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Abstract— Formation control is a canonical problem in multi-
agent systems as many multi-agent problems require agents to
travel in coordination at some point during execution. This
paper develops a method for coordinated moving formation
control by building upon existing virtual structures approaches
to define the relative vehicle positions and orientations and
building upon clothoid-based motion planning to create the
desired motion of the structure. The result is a coordinated
formation control method that respects individual curvature
constraints of each agent while allowing agents to track their
desired positions within the formation with asymptotic conver-
gence.

I. INTRODUCTION

Multi-agent robotic systems are becoming increasingly
prevalent in a host of applications, including security and
surveillance [1], factory automation [2], inspection opera-
tions [3], transit [4] and convoying applications [5], dis-
tributed sensing [6], and target tracking networks [7], to
name a few. A nearly universal requirement of multi-agent
systems is that, at some point in their mission, they move
together in coordinated motion, often in tight formation.
Thus, formation control forms a fundamental enabling capa-
bility for multi-agent operations. The goal of this work is to
create a moving formation control approach that will enable
a group of vehicles to maintain a rigid, relative geometric
configuration as they travel through a series of waypoints to
a goal destination.

The work herein combines three major elements. The first
is the use of virtual structures, which allow the desired
positions of vehicles in the formation to be defined in terms
of relative displacement to a single oriented point, e.g., [8].
Second, continuous-curvature paths [13], [11] are developed
to design the virtual structure motion. Third, a zero-error
trajectory tracking control law, [11] [14], is used to allow
vehicles to converge to and track a sufficiently smooth
trajectory.

This work extends continuous-curvature paths to provide
sufficiently smooth paths for use with the zero-error tracking
controller. It also extends the definition of a virtual structure
to create executable trajectories for the followers. Further-
more, a motion model will be used for the virtual leader
that directly considers curvature constraints for the virtual
structure and is used to create a new clothoid for transition
between straight lines and arcs. The use of this clothoid
allows for a rapid evaluation of the curvature requirements
imposed on each agent by the movement of the virtual struc-
ture. By evaluating solely the resulting formation movement
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over a single clothoid cycle (on the order of seconds of
a trajectory), a formation designer could ensure curvature
constraints are satisfied for an extended trajectory.

The remainder of this paper will proceed as follows.
Preliminaries for formation definition, continuous-curvature
paths, and trajectory tracking are presented in Section II. The
virtual structure will be extended in Section III and a method
for evaluating the curvature requirements for each agent will
be given. The motion of the virtual structure will then be
defined in Section IV. The paper ends with a brief example
in Section V and concluding remarks in Section VI.

II. PRELIMINARIES

This section presents key background information for the
development of the zero-error moving formation control
approach discussed in the sequel.

A. Formation Definition

Formation control is the coordinated effort of multiple
agents to achieve or travel in some desired configuration.
While there are a myriad of methods to define and achieve
formation control, this work takes a rigid, geometric ap-
proach to defining the desired relative placement of the
vehicles. Meaning that, at any snapshot in time, the desired
relative position of vehicles forms a particular geometric
shape.

A virtual structure approach, [8], is used to allow the for-
mation to move about the environment. The virtual structure
approach creates an image of the desired formation and uses
this image to create references of what the desired formation
state should be as depicted in Figure 1. The placement of
each agent within the structure can be defined in terms of
the “virtual leader” configuration consisting of a reference
position, ql, and an orientation, ψl. This configuration is
referred to as a “virtual leader” since it may not be an
actual physical agent. Following the developments in [9], the
desired position of agent i at time t, qdi(t), can be defined
with respect to the leader as:

qdi(t) = R(ψl(t))τi + ql(t)

R(ψl(t)) =

[
cosψl(t) − sinψl(t)
sinψl(t) cosψl(t)

]
, (1)

where τi is the desired relative offset of agent i from the
virtual leader.

The notation Ck is used to denote the set of functions
that are k-times continuously differentiable. In Section IV,
a virtual leader trajectory in C4 will be produced to enable
the development of trajectories that are sufficiently smooth
for a follower vehicle to track.
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Fig. 1. A virtual structure shown in different configurations. The red icon
denotes the virtual leader and the circles represent the desired follower
positions.

B. Dynamic Motion Models

The motion for each agent is modeled using a smooth,
unicycle kinematic model, e.g., [10], [11]. The states include
the two-dimensional position of the vehicle, (q1, q2), its
orientation ψ, and translational and rotational velocities,
(v, ω), respectively. The model used to define the motion
of the virtual leader is a slightly altered form of the unicycle
model to accommodate the smoothness requirements needed
in the sequel. It assumes a constant virtual leader velocity,
vl, the rotational velocity is replaced by a curvature term,
ωl = vlκl, and derivatives of the curvature are included
as additional states. Thus, the full leader state is given as
follows.

xl =


ql1
ql2
ψl
κl
σl
γl

 , ẋl =


vl cos(ψl)
vl sin(ψl)
vlκl
σl
γl
ul

 , (2)

where κl is the curvature of the leader trajectory and its
first, second, and third derivatives are σl, γl, and ul. It is
assumed that κl ∈ [−κmax, κmax], σl ∈ [−σmax, σmax],
and ul ∈ [−umax, umax].

C. Continuous Curvature Paths

The virtual leader motion model allows for direct consid-
eration of the path curvature. To directly consider the maxi-
mum curvature in planning, Dubins paths were developed to
find the shortest path between any two oriented waypoints
[12]. Given a constant forward velocity, minimum paths are
found by either executing three maximum curvature circles
(CCC) or a circle, line, then a circle (CLC). However, Dubins
paths assume that the vehicle curvature can be changed
instantaneously. Continuous curvature paths extend the idea
of Dubins paths by employing a smooth transition between
desired curvatures, known as clothoids, as shown in Figure
2. The smooth transition are achieved by linearly changing
the curvature at a maximum curvature rate. In [13], constant
curvature turns (CCTurn) replace the Dubins circle, although
planning is nearly identical.

It was shown in [11] that a truncated form of (2) could
be used to develop CCPaths1. Using a motion model for

1The truncation comes from a lesser requirement for smoothness than C4.

Fig. 2. Example of a continuous curvature turn where ws represents the
start of the transition clothoid, wcs is where the path begins a circular arc,
wce is where the circular arc ends and a clothoid begins, and we is the point
where the clothoid ends, δ is the toal change in orientation while δc,max
is the change while converging to maximum curvature.

the clothoid provides the added benefit of time-indexing,
enabling the paths to be used in trajectory tracking control
laws.

While the discussion of planning shortest paths is left
to [13], the generation of the CCTurn is important for
understanding of the development of sufficiently smooth
trajectories in Section IV. As shown in Figure 2, a CCTurn
has the vehicle turn as quickly as possible from one straight
line to another while considering constraints on curvature
and its derivatives. This change in orientation is given by
the deflection angle, δ. The turn consists of three phases.
The first phase is to move through a clothoid from zero
curvature to the maximum curvature. The second phase is to
execute a circular arc at maximum curvature. The third phase
is to reflect the first clothoid and transition from maximum
curvature to zero curvature. If δ is small enough, the vehicle
never reaches maximum curvature before transitioning back
to zero curvature, thus never executing the second phase
consisting of the maximum curvature arc.

D. Trajectory Tracking

The virtual leader trajectory will be used to create a
trajectory for each agent to follow. While there are numerous
techniques for tracking a trajectory (i.e., have q(t) −→ qd(t)
as t −→∞), a simplified form of the control law developed
in [14] and modified in [11] is used. The actual trajectory
tracking control law employed is not relevant except for two
properties. The first being that [11] requires the reference
trajectory to be in C3. The second being that the tracking
controller must have asymptotic convergence.

III. THE VIRTUAL STRUCTURE

The virtual structure in (1) combined with a trajectory
produced using the virtual leader model in (2) allows for
the creation of a virtual structure motion model where each
agent can use the tracking capabilities of the controller to
move in a rigid formation. This section derives the generic
trajectory that each agent should nominally follow. It is then
shown that the structure of the virtual leader motion model
can be exploited to evaluate characteristics of the resulting
follower trajectories.
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A. Follower Trajectory Generation

The following lemma states that the trajectory generated
from the virtual leader motion model and virtual structure
will produce a sufficiently smooth trajectory to be used with
the trajectory tracking control. The proof of the lemma gives
the required equations for implementation.

Lemma 1: Using a virtual leader motion model defined
in (2) and the leader-follower relationship defined in (3), the
desired trajectory for the follower vehicle will be three times
continuously differentiable (i.e. qdi(t) ∈ C3). Proof: To
concisely show the smoothness properties of the produced
trajectory, notation is introduced for ψl and its deriva-
tives. The leader orientation vector is denoted as hl =[
cos(ψl) sin(ψl)

]T
. The derivatives of ψl are denoted as

ψ̇l = ωl, ψ̈l = αl, and ψ(3) = ζl where ωl = vlκl, αl = vlσl,
and ζl = vlγl. Given a scalar ρ and the π

2 rotation matrix,
J , we denote ρ̂ as the skew symmetric matrix

ρ̂ = ρJ = ρ

[
0 −1
1 0

]
.

This allows for a concise expression of the orientation vector
derivative as ḣl = ω̂lhl. Similarly, the derivative for the
rotation matrix, R(ψl) can be written as Ṙ(ψl) = R(ψl)ω̂l,
e.g. [15]. Repeated use of the product rule on (3) allows for
the follower position and derivative to be expressed as

qdi =R(ψl)τi + ql

q̇di =R(ψl)ω̂lτi + q̇l

q̈di =R(ψl)(ω̂
2
l + α̂l)τi + q̈l

q
(3)
di

=R(ψl)(ω̂
3
l + ζ̂l + 3ω̂lα̂l)τi + q

(3)
l

. (3)

The derivatives of the virtual leader position can be written
using (2) to express q̇l = vlhl and then use repeated use of
the product rule to write

q̇l =vlhl

q̈l =v2l κlJhl

q
(3)
l =v2l σlJhl − v3l κ2l hl

. (4)

As (3) and (4) are written using purely continuous variables,
this completes the proof.

B. Curvature Properties for Follower Trajectories

The virtual leader motion model allows for direct lim-
itations on the leader’s curvature and its derivatives. As
trajectory curvature can directly correlate to executability
of the trajectory for physical systems, it is important to
understand how the virtual leader’s curvature relates to the
curvature of the follower vehicles.

Recall that curvature can be defined as κ = ω
v where the

velocities can be derived directly from a trajectory in vector
form as

vdi =
√
q̇Tdi q̇di , ωdi =

−q̇TdiJq̈di
q̇Tdi q̇di

. (5)

An immediate concern for the follower trajectory is to
understand when the virtual structure motion will demand

an agent to execute infinite curvature, which is addressed in
the following lemma.

Lemma 2: Given a desired offset for agent i, written as
τi =

[
τi1 τi2

]T
, an infinite curvature will be commanded

for agent i if and only if (i) τi1 = 0 and (ii) κl = 1
τi2

.
Proof: An infinite curvature command will only come

when vdi = 0 (or equivalently if v2di = 0). Equation (5)
for vdi can be used with (3) and v2di can be simplified
algebraically to

v2di = v2l κ
2
l τ
T
i τi − 2v2l κlτi2 + v2l . (6)

Solving for the value of κl where (6) is zero, v2l can be
factored out and the quadratic equation used to produce

κl =
τi2 ±

√
−τ2i1

τTi τi
, (7)

which only has a real solution when τi1 = 0 (condition (i)).
In that case, condition (ii) directly falls out.

An interesting result from Lemma 2 is that only the
vehicles that are to move directly “along side” the virtual
leader run the risk of having a zero velocity, or, equivalently,
turning in place.

However, it may be desirable to limit the virtual leader
motion in such a way that the desired curvature for any
follower agent lies below some threshold. This is addressed
in the following lemma.

Lemma 3: The curvature for agent i will stay below the
maximum threshold κmaxi

if, for all time t,

κmaxi
>
vlκ

3
l τ
T
i τi + [σl, 2vlκ

2
l ]τi + vlκl

vl
(
κ2l τ

T
i τi − 2κlτi2 + 1

) 3
2

(8)

where time indices on κl(t) and σl(t) have been omitted for
sake of brevity.

Proof: The proof is trivial in nature as the right-hand
side of (8) is the equation for agent i’s desired curvature. It
can be obtained by combining (3) with (5), using the relation
κdi =

ωdi

vdi
, and simplifying algebraically.

Lemma 3 may appear difficult to satisfy at first glance
since it requires solving for all possible combinations of κl
and σl through the entirety of the trajectory. This is true,
generally. However, it will be shown in Section IV that
by using a clothoid approach to virtual leader planning, all
possible combinations of κl and σl occur during the clothoid,
so only the clothoid transition need be evaluated.

IV. CONTINUOUS CURVATURE VIRTUAL LEADER
TRAJECTORY

An example method to create a sufficiently smooth virtual
leader trajectory is now shown using clothoids as an inspi-
ration. In this section, two minor contributions are made to
the clothoid techniques. First, a sufficiently smooth clothoid
is created to satisfy the continuity conditions for a virtual
leader. Second, a simplified waypoint planning technique is
presented to rapidly plan paths given a sequence of desired
position-based waypoints.
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Fig. 3. An illustration of the construction of xκl using bang-bang control.
The figures from top to bottom are κl, σl, γl, and ul. The blue line shows
the value over time, the red shows bounds, and the black lines show the
switching times.

A. A Sufficiently Smooth Clothoid

Recall that a clothoid is used to transfer the vehicle from a
straight line along the tangent of an outer circle to a smaller
concentric circle where the vehicle is then able to execute
its maximum curvature as depicted in Figure 2. The straight
line corresponds to κl and its derivatives being equal to zero
and the inner circle corresponds to κl = ±κmax with the
derivatives again equal to zero.

Thus, once started, the clothoid need only consider κl,
its derivatives, and the amount of time to stay on the inner
circle. The final three elements of xl in (2) consisting of κl
and its derivatives is denoted as xκl

∈ R3. The resulting state
dynamics form a triple-integrator linear system. For such a
constrained system, the fastest way to achieve κmax is to
use bang-bang control, e.g. [16]. The control strategy will
proceed as follows2.

1) Use bang-bang control to get from
[
σ γ

]T
=[

0 0
]T

to
[
σ γ

]T
=
[
σmax 0

]T
2) Coast at σ = σmax
3) Use bang-bang control to get from

[
σ γ

]T
=[

σmax 0
]T

to
[
σ γ

]T
=
[
0 0

]T
at the precise

time that κl = κmax
To define the control, four parameters are first introduced.

• τbb: The time control is held constant during bang-bang
maneuvers

• ∆κbb: The change in curvature during a bang-bang
maneuver

• ∆κσconst
: The change in curvature during coast when

σl = σmax
• tσconst

: The time at which coast ends
These parameters, and the resulting trajectory for xκl

, are
shown in Figure 3. The control to achieve κmax is stated in
the following lemma.

2Note that only the convergence to κmax is considered. To move from
κmax to zero or from zero to −κmax the control inputs need only be
reversed.

Lemma 4: Given the dynamics for κl in (2) and associated
constraints on σl and ul, the following control will move the
system from xκl

=
[
0 0 0

]T
to
[
κmax 0 0

]T
in the

minimum time.

ul(t) =



umax t ∈ [0, τbb)
−umax t ∈ [τbb, 2τbb)

0 t ∈ [2τbb, tσconst)

−umax t ∈ [tσconst , tσconst + τbb)

umax t ∈ [tσconst
+ τbb, tσconst

+ 2τbb)

(9)

where

τbb =

√
σmax
umax

, tσconst
=

∆κσconst

σmax
+ 2

√
σmax
umax

(10)

and

∆κbb = umax

(σmax
umax

) 3
2

, ∆κσconst
= κmax − 2∆κbb (11)

Proof: It is important to recall the constraints, |ul| ≤
umax, |σl| ≤ σmax, and |κl| ≤ κmax. Bang-bang control
has two control intervals. In each interval, the control is
held constant at an extreme. Due to the symmetry in the
upper and lower constraints, these intervals are equivalent
(τbb represents the length of a single time interval).

To find the switching times and curvature change values,
the solution to a linear, time-invariant (LTI) system is em-
ployed, e.g., [17]. Namely, given ẋ(t) = Ax(t) + Buconst,
the solution at time t for x(t) is given by the equation

x(t) = expA(t−t0) x(t0)︸ ︷︷ ︸
zero-input

+

∫ t

t0

expA(t−ρ)Bdρuconst︸ ︷︷ ︸
zero-state

. (12)

In the case of xκl
=
[
κl σl γl

]T
, the exponential and

integral portions can be written as

expA(t−t0) =

1 t− t0 1
2 (t− t0)2

0 1 t− t0
0 0 1


∫ t

t0

expA(t−ρ)Bdρ =

 1
6 (t− t0)3
1
2 (t− t0)2

t− t0

 (13)

Assuming that the initial time is 0, τbb can be found by using
(12) and (13) over the first two time intervals. The solution
from the first time interval can be fed directly into the zero-
input portion of the second time interval as:

σ(2τbb) = σmax =
(τ2bb

2
+ τ2bb −

τ2bb
2

)
umax, (14)

where the first two τbb terms come from propagating the
solution of the first horizon through the zero-input portion
on the second horizon. The amount of change in curvature
over the bang-bang manuever, ∆κbb, can then be solved for
in a similar fashion using the solution for τbb.

The bang-bang control will be reversed to send σl back to
zero by the end of the horizon. Over the reversed bang-bang
control, the change in curvature will be the same as the as
the original bang-bang control, resulting in 2∆κbb occurring
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Fig. 4. Example of path points and a CCPath. The left depicts a shortest
path between oriented waypoints and the right shows the path generated
using position only waypoints.

over the combined bang-bang maneuvers. Thus, to achieve
κmax a total curvature change of κmax− 2∆κbb must occur
during the constant σmax interval. Since σl is constant over
that interval, the curvature in that interval can be written as
κl(t) = σmax(t− 2τbb) + ∆κbb. The solution of tσconst

can
be solved for from the following equation.

κl(tσconst
) = κmax −∆κbb

= σmax(tσconst
− 2τbb) + ∆κbb.

(15)

One of the major benefits to using a CCTurn approach
for the virtual leader path is that all possible combinations
κl and σl are contained in the within the clothoid (both for
achieving κmax and κmin). Thus, to see if the trajectory will
violate the curvature restraints in Lemma 3, one only need
to verify each offset over four clothoid intervals: −κmax to
0, 0 to κmax, κmax to 0, and 0 to −κmax. Figure 6 depicts
the verification for the example in Section V.

B. Virtual Leader Trajectory For Structured Environments

While Dubins paths and CCPaths can be used to find the
shortest path that moves between a series of waypoints, often
passing exactly through each waypoint is not completely
necessary. For example, consider a series of waypoints that
are taken from a graph representing building corridors. The
waypoints may correspond to the center-points of corridor
intersections. A planned path through the corridors to get
from point A to point B could include multiple intermediary
points. It may not be necessary to move directly through
those points, but simply to move “near” them as depicted
in Figure 4. Thus, this section presents a method to use
clothoids to plan a trajectory from point A to B using
intermediary points to define required turns, not points that
have to be traversed exactly.

The nominal path is defined as an ordered set of n
positions to be visited, denoted as Q, where

Q = {q1, q2, . . . , qn},

and the ith waypoint is in R2.
As mentioned, the CCTurn forms a fundamental compo-

nent in the shortest paths in CCPaths [13]. In this work,
CCTurns are used to perform a turn between two subsequent
line segments made from the ordered set of positions. The

Fig. 5. An illustration of several of the parameters used to rotate and
translation the CCTurn into position for maneuvering past the ith waypoint.

process for rapidly assembling the turns at each waypoint
can be summarized as:

1) Determine the deflection angle around the turn i,
denoted δi. This defines the nominal value for the end
waypoint, qnome .

2) Rotate the CCTurn so the starting point tangent line is
parallel to the angle from qi−1-to-qi, denoted ψi−1,i.

3) Find the vector that will point from qs,i to qe,i.
4) Use the law of sines to solve for the distance between

qi and qe,i.
5) Translate the CCTurn into place.

These parameters and their relations are shown in Figure 5.
Defining the start and end points of each turn is sufficient
for designing the trajectory as straight line segments will be
used to connect the turns.

The deflection angle at waypoint i can be defined using
the unit vectors parallel to line segments qi−1-to-qi and qi-
to-qi+1 as

η̄i−1,i =
qi − qi−1

di−1,i
, η̄i,i+1 =

qi+1 − qi
di,i+1

(16)

where di−1,i = ||qi − qi−1||. The deflection angle about
waypoint i can be defined as

δi = acos(η̄Ti−1,iη̄i,i+1). (17)

The deflection angle defines the nominal ending waypoint,
wnome,i , on the nominal CCTurn. To orient the CCTurn so that
we,i will align with η̄i,i+1, the nominal CCTurn is rotated
by the orientation of η̄i−1,i, denoted as ψi−1,i. This allows
for the direct calculation of the vector that will point from
qs,i to qe,i as

ηe,i = R(ψi−1,i)
(
qnome,i − qnoms,i

)
, (18)

where qnoms,i is typically at the origin.
Allowing θi to be the angle between ηe,i and η̄i−1,i, the

law of sines can be used to find the distance between qe,i
and qi as

mi =
sin(θi)

sin(δi)
||ηe,i||, (19)

where qe,i = qi+miη̄i,i+1 Finally, the translation vector for
the CCTurn can be calculated as

ηt,i = qe,i − ηe,i. (20)
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Fig. 6. From left to right, this figure shows the paths, the summed squared error of each vehicle’s position to the desired, the curvature for each agent
over the entire trajectory, and the curvature simulated over the a single pass through a clothoid. The upper left corner depicts the nominal formation. The
lines are color coded between plots for each vehicle.

V. EXAMPLE

The virtual structure motion was planned for and executed
by a group of five simulated agents as depicted in Figure
6. The agents executed a formation defied by the following
offset values:

{τi} =
{[0

0

]
,

[
−1.5
1.5

]
,

[
−1.5
−1.5

]
,

[
−3
0

]
,

[
2
0

]}
. (21)

The maximum desired curvature for each of the five agents
was κmaxi = 2.0 which was achieved using a value of vl = 1
and maximum values for the leader of κmax = 0.35 and
σmax = 0.35 with results shown in Figure 6. The virtual
leader trajectory was produced as described in Section IV-B
using the series of waypoints shown as red circles resulting
in the solid blue trajectory. Also shown in Figure 6 is the
resulting curvature, which, once vehicles converge to their
desired positions, shows that all curvature stays below the
threshold as predicted by simulating over solely the clothoid.

VI. CONCLUSION

In this paper a moving formation control approach has
been presented that considers the motion constraints of each
agent while simultaneously enabling the rapid planning of
the formation through a series of waypoints. The approach
centers on the definition of the motion of the virtual leader.
A virtual leader motion model was presented that allows
for the direct consideration of the curvature constraints for
both the movement of the structure as a whole as well as
the individual curvature constraints of each vehicle. A new
clothoid was created which respected the C4 conditions. By
using the CCPaths generated using this clothoid to define
the virtual structure motion, it was sufficient to evaluate a
4.5 second trajectory to determine if a trajectory consisting
of an arbitrary number of waypoints would be feasible for
execution.
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