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Abstract— This paper presents a novel control strategy for
the compensation of the slippage effect during non-rigidly
grasped object manipulation. A detailed dynamic model of the
interconnected system composed of the robotic manipulator,
the object and the internal forces and torques induced by
the slippage effect is provided. Next, we design a model-based
variable impedance control scheme, in order to achieve simulta-
neously zero convergence for the trajectory tracking error and
the slippage velocity of the object. The desired damping and
stiffness matrices are formulated online, by taking into account
the measurement of the slippage velocity on the contact. A
formal Lyapunov-based analysis guarantees the stability and
convergence properties of the resulting control scheme. A set
of extensive simulation studies clarifies the proposed method
and verifies its efficacy.

I. INTRODUCTION

During the last decades, a significant increase of robots em-
ployment in various fields of industry has been noted, includ-
ing production, logistics and manufacturing [1], [2]. In most
cases, robots frequently interact with delicate cargo objects,
tools or sophisticated equipment (e.g medical robots). In this
vein, safe and precise autonomous object manipulation is an
important robotic operation which requires a set of precise
detection, recognition and grasping control algorithms.
Numerous studies have been reported regarding the design of
object manipulation control strategies for either single or co-
operative robotic systems [3]–[8]. Despite the fact that early
works are focused on centralized control architectures [3],
[4], the need to employ large-scale interconnected robotic
systems able to accomplish complex tasks, has concentrated
the recent studies on decentralized control approaches [5]–
[8].
However, most research efforts consider a rigid contact
between the robots’ end-effector and the grasped object.
In practice, this assumption can be unrealistic for certain
object classes such as in cases where two manipulators are
employed in order to grasp and cooperatively transport a
bulky fragile item (e.g a glass frame) across an assembly line
as depicted in Fig. 1. In such case, the gripping as well the
induced internal forces must be considerably low in order
to prevent damage or complete destruction of the object,
making the assumption of contact rigidity invalid and the
relevant manipulation techniques unsuitable for this kind of
application.
Nevertheless, non–rigid manipulation is a rather challenging
undertaking, mainly due to the absence of contact constraints
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Fig. 1: Cooperative Transportation Tasks of Fragile Objects.

on the slippy directions of the object, that significantly in-
crease the complexity of the system model. Research efforts
that tackle the problem of non-rigid contact during object
manipulation are still limited in comparison to the rigid
contact ones and can be distinguished in two main categories:
a) methods that focus on slippage detection via sensor
development and b) methods that compensate the slippage
effect via the design of appropriate control strategies.
Different sensor technologies have been employed in order
to provide accurate and robust slippage detection, with
tactile sensing being one of the leading approaches [9].
Early slip sensors were based on accelerometers or similar
technologies, able to detect small, transient forces or motions
with increased sensitivity [10]. Moreover, a few attempts to
integrate optical and pressure sensors [11] have been reported
in the literature. Other approaches for slip detection are based
on acoustic sensors [12]. Additionally, some examples of
slip sensors based on piezo-resistive materials [13] or image
processing techniques [14] can also be found in the literature.

From a control point of view, the assumption of a rigid
contact between the robot’s end-effector and the object, may
lead to undesirable behavior of the combined system such
as instability, convergence error and safety issues. Thus, the
choice of applied forces on the object is of utmost importance
in robot manipulation, so as to avoid or minimize the risk of
slippage [15], [16]. Recent works use the sliding motion for
object re-grasping [17] or in-hand manipulation [18]. In [19],
two algorithms are proposed for object and gripper pivoting.
Using force and moment measurement, the initial position of
the fingers with respect to the object center of gravity and the
knowledge of the friction model parameters, the proposed
algorithms counteract the slippage velocity by modulation
of the grasp force of a gripper. In [20], a three-level slip
prevention strategy for dual-arm manipulation is proposed
by applying dynamic adjustment of squeeze force, desired
motion trajectory and berthing contact force modification.
However, they assume that the surface friction coefficients
are a priori known.
A manipulation control scheme which considers the slippage
between the robot finger tips and the object, is presented
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in [21], [22]. In these studies, the authors are using a
model for frictional contact condition, where the slippage
equations of motion are considered as a second-order differ-
ential system, with known switching coefficients. However,
even with the increasing development of tactile sensors, the
accurate knowledge of the friction model or its coefficients,
is still a non-realistic assumption, especially considering the
heterogeneity of robots and objects involved in industrial
related applications.
In this work, we address the problem of object manipulation
in non-rigid grasp. More specifically, for a rigid object with
known dynamics, which is grasped by nC slippy contacts,
we propose a Variable Impedance Control (VIC) strategy, in
order to achieve simultaneously guaranteed convergence to
zero for the trajectory tracking error and the slippage velocity
assuming that no external forces or torques acting on the
interconnected system. The dynamic properties of the system
are formulated accordingly, by employing the measurements
of the slippage velocity and the forces/torques acting on the
object, hence the proposed model-based controller ensures
a safe, reliable and slippage-free behavior with guaranteed
steady state performance. Additionally, a compensation term
is added to the system which significantly contributes on
the reduction of the slippage effect. At this point, we
should highlight that neither the model of friction nor the
coefficients between the robot end-effector and the object are
considered known, increasing in this way the applicability of
the proposed scheme in real case scenarios. Moreover, the
slippage velocity that is needed for the proposed controller,
can be acquired by using tactile slip sensors similar to the
ones proposed in [14], [23].
The rest of the paper is organized as follows: In Sec. II,
the dynamic modeling of the combined system is described,
including the robot and object dynamic equations, the contact
kinematics and the dynamics of the slippage effect. Sec. III
presents the design of the proposed Lyapunov-based control
scheme along with a stability proof. Sec. IV demonstrates
the applicability and performance of the proposed controller
via extensive simulation tests. Finally, Sec. V concludes the
paper.

II. MATHEMATICAL MODELING

In this section, the dynamic equations of the robotic manipu-
lator, the object and the slippage effect are initially presented.
A vector cxa,b represents the quantity of the difference
between the frame {a} and {b} as observed by the reference
frame {c}. For example, in Fig. 2 the oxo,p is the position
vector from frame {o} to {p} as observed by {o}. When
the left upper superscript is absent, we denote that vector
is expressed in the world fixed coordinate frame {w} and,
additionally, if the low left subscript is absent, we denote
that the vector is observed and measured by the right upper
superscript (oxp ≡

oxo,p and xp ≡
wxw,p).

A. Robot Dynamics

The dynamic model of a manipulator with nQ number of
joints can be written as [24]:

B(q)q̈ +C (q, q̇)q̇ + g(q) = u+ J
>
(q)hee (1)

,where q, q̇, q̈ ∈ RnQ are the joint position, velocity and
acceleration, respectively. B(q),C (q, q̇) ∈ RnQ×nQ are
the mass-inertia matrix and centrifugal and Coriolis terms
matrix, respectively. Moreover, g(q) ∈ RnQ is the vector of
gravity terms, hee ∈ R6 the vector of interaction forces and

Fig. 2: Contact Area Frames.

torques between the robot end-effector and the environment
and u ∈ RnQ is the torque control input induced by the
joint motors. The pose of the end-effector w.r.t. world frame
{w} is denoted as pee ∈ R6 (if we consider Euler angles
as orientation representation) and can be computed using
forward kinematics:

pee =AAA(q) (2)
where AAA(·) : RnQ 7→ R6. The differential kinematics
equation is:

ṗee = Ja(q)q̇ (3)

where Ja(q) is the analytical jacobian. It holds that:
J(q) =

[
III3×3 O3

O3 Tφ(φee)

]
Ja(q) = Tφ(φee)Ja(q) (4)

where Tφ(φee) ∈ R3×3 is a transformation matrix which
definition depends on the euler angle vector φee ∈ R3. The
relation between the time derivative of the pose of the end–
effector ṗee = [ẋ>ee, φ̇

>
ee]
> ∈ R6 and the spatial velocity

vee = [ẋ>ee,ωee
>]> ∈ R6 is:

vee =
[
III3×3 O3

O3 Tφ(φee)

]
ṗee = Tφ(φee)ṗee (5)

Moreover, the relationship between the angular acceleration
and the second time derivative of euler angles is given by:

ω̇ee = Tφ(φee)φ̈ee + Ṫφ(φee, φ̇ee)φ̇ee (6)
Therefore, it holds that:

vee = J(q)q̇ (7)
Deriving the Eq. 7, we get:

v̇ee = J(q)q̈ + J̇(q)q̇ (8)
Using the Eq. 7 and Eq. 8, we can express the dynamic
model equation in Cartesian Space:

Bx(q)v̇ee +Cx(q, q̇)vee + gx(q) = uC,x + hee (9)
where Bx(q) = J+>BJ+, Cx(q, q̇) = J+>CJ+ −
BxJ̇J

+, gx(q) = J+>g and uC,x = J+>u. With the
right superscript (+) we denote the Moore-Penrose pseudo-
inverse or the inverse of a matrix if it is non-square or square,
respectively. Then, the properties of the dynamic model still
hold assuming that the J is non singular.

B. Object Dynamics

The dynamics of a rigid object expressed in world frame
{w} can be obtained by:

Bov̇o +Co(vo)vo + go(po) = −ho (10)
where:

Bo =
[
moIII3×3 O3

O3 JJJ o

]
∈ R6×6,

Co(vo) =
[

O3 O3

O3 S(ωo)JJJ o

]
∈ R6×6,

JJJ o ∈ R3×3

ho =
∑nC

i=1

{
Giheei

}
∈ R6

,where po = [xo
>,φo

>
]> ∈ R6, vo = [ẋ>o ,ωo

>]> ∈ R6,
v̇o = [ẍ>o , ω̇

>
o ]
> ∈ R6 is the 3D pose, spatial velocity and

acceleration of the object. ho is the sum of the generalized
forces exerted by the manipulator on the object. The Gi ∈
R6×6 is the partial grasp matrix which definition will be
analyzed in the following sections.
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C. Contact Kinematics Considering Slippage

Consider an object with reference frame {o} located on its
Center of Mass (COM) and {w} the world frame. We define
i = 1 . . . nC contact points located on the object surface
after the initial robot grasp and prior to further motion.
For each contact point, we define an initial frame {pi}
describing the pose of the ith contact point before slippage.
Since the object is rigid, the position of each initial contact
point w.r.t COM can be considered constant, hence oxpi ≡
oxo,pi = const. During the manipulator motion, the slippage
effect is induced, and the contact points are now moving
along the object surface with {ci} the frames denoting the
relative motion w.r.t to the initial grasping frames {pi}.
The slippage position pixpi,ci ≡

pisil 6= 0, linear velocity
piẋpi,ci(t) ≡

pivsil and linear acceleration piẍpi,ci(t) ≡
pi v̇sil can be defined as continuous functions of time. Where
pisi = [pisil,

pisia] ∈ R6 is the slippage displacement
considering euler angles to represent the orientation. Then,
pivsi = [vsil,vsia] = Tφ(

pisia)
pi ṡi ∈ R6. The kinematic

equation of the point {ci} w.r.t. {w} frame can be calculated
as:

xci = xo +
wRo

ox,pi +
wRo

oRpi
pisil (11)

,where wxw,ci ≡ xci ,
wxw,o ≡ xo and taking into account

the Eq. 11. Considering the assumption of a rigid object
(oRpi = const. ∈ R3×3 and oxpi = const. ∈ R3) the time
derivative of the Eq. 11 is calculated by:
ẋci =

[
III3×3 S>(xo,pi +

wRpi
pisil)

] [ẋo
ωo

]
+ wRpi

pivsil (12)

The angular velocity of the contact {ci} with respect to world
frame is:

ωci = ωo +
wRpi

pivsia (13)
Combining the above equations, the spatial velocity of {ci}
is obtained by:
vci =

[
III3×3 S>(xo,pi +

wRpi
pisil)

O3×3 III3×3

] [
ẋo
ωo

]
+

[
wRpi O3×3
O3×3

wRpi

] [
pivsil
pivsia

]
= Gi

>
vo +

wRpi
pivsi

(14)
where, Gi ∈ R6×6 is the partial grasp matrix, wRpi =

diag
(
wRpi ,

wRpi

)
∈ R6×6 is a diagonal matrix, and

vci ,vo ∈ R6 the spatial velocity of the object and contact
point {ci}, respectively. In similar way, we get the linear and
angular acceleration of the {ci} by:
ẍci =ẍo + S

>
(xo,pi +

wRpi
pisil)ω̇o + 2S(ωo)

wRpi
pivsil+

ωo ×
(
ωo × (xo,pi +

wRpi
pisil)

)
+ wRpi

pi v̇sil
(15)

ω̇ci = ω̇o + S(ωo)
wRpi

pivsia +
wRpi

pi v̇sia (16)
Therefore, the spatial acceleration in matrix form is:
v̇ci =Gi

>
v̇o +

[
2S(ωo)

wRpi O3×3
O3×3 S(ωo)

wRpi

]
pivsi +

wRpi
pi v̇si+[

ωo ×
(
ωo × (xo,pi +

wRpi
pisil)

)
O3×1

]
=Gi

>
v̇o +ΦΦΦ1(ωo,

wRo)
pivsi +

wRpi
pi v̇si +ΦΦΦ2(ωo,

wRo,
pisil)

(17)

Using the definition of the partial grasp matrix for a non-rigid
contact in Eq. 14, it can be easily obtained that:

Gi =

[
III3×3 O3×3

S(xo,pi +
wRpi

pisil) III3×3

]
=

[
III3×3 O3×3
S(xo,pi) III3×3

]
+

[
O3×3 O3×3

S(wRpi
pisil) O3×3

]
= GC,i +Gs,i

(18)

,where GC,i ∈ R6×6 and Gs,i ∈ R6×6 is the constant and
variant part of the partial grasp matrix which depends on the
slippage displacement pisil(t) ∈ R3, respectively.

D. Slippage Dynamics

Using the Eq. 17, we get:
v̇si = v̇ci −Gi

>
v̇o −ΦΦΦ′1vsi −ΦΦΦ2 (19)

where v̇si ∈ R6 is the slippage acceleration wrt {w} frame.
By substituting the Eq. 9 and Eq. 10 in Eq. 19 and assuming
that the end–effector {ee} has the same velocity with the
moving contact {ci} (vee = vci ⇒ v̇ee = v̇ci ), we get:

v̇si =−
(
P −ΦΦΦ′1

)
vsi −Csivee

+ gsi +Lsihee −ΦΦΦ2 +Bx
−1
uC,x

(20)

where ΦΦΦ′1 =
[
2S(ωo) O3×3
O3×3 S(ωo)

]
∈ R6×6, P =

Gi
>
Bo
−1
CoGi

−> ∈ R6×6, Csi =
(
Bx

−1
Cx −

Gi
>
Bo
−1
CoGi

−>) ∈ R6×6, gsi =
(
Gi
>
Bo
−1
go −

Bx
−1
gx
)
∈ R6 and Lsi =

(
Gi
>
Bo
−1
Gi +Bx

−1
)
∈ R6×6.

We assume that Gi ∈ R6×6 and Bx ∈ R6×6 are not
singular.

III. CONTROL DESIGN

The main objective is to design a control scheme uC,x ∈
R6 that drives the system to the desired trajectory and
simultaneously minimize the slippage effect on the contact,
e, ė,vsi → 0 through time t → +∞. To achieve this we
assume that the external forces acting on the system are zero.
Using feedback linearization technique for the system de-
scribed in Eq. 9, we choose the control input as follows:

uC,x =Cx(q, q̇)vee + gx(q)− hee +BxαC (21)
where αC = [α>Cp, α

>
Co]
> ∈ R6 constitutes a new control

input to be properly designed. We assume that we have the
measurement of the interaction forces and torques hee ∈ R6

which are equal to the object dynamics when vs ≡ 0 or
the friction forces in direction where slippage occurs. The
linearized system is:

v̇ee = αC ⇔ [ẍ
>
ee, ω̇

>
ee]
>
= [α

>
Cp, α

>
Co]
> (22)

Proposition 1. Assume the linearized system in
Eq. 22, the diagonal 6 × 6 positive definite matrices
MD = diag{MDp,MDo}, DD = diag{DDp,DDo},
KD = diag{KDp,KDo} and a desired trajectory
pdee(t), ṗ

d
ee(t), p̈

d
ee(t) ∈ R6. If the function Λ(vsi) =

[Λ>l (vsil), Λ
>
a (vsia)]

> : R6 → R6 has the following
properties:

• Λj(vsij) = O3, if vsij = O3 ∀j = l, a .
• continuous bounded function in R6.

The linear and angular controllers :
αCp =ẍ

d
ee +M

−1

Dp(−KDpep −DDpėp + Λl(vsil))

αCo =ω̇
d
ee − Ṫe(eo)ėo + Te(eo)M

−1

Do[−KDoeo
−DDoėo + Λa(vsia)]

(23)

, where Te(eo) = ReeTφ(eo), ep = xee − xdee ∈ R3,
eo = 1/2(nee × ndee + oee × odee + aee × adee) ∈ R3, with
Ree = [nee,oee,aee] ∈ R3×3 and Rd

ee = [ndee,o
d
ee,a

d
ee] ∈

R3×3 the rotation matrix of the current and desired end-
effector orientation, respectively, guarantee that the closed
loop system is Input-to-State Stable (ISS).
Proof. Let us consider as a candidate ISS Lyapunov function
a scalar positive definite function Ve(e, ė) : R

6 × R6 7→ R,
where Ve(0, 0) = 0 and Ve(e, ė) > 0, ∀ e(t), ė(t) 6= 0. The
sum of the kinetic and potential energy satisfies the above
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properties:

Ve =
1

2
ė
>
MDė+

1

2
e
>
KDe (24)

The closed loop system of Eq. 22 using the proposed
controller and Eq. 6 is:

MDë = −DDė−KDe+ Λ(vsi) (25)
as shown in [25] where the Te(eo) is non singular assuming
that no large orientation errors occurs (eo = ±π/2). Substi-
tuting Eq. 25 in the time derivative of Eq. 24, we get:

V̇e = −ė
>
DDė+ ė

>
Λ(vsi) (26)

considering Λ(vsi) as a bounded external input. As Lya-
punov gain we choose χ12(r) := λ1r ∈ K (belongs to
class Kappa functions family) with λ1 ∈ (0, 1). Then ‖ė‖ ≥
χ12(‖Λ(vsi)‖) implies that :

V̇e ≤ −ė
>
DDė+

1

λ1
‖ė‖2 , λ1 ∈ (0, 1) (27)

This shows that if we properly choose DD ∈ R6×6 the
Eq. 24 is an ISS Lyapunov function which immediately
implies that the closed loop system 25 is ISS with Lyapunov
gain χ12(r) := λ1r ∈ K for λ1 ∈ (0, 1). �

Then, we have to properly design the function Λ(vsi) to
simultaneously compensate the undesired slippage effect.
Proposition 2. Assume the system in Eq. 20, the
positive definite diagonal 6 × 6 matrices MD =
diag{MDpx, · · · ,MDoz}, DD = diag{DDpx, · · · , DDoz},
KD = diag{KDpx, · · · ,KDoz} and a desired trajectory
pdee(t), ṗ

d
ee(t) ∈ R6. If Te is non-singular and the gains

γdp, γdo, γkp, γko, ks, α > 0 are properly designed, the
controller in Eq. 21 with:

αC =TeM
−1

D [−Ki(vsi)e−Di(vsi))ė

+ Λ(vsi)] +Θ(eo, ėo)
(28)

where:
Λ(vsi) =MDTe

−1
tanh(α |vsi|)

[
ΦΦΦ2 − ksvsi − P(vee − vsi)

−Gi
>
Bo
−1
(go +Gihee)−Θ(eo, ėo)

] (29)

and
Kpj = KDpje

−γkp|uslij |, Koj = KDoje
−γko|usaij |,∀j ∈ x, y, z

Dpj = DDpje
−γdp|uslij |, Doj = DDoje

−γdo|usaij |,∀j ∈ x, y, z

the diagonal elements of the positive definite variable ma-
trices Ki(vsi),Di(vsi) ∈ R6×6, makes the closed loop
dynamics of the slippage velocity vsi = [vsil

>, vsia
>]> =

[ulix, uliy, · · · , uaiy, uaiz]> ∈ R6 Input-to-State Stable
(ISS).
Proof. We choose as candidate ISS Lyapunov function
Vs(vsi) for vsi(t) the following:

Vs =
1

2
vsi
>
vsi (30)

Vs : R6 → R≥0 is a continuous differentiable, positive
definite function where Vs(vsi) = 0 if vsi = 0. The closed
loop dynamics of the system in Eq. 20 using the proposed
controller are:
v̇si =−

(
P −ΦΦΦ′1

)
vsi + Pvee +Gi

>
Bo
−1
go

+Gi
>
Bo
−1
Gihee −ΦΦΦ2 + TeM

−1

D [−Ki(vsi)e

−Di(vsi))ė+ Λ(vsi)] +Θ(eo, ėo)

(31)

,where Θ(eo, ėo) =
[

O3

Ṫe(eo, eo)ėo

]
. Substituting the Eq. 31 to

the first time derivative of Eq. 30 we get:
V̇s =− vsi

>(P −ΦΦΦ′1)vsi + vsi>Pvee
+ vsi

>
Gi
>
Bo
−1
Gihee + vsi

>
Gi
>
Bo
−1
go

− vsi
>
ΦΦΦ2 + vsi

>
TeM

−1

D [−Ki(vsi)e

−Di(vsi))ė+ Λ(vsi)] + vsi
>
Θ(eo, ėo)

(32)

Using Lemma 1, we obtain that:
V̇s =vsi

>[Pvee − Pvsi +Gi
>
Bo
−1
go +Gi

>
Bo
−1
Gihee −ΦΦΦ2

+ TeM
−1

D

(
−Kie−Diė+ Λ(vsi)

)
+Θ(eo, ėo)

] (33)

Consequently, it can be easily obtained that when vsi = 0
then V̇s = 0. Now, we consider the case where |vsi| 6= 0.
Substituting, the proposed definition of Λ(vsi) in Eq. 29, we
conclude that:
V̇s =− ksvsi

>
vsi + vsi

>[
TeM

−1

D

(
−Kie−Diė

)]
(34)

considering that |vsi| > 0 and α >> 0 so as to
tanh(α |vsi|) = 1.
If we assume that the frictional forces are sufficient in order
to stabilize the object against the gravity in steady state, then
the closed loop system Eq. 25 is ISS. In this context, the term
Z(e, ė) = TeM

−1

D

(
−Ki(vsi)e − Di(vsi)ė

)
is bounded

because e, ė, Te, Kij(v) : R → [KDij
, 0) and Dij(v) :

R→ [DDij
, 0) ∀ i ∈ p, o and j ∈ x, y, z are bounded terms.

Therefore, we can choose χ21(r) := λ2r ∈ K for λ2 ∈
(0, 1) as Lyapunov gain. Then ‖vsi‖ ≥ χ21(‖Z(e, ė)‖)
implies that ‖Z(e, ė)‖ ≤ 1/λ2 ‖vsi‖ which leads to:

V̇s ≤− ks ‖vsi‖
2
+ 1/λ2 ‖vsi‖

2 (35)
With ks > 1/λ2 for λ2 ∈ (0, 1) the system 31 is ISS with
Lyapunov gain χ21(r) := λ2r. �
Proposition 3. The feedback interconnected system (Fig. 3)
of the two subsystems Eq. 25 and Eq. 31 is GAS if no external
disturbances acting on it.
Proof. In Proposition 1 and Proposition 2, we have shown
that the subsystems are ISS with Lyapunov gain functions
χ12(r) and χ21(r), respectively. To prove ISS of the in-
terconnection we exploit the small-gain condition χ12 ◦
χ21(r) < r for all r > 0. In our case this reduces to :

χ12 ◦ χ21(r) = λ1λ2 r < r, ∀r > 0
since the λ1, λ2 ∈ (0, 1) which implies that the intercon-
nected system is ISS. Then the interconnected system is GAS
given that no external disturbances acting on it according to
the definition. �

IV. SIMULATION RESULTS

The theoretical findings of the proposed work are verified in
a 3D dynamic simulation environment provided by Gazebo
[26]. However, the interaction dynamics between the object
and robot’s end-effector are calculated by a simulator that
has been developed using Python’s SciPy integration library
in order to simulate different friction models. More precisely,
the interaction forces generated by the algebraic constraints
imposed to the object and robot dynamics are computed
analytically using the methodology presented in [27]. Then
the computed forces are fed to the Gazebo’s physics engine.
We consider a scenario involving 2D motion in a workspace,
where the end-effector of a robotic manipulator has grasped
an object with known dynamics, as depicted in Fig. 4. Given
a desired trajectory for the interconnected system, the robot
tries to move accordingly in order to reach the goal and
simultaneously minimize the slip effect. The ROBOTIQ 2F-
140 adaptive gripper mounted on the robot’s end-effector
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TABLE I: Simulation Variables.

Object Friction
Type Box Model Stribeck
Dimensions (m) [0.1, 0.1, 0.1] µs 0.6
Weight (kg) 1.0 µu (m/sec) 1.6 ∗ 10−5

µc 0.52
kv (N ∗ sec/m) 2.101

Fig. 3: Feedback
Interconnected System. Fig. 4: Simulation Setup.

is grasping a known object with sufficiently large gripping
force in order to stabilize it against the gravity in steady state.
Then, a desired trajectory is fed to the proposed controller in
order to manipulate the object. The friction effect is modeled
by the Stribeck friction model which has a continuously
differentiable property and can well predict friction both in
stick and slip motion [28]. The object properties as well as
the friction coefficients are presented in Table I. The values
of the friction coefficients are close to the real ones according
to the tables in [29].
Due to space limitations, we analyze the case of only one
desired trajectory for the interconnected system on 2D plane
where slippage occurs on x, y-axis and around z-axis, as
depicted in Fig. 11,. Moreover, we compare the results of
the proposed control scheme with a classical impedance
controller with the same stiffness KD = diag{5.0, 5.0, 4.5},
damping DD = diag{2.5, 2.5, 2.2} and inertia matrices
MD = diag{0.4, 0.4, 0.3}. The variable stiffness and damp-
ing gains are γk, γd = 100, respectively. Moreover, α = 100
and ks = 103 are the gains of the slippage compensation
term Λ(vs).
As it can be observed, the proposed controller has signif-
icantly better behavior with respect to slippage effect and
simultaneously drives the system to the desired trajectory.
In a more detail, the slippage displacement is almost zero
along x, y-axis and about z-axis as depicted in Fig. 5, Fig. 6
and Fig. 7. This guarantees that the object and the robot’s
end-effector follow the same trajectory equal to the desired
one Fig. 11.
Moreover, contrary to the classical impedance controller,
the proposed control scheme drives the slippage velocity
to zero when a small value is measured which guaran-
tees that the object and the robot are moving with the
same velocity as Fig. 8 Fig. 9 and Fig. 10 shows. More
simulation results can be found in the following video:
https://youtu.be/Q5trvGUeKCA.

V. CONCLUSION

In this work, a model-based variable impedance controller
for object manipulation tasks considering non-rigid grasp
is presented. The dynamic model of the robot-object in-
terconnected system and the slippage velocity is properly
formulated. Then, using Lyapunov based analysis, the de-
sired damping and stiffness matrices, as well as, a slippage

Fig. 5: Position along x-axis.

Fig. 6: Position along y-axis.

Fig. 7: Orientation about z-axis.

Fig. 8: Linear Velocity on x-axis.

compensation term are formulated accordingly in order to
guarantee zero convergence for the trajectory error and the
slippage velocity assuming that no external forces are acting
on the interconnected system. The efficiency of the overall
control strategy is verified by conducting a variety of simula-
tion scenarios. Finally, future research efforts will be devoted
towards conducting experiments with a real manipulator by
developing slip detection tactile sensors (based on [14], [23]),
as well as, addressing the problem of non-rigid grasp in
cooperative manipulation tasks.
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Fig. 9: Linear Velocity on y-axis.

Fig. 10: Angular Velocity about z-axis.

Fig. 11: 2D Trajectory of the Object.

APPENDIX

Lemma 1. It holds that x>Φ′1x = 0∀x = [x>1 ,x
>
2 ]
> ∈ R6.

Proof.
x>Φ′1x = 2x>1S(ωo)x1 + x

>
2S(ωo)x2 = 0, ∀x1,x2 ∈ R3 ⇒ x ∈ R6

�
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