One is applying a higher order IMC 

filter to change the dynamics of the closed-loop [8]. This 

usually leads to a complex control structure where more 

control parameters need to be tuned and the frequency-domain 

performance analysis becomes increasingly difficult. The 

other is the application of intelligent algorithms, such as 

immune algorithm [9], neural network method [10], and fuzzy 
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adaptive law [11]. However, their control performances 

greatly depend on the adaptive values, which has limited their 

performance improvement, especially under unmodeled 

dynamics. Besides, more efforts are required for the 

convergence of the algorithms, leading to the difficulty 

increase of their applications. 

To deal with the control problems of uncertainties, sliding 

mode control (SMC) is a powerful method for achieving more 

excellent robustness of the electro-mechanical systems [12]. 

In the standard SMC structure, a discontinuous switching 

control law, generally a signum function, is applied to 

eliminate the effect of uncertainties. However, due to the 

unmodeled dynamics and imperfect implementation of actual 

systems, this switching control activity will yield harmful 

chattering, which may lead to degradation of control accuracy 

[13]. To suppress the chattering, a robust continuous control 

scheme combining the IMC and the SMC was proposed for 

the boundary layer solution of servo motor systems [4]. 

However, this continuous solution enables the system states 

move around the desired manifold, leading to a certain 

bounded tracking error. Since the boundary layer solution is 

designed based on the boundary conditions, large control 

gains are generally employed for the systems with large 

uncertainties, which may limit the control accuracy with the 

consideration of stability. 

Recently, active disturbance rejection control (ADRC) 

presented in [14] has gained a lot of attention. It is an effective 

tool to cope with the large disturbances. The core of the 

ADRC scheme is to treat all the uncertain parts of the system 

model as an augmented system state, and then utilize an 

extended state observer (ESO) to estimate it for compensation 

[15]. To overcome the practical issues of the nonlinear ADRC, 

Prof. Gao proposed a linear ADRC to simplify the design 

process based on bandwidth parameterization [16]. However, 

the linearized version encounters the selection limitation of 

bandwidth. Therefore, the effect of the disturbances cannot be 

eliminated completely, resulting in a limited control accuracy 

for that the feedback controller comprised of proportional (P) 

and differential (D) terms has a poor disturbance rejection. 

Motivated by the above difficulties and limitations, a robust 

control scheme by combining the IMC [17], the SMC [12], 

and the ESO [18] is proposed in this paper for the 

high-precision motion control system. The proposed approach 

employs the IMC rules with a 2-degree-of-freedom (2DOF) 

structure to design the linear feedback controller, aiming at 

achieving a specified tracking performance. By establishing 

the sliding mode dynamics of the IMC system, a SMC-based 

robust controller is introduced to enhance the robust 

performance. To avoid excessive control gains of the 
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continuous SMC, a linear ESO is constructed to diminish the 

gap between the controlled plant and the system model by 

disturbance compensation. The controller analysis is 

performed via a Lyapunov approach. Theoretical results 

illustrate the specified tracking performance and the uniformly 

ultimately stable property of the proposed approach. 

This novel control strategy elegantly integrates the IMC, 

the SMC and the ESO for the controller design and 

performance analysis, and its effectiveness was validated by 

experiments conducted on a motor drive platform. That is 

rarely reported in the literature and can be viewed as the major 

contribution of this article. 
The remainder of this paper is arranged as follows. In 

section II, the modeling of motion system is presented and the 
control objective is formulated. The proposed controller 
design with theoretical analysis is presented in section III. 
Comparative experiment results are provided in section IV. 
Conclusion is finally included in Section V 

II. MODELING AND PROBLEM FORMULATION 

The motion system studied in this paper is a servo motor 
directly driving an inertia load, since the motor is the basic 
component in the robot and automation systems. Fig. 1 shows 
the schematic diagram of the motor drive system. In the 
system modeling, the dynamics of current-loop can be ignored 
for its much faster response than the outer position-loop. The 
dynamic model of the system can be simplified as 

 ( ) ( ) ( ) ( )J t u t B t D t = − −  () 

where, J and B are the system parameters related to the inertia 
load and the friction damping factor, respectively, θ is the 
angular position of the motor shaft, u denotes the control 
torque, D(t) denotes the unknown part of system dynamics. 

System (1) can be presented in a state-space expression as 

 
1 2

2 1 2 2 ( )

x x

x u x d t 

=


= − −
 () 

where, 1x =  and 
2x =  denote the system states, 1 = 1/J 

2 = B/J, and d(t) = D(t)/J. 
The control objective is to develop a control law for the 

high-precision position tracking control of the system (2) 
regardless of the existence of bounded uncertainties and 
unknown disturbances. The control approach is expected to be 
simple and intuitive, as well as easy implementation. 

Assumption 1. The system parameters are positive constant 
satisfying 

 
1min 1 1max 2min 2 2max0 ;  0         +     +  () 

Assumption 2. The disturbance dynamics is unknown but 
bounded by 

 
max( ) ;  d t d  +  () 

III. CONTROLLER DESIGN 

A.  PID control based on IMC rules 

According to the IMC rules, the first step for PID controller 
design is to obtain the nominal model Gn(s) of the controlled 
plant (1), which can be expressed as 

 
1

( )
( )

n

n n

G s
J s B s

=
+

 () 

where Jn and Bn denote the estimated or nominal parameters. 
The desired trajectory x1d is defined as 

 
1 ( ) ( ) ( ); ( ) 1/ ( 1)dx s f s R s f s s= +  () 

where, R denotes the reference trajectory, f(s) represents the 

specified low-pass filter with a filter constant . 
As presented in [4] and [5], the IMC filter fD(s) is given by 

 2( ) (2 1) / ( 1)Df s s s = + +  () 

The PID controller via the IMC rules with a 2DOF structure 
is designed as 

 
1( ) ( ) 2 1

( ) ( )( )
1 ( ) 2

D n n n

D n

f s G s J B
C s s s

f s s J 

−

= = + +
−

 () 

To reduce the overshoot, the set-point filter F(s) is given by 

 
( ) 1

( )
( ) 2 1D

f s s
F s

f s s





+
= =

+
 () 

The filtered reference RF is defined as 

 ( ) ( ) ( )FR s F s R s=  () 

B. Robust control scheme combining IMC and SMC 

We can define an integral sliding surface as 

 
2 1 1 1 2 2

2 1 1 1

( 2 ) 2 ;

( 2 ) 2

a b a b eq

eq d a b a b

z z k k z k k z dt x x  

x x k k z k k z dt

= + + + = −

− + −




 () 

where, z1 = x1 − x1d denotes the tracking error, ka = Bn/Jn and kb 

= 1/(2) are control gains. 

By defining the controller input error 1 1e x R= −  , one has 

 
1 1 1; ;F de z R  R R x= −  −  () 

The robust controller combining the IMC and the SMC 
technique is designed as 

 
1

1 1 1

/ ;

[ ( ) ]

IMC R n

IMC c a b a b

u u u  

u = k e k k e k k e dt

= +

− + + + 
 () 
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Fig. 1.  The schematic diagram of the motor drive system. 
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where, IMCu  denotes the output torque of the IMC-based PID 

controller (8) and kc = 2Jn/, Ru  is the SMC-based robust 

control law and will be designed later. 
By differentiating (11) and applying (2), (12) and (13), the 

dynamics of z2 can be given by 

 
2 2

1 1

1 2
[ ( ) ]a b a b

T

d a d R

z z R k k R k k Rdt

       x k x u d

 

 

= − +  + +  + 

− − + + −

  () 

where, T

2[ , ]u x − ,   is defined as 

 T

1 1 2 2[ ,  ]n n    = − −  () 

Based on the standard SMC theory, the robust control law 

Ru  is designed as a signum function. 

 
2( )R gu k sign z= −  () 

where, kg is a positive control gain which is large enough such 
that the following condition is satisfied. 

 
maxg Mk d  +  () 

where, M = [1max – 1min, 2max – 2min]T. 
Theorem 1: Given that assumptions 1 ~ 2 holds, the control 

law (13) with (16) ensures the globally exponential stability of 
the system (2). The Lyapunov function selected as 

 
2

2

1
( )

2
sV t z  () 

Satisfies 

 ( ) (0) ;   0t

s sV t V e t−    () 

where  = 2/. 
proof: From (6), (9) and (10), we have 

 
1 2

( ) 2 1
( ) ( ) ( )

( ) ( 1)
d F F

f s s
x s R s R s

F s s





+
= =

+
 () 

By calculating the inverse Laplace transform of (20), and 

noting that 
1F dR R x − , one has 

 2

1 2dx R R =  +   () 

 2

1 2dx R Rdt =  +   () 

Applying ka = 2n and kb = 1/(2λ), we have 

 1 1

2
[ ( ) ]a b a b d a dR k k R k k Rdt x k x


 + +  +  = +  () 

Substituting (23) into (14), we have 

 2 2

1 T

Rz z u d 


= − + + −  () 

From (18) and (24), the time derivative of Vs is given by 

 2

2 2

1
( )T

s RV z z u d 


= − + + −  () 

Applying (16) and noting the condition (17), we have 

 
2

s sV V


 −  () 

Integrating (26) infers to (19), which ensures the globally 
exponential stability of the control system. 

Remark 1: Theorem 1 illustrates that the robust IMC 
scheme (13) based on the SMC achieves a globally 
exponential stability of the control system. However, due to 
the drawbacks of actual implementation, the signum function 
(16) causes a harmful chattering and may deteriorate the 
control accuracy. To attenuate the chattering, a continuous 

approximation is usually applied, e.g., the control law Ru  is 

revised as a simple saturation function. 

 
2 2

2 2

2

/         
( );  ( )

( )    
R g

z if z
u k sat z sat z

sign z others

  
= − 


 () 

This continuous solution only achieves the globally 
uniform ultimate boundedness of the tracking error, and its 
upper bound depends on the parameter ε. However, too small ε 
leads to a high-feedback control gain in the boundary layer, 

which will intensify the chattering. If a large  is employed, 
this control law will do little for the control problem of 
uncertainties. The tracking accuracy is thusly limited. 

C. Linear ESO design 

The lumped disturbance of the system model is defined as 

(t) = (1 − 1n)u − (2 − 2n)x2 − d, where 1n = 1/Jn and 2n = 

Bn/Jn. Define x3 = (t) as the extended system state, and let 

( ) ( )h t t=  , then, we can extend the dynamics (2) as 

 

1 2

2 1 2 2 3

3 ( )

n n

x x

x u x x

x h t

 

=


= − +
 =

 () 

It is easy to know that the above state-space equation is 
observable. We can design a linear ESO as 

 

1 2 0 1 1

2

2 1 2 2 3 0 1 1

3

3 0 1 1

ˆ ˆ ˆ3 ( )

ˆ ˆ ˆ3 ( )

ˆ ˆ( )

n n

x x x x

x u x x x x

x x x


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

 = − −


= − + − −


= − −

 () 

where, 1x̂ , 2x̂  and 3x̂  denote the estimates of system states, 

0 denotes the bandwidth parameter of the ESO. 
Subtracting (29) from (28) infers to 

 

1 2 0 1

2

2 3 0 1

3

3 0 1

3

3

( )

x x x

x x x

x h t x







 = −


= −


= −

 () 

where, ˆ
i i ix x x= −  (i = 1, 2, 3). 

Lemma 1 [18]: Assuming that h(t) is bounded, there exist 
constants σi > 0 and finite time T1 > 0 such that 

 
1

0

1
, O( ), 1,2,3,i i i c

x   i  t T 


 = =    () 
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for some positive integer c. 
Remark 2: We can know from Lemma 1 that in the presence of 

the disturbances with bounded differential, the upper limits of 

the estimation errors ix  can be made sufficiently small by 

tuning 0. Since the estimated state 3x  is applied to suppress 

the effect of various disturbances, the ESO can compensate 
most of the deviations between the process and the nominal 
model. Due to the model-based control structure of the robust 
IMC scheme, the addition of the ESO will greatly alleviate the 
burden on the IMC, and thusly enhance the control ability to 
disturbances. 

D. Robust control scheme combining IMC, SMC and ESO 

Shown in Fig. 2, the composite controller based on IMC, 

SMC and ESO is proposed as  

 1 3
ˆ( ) / ; ;IMC R ESO n ESOu u u u   u x= + + = −  () 

where, ESOu  denotes the compensation law from the extended 

state estimation of (29). 

By differentiating (11) and applying (2), (12) and (32), the 

dynamics of z2 is deduced as 

 
2 2

1 1 3

1 2
[ ( ) ]a b a b

d a d R

z z R k k R k k Rdt

       x k x u x

 
= − +  + +  + 

− − + +

  () 

Since the exact bound of 3x  cannot be known a prior, the 

constraint like (17) cannot be pre-specified. Thus, a robust 

linearized control law satisfying the following condition 

 2

2 3 3( )rz u x +   () 

is employed by 

 2 / (4 )ru z = −  () 

Theorem 2: Considering the bounded h(t), the composite 

controller (32) with (29) and (35) ensures that all the system 

signals are uniformly ultimately bounded. Furthermore, after 

the finite time T1, z2 satisfies 

 
3

2 2 1 1( ) ( ) (1 ),  t tz t e z T e t T 



−  −  + −    () 

and the Lyapunov function Vs (Vs = z
2 

2 /2) is bounded by 

 

2

3

1 1( ) ( ) (1 ),  t t

s sV t e V T e t T 



−  −  + −    () 

where, η = 1/λ +1/(4). 

proof: By substituting (23) into (33), and applying (35), we 

have 

 2 2 3

1 1
( )

4
z z x

 
= − + +  () 

By applying Lemma 1, one has 

 2 2 3 1

1 1
( ) ,

4
z z  t T

 
 − + +    () 

Integrating (39) from T1 to t infers to (36). 

From (39), the time derivative of the Lyapunov function 

(18) can be derived as 

 2 2

2 2 2 3 3

1 1 2
( )
4

s sV z z z V 
  

 − − −  − +  () 

Integrating (40) from T1 to t yields (37). Therefore, the 

uniformly ultimately stable property can be ensured. 

Remark 3: By comparing the results in (19) and (37). It 

seems that the controller (32) with (35) achieves a worse 

performance than the controller (13) with (16). However, in 

the developed controller (32), most of the lumped disturbance 

is compensated, which can avoid high-gain feedback control 

for high tracking accuracy when large disturbances are 

presented. 

Since the ESO specifies the behaviors of 3x  and the IMC 

combining the SMC defines the closed-loop dynamics, all the 

virtues of the three control techniques (IMC, SMC and ESO), 

such as simplicity, intuition and effectiveness, can be 

accessible in the proposed composite controller. In this way, a 

novel control framework can be established for the control 

system design and analysis. 

IV. EXPERIMENT VERIFICATION 

A. Experiment Setup 

The experimental verification platform is shown in Fig. 3. 
The detailed configuration can be found in Ref. [4] and [5]. 

The plant parameters are estimated as Jn = 1.510-4 kgm2 and 

Bn = 1.810-3 Nm/(rad/s), leading to the nominal model as 

2DOF-
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Motion

System

D

ESO
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u+ +
-

+

e1
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-
xuIMC

uESO/1n
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+
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Fig. 2.  The diagram block of the composite controller combining IMC, SMC 

and ESO  
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Fig. 3.  Experiment platform  
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4 3

1 1
( )

( ) (1.5 10 1.8 10 )
n

n n

G s
J s B s s s− −

= =
+  + 

 () 

The low-pass filter f(s) = 1/(0.0025s+1) is selected to 
prescribe the set-point tracking. The following controllers are 
design for comparison: 

1) 2DOF-IMC-PID: This control strategy is designed by the 

2DOF-IMC rules, which is presented in (8), leading to the 

PID control gains as ka = 12, kb = 200, kc = 0.12, and the 

reference prefilter as F(s) = (0.0025s+1)/(0.005s+1). 

2) RIMC-SMC: This robust controller (16) is designed by 

combining IMC and SMC, where the same control gains 

to the 2DOF-IMC-PID are applied for fair comparison. 

The boundary conditions are designed as [1min, 2min]T = 

[3000, 1]T and [1max, 2max]T = [15000, 120]T for 

parameter uncertainties, and dmax = 0.5/J for the added 

disturbance. 

3) RIMC-SMC-ESO: This is the proposed control strategy 

(32) combining IMC, SMC and ESO, in which the same 

controller gains and boundary conditions to the 

RIMC-SMC are applied. The bandwidth of the ESO is 

selected as 0 = 300. 

Two performance indices, including maximum absolute 

error (MAE = max{ 1z }) and integral absolute error (IAE = 

1z dt ), are applied to evaluate the controller performance. 

B. Position tracking experiments under disturbances 

Shown in Fig. 4, the S-curve motion trajectory is employed 
in this testing case. Two types of disturbances (ramp and sine) 
are added for the performance test of the three controllers. The 
slope of the ramp disturbance is selected as 1.0 Nm/s. The sine 

type is given by 0.2[1 − cos(4t)] Nm. 

Fig. 5 shows the tracking error curves under the ramp 
disturbance and Fig. 6 is under the sine disturbance, with their 
performance indices (MAE and IAE) presented in table I. We 
can know that comparing with the 2DOF-IMC-PID, the 
RIMC-SMC has a relatively better tracking accuracy. This 
implies that adding the SMC law to the IMC scheme can better 
enhance the closed-loop control ability to reject disturbance. 
However, when the robust control law improves the tracking 
accuracy, it expands the thickness of the error curves, or 
introduces the chattering. 

Figs. 5~6 also shows that the time-varying disturbances can 
be exactly observed by the ESO. It suggests that most of the 
added disturbance can be compensated with the observed 
value. As a result, when the ESO is integrated into the 
RIMC-SMC for ADRC, a better tracking accuracy is obtained 
without the increase of chattering. These comparative results 
demonstrate the effectiveness of the proposed controller by 
combining IMC SMC and ESO on the disturbance rejection 
capability. 

C. Position tracking experiments under uncertainties 

The motion trajectory shown in Fig. 7 is applied to make 
the effect of the uncertainties on the tracking performance 
more obvious. To evaluate the robust performance, the 
following parametric uncertainties are designed。 

1) Case A: The control input u in this case is modified as 

0.5u. From the model (2), this case equivalently alters 1 

into 0.51 for the robustness test. 
2) Case B: By adding – 0.01x2 to u, this case equivalently 

alters 2 into 0.011 + 2 for another parameter variation. 

 

Fig. 4.  The S-curve motion trajectory  
 

TABLE I 
TRACKING PERFORMANCE UNDER DISTURBANCES (MAE AND IAE) 

Schemes 
Step disturbance Sine disturbance 

MAE IAE MAE IAE 

2DOF-IMC-PID 6.110-3 6.410-3 9.110-3 1.110-2 

RIMC-SMC 4.510-3 4.610-3 6.510-3 7.310-3 

RIMC-SMC-ESO 5.810-4 4.610-4 9.610-4 1.010-3 

 

 
Fig. 5.  Position tracking experiments under ramp disturbance 

 
Fig. 6.  Position tracking experiments under sine disturbance 
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The tracking error curves of case A is depicted in Fig. 8 and 
case B is in Fig. 9, with the MAE and the IAE summarized in 
table II. As seen, the RIMC-SMC obtains a relative higher 
tracking accuracy comparing with the 2DOF-IMC-PID. This 
implies that the former can better reduce the effect of 
parameter variations than the later, thus can better improve 
the closed-loop robustness. Even though, the RIMC-SMC- 
ESO yields a much higher tracking precision by adding the 
ESO to the RIMC-SMC. Since the parameter variations is 
treated a part of the lumped disturbance, the ESO can 
alleviate the burden of the robust controller by disturbance 
compensation, such that the control system robustness to 
uncertainties can be further improved. Due to the effective 
combination of IMC, SMC and ESO, the tracking accuracy of 
the proposed RIMC-SMC-ESO is the best among the 
comparative controllers. 

V. CONCLUSION 

In this paper, by combining the IMC rules, the SMC 
technique and the linear ESO, a novel, simple, effective and 
intuitive framework is established for motion control systems 
driven by electric motors. In the proposed approach, the SMC 
and the linear ESO, which are expected to achieve an 
improved robustness and disturbance rejection, respectively, 
are applied to the IMC scheme for a higher tracking control 
accuracy. The analysis of the error dynamics is performed via 
the Lyapunov method, which ensures the uniformly 
ultimately bounded stability regardless of internal 
uncertainties and external disturbances. Experimental results 
suggest that a more excellent tracking accuracy can be 
obtained by applying the SMC and the ESO to the IMC 
scheme, which has verified the superiority of the proposed 
composite controller.  
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Fig. 7. Motion trajectory for robustness test 

TABLE II 
TRACKING PERFORMANCE UNDER UNCERTAINTIES (MAE AND IAE) 

Schemes 
Case A Case B 

MAE IAE MAE IAE 

2DOF-IMC-PID 0.0120 0.0254 0.0433 0.0846 
RIMC-SMC 0.0089 0.0173 0.0290 0.0566 

RIMC-SMC-ESO 0.0019 0.0025 0.0042 0.0075 

 

 
Fig. 8.  Tracking error curves under case A 

 
Fig. 9.  Tracking error curves under case B 
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