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Abstract—The ability to measure multi-axis contact forces
and contact surface normals in real time is critical to allow
robots to improve their dexterous manipulation and locomotion
abilities. This paper presents a new fingertip sensor for 3-
axis contact force and contact location detection, as well as
improvements on an existing footpad sensor through use of a
new artificial neural network estimator. The fingertip sensor
is intended for use in manipulation, while the footpad sensor
is intended for high force use in locomotion. Both sensors
consist of pressure sensing elements embedded within a rubber
hemisphere, and utilize an artificial neural network to estimate
the applied forces (fy, fy, and f;), and contact angles (6 and
¢) from the individual sensor element readings. The sensors
are inherently robust, and the hemispherical shape allows for
easy integration into point feet and fingertips. Both the fingertip
and footpad sensors demonstrate the ability to track forces and
angles accurately over the surface of the hemisphere (6 = £45°
and ¢ = +45°) and can experience up to 25N and 450N normal
force, respectively, without saturating. The performance of the
sensor is demonstrated with experimental results of dynamic
control of a robotic arm with real-time sensor feedback.

I. INTRODUCTION

Humans and animals have amazing capabilities when it
comes to performing dynamic physical tasks. In the wild,
cheetahs can chase after prey at high speeds over varied
terrain, while humans can grasp, lift, and manipulate objects
of many sizes and shapes with ease. Much of this capability
is related to their ability to quickly and accurately gain
information about the world around them through a sense
of touch [1]-[3]. Robots, in contrast, often struggle in this
area. In order to be able to react to unexpected disturbances,
deftly manipulate objects, and accomplish compelling feats
of locomotion, robots need to be able to quickly sense infor-
mation about the objects or environments they are interacting
with, including contact forces and contact surface normals.

During locomotion, a better understanding of contact
forces and angles can help a legged robot better understand
the friction cone, or help detect and avoid slip, allowing
for better, more stable, movement. However, large, dynamic
robots such as the MIT Cheetah [4] require that sensors be
robust to repeated impacts, insensitive to inertial noise, and
able to withstand and measure high forces, up to multiple
times the robot’s own body weight [5]. Existing sensors
are often not suitable for these conditions. Conventional
force/torque sensors, for example, are very stiff and include
fragile strain gauges which may break under high impacts
when used in the limbs of legged robots. They also tend to
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(a)

Fig. 1. Sensor Design. (a) Hemispherical footpad sensor and PCB. PCB
shows locations of 8 piezoresisitive sensing elements in x-shaped array. (b)
Hemispherical fingertip sensor and PCB. 4 cables are used in place of 1 to
simplify internal routing and decrease PCB size.

be heavy, expensive, and prone to inertial noise. Other tactile
sensing technologies use a variety of methods including
measuring pressure or flow [6]-[8], electrical properties [9],
[10], or optics [11], [12] to measure forces and contact
locations. These sensors tend to be designed for much
smaller force ranges than are experienced in locomotion, and
often do not measure contact location and forces along three
axes simultaneously.

For manipulation, information about the contact locations
and contact forces can allow robots to achieve more stable
grasps. Towards this goal, many more tactile sensors have
been developed. These include piezoresistive, capacitive,
optical, and barometric based sensors. However, many do not
provide information on both normal and tangential forces, as
well as contact location, are sensitive to vibration related
noise, or lack physical robustness [13]. Another example
is Gelsight [14]-[16], which provides extremely detailed
information about the surface being contacted by using a
camera and 3D surface reconstruction. Gelsight has enabled
robotic manipulators to estimate and improve the quality
of their grasps, but requires a camera inside each sensor,
making it less robust to high impact forces, and has a
higher computational cost to process the data to infer contact
information.

For more dynamic tasks that require fast sensing and
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mechanical durability, Chuah et. al. developed a bi-modal
sensor that measures the contact location as well as normal
and shear forces while being robust to impacts [17]. This
work introduces a novel fingertip sensor intended to address
the need for contact and force measurement in a smaller
form factor. It also introduces a new artificial neural network
(ANN) estimator for use with both the existing footpad
sensor [17] and the novel fingertip sensor.

Both sensor designs utilize barometric pressure sensors
embedded within a rubber hemisphere to sense contact forces
in 3 axes and contact locations for quasi-point contact.
For the footpad sensor, the new regression process using
an artificial neural network was tested and compared with
the previous Gaussian process regression method. Using the
ANN regression, a contact normal tracking task and a slip
detection task were carried out using a three degree-of-
freedom robotic arm, the results of which are presented here.
The fingertip sensor utilizes the same concept of stress field
force and contact angle sensing as the footpad sensor but
scales it down to a form factor and force range that can
be used in grippers for more reliable manipulation. Both
sensors are robust, low cost, and capable of accurately and
simultaneously measuring forces and contact location.

The paper is organized as follows. The design and fabri-
cation of both sensors is described in Section II. The data
collection setup is covered in Section III. Sections IV and
V discuss the training and testing of two estimators for the
sensors, as well as the experimental results using both of
these estimators. Section VI presents two applications in
which the footpad sensor is attached to a robotic arm, and
Section VII details future work and ongoing improvements
in the development of these sensors.

II. HEMISPHERICAL FOOTPAD DESIGN AND
FABRICATION

This paper presents two versions of a sensor based on
the principle of stress field force sensing — one intended
for high force applications such as locomotion, and one
intended for lower force applications such as manipulation.
As described by Chuah et. al. [17]-[20], stress field force
sensing is a method in which pressure sensors embedded in
a rubber exterior sample the stress distribution within that
rubber at discrete locations. The output measurements from
these pressure sensors are then used to reconstruct the unique
contact forces and contact location on the surface of the
rubber for quasi-point contact.

The overall fabrication process for both sensors is similar
and follows the procedure developed by Chuah et. al. [17]-
[20]. In both sensors, eight barometric pressure sensors and
associated electronics are soldered onto a printed circuit
board (PCB). The PCB is then embedded within a hard
polymer and a hemisphere of polyurethane rubber. The
resulting sensor is durable and well protected from the
external environment. Fig. 1 shows both PCBs and sensor
designs.

TABLE I
SENSOR CHARACTERISTICS

Footpad Sensor | Fingertip Sensor
Pressure Sensing Element MPXH6400A BMP388
PCB Diameter 43.2 mm 17.8 mm
Final Sensor Diameter 56 mm 22 mm
Force Range 2 - 450N 0.5 - 25N
Sampling Rate 1kHz 200Hz

A. Footpad Sensor Design

The footpad sensor (Fig. 1a) is intended for use in high
force applications in which robust 3-axis force and contact
location detection is necessary, such as locomotion. Towards
this goal, the sensor is mechanically robust, insensitive to
inertial noise, able to withstand high forces without failure,
and able to provide contact and force information at a high
rate.

The design of the footpad sensor is the same as that
described by Chuah et al. [17].

The overall sensor is 56mm in diameter, has a maximum
sampling rate of 1 kHz, and can experience a maximum
normal force of 450N applied at the center of the sensor
(6 = ¢ =0°) without saturating.

B. Fingertip Sensor Design

The fingertip sensor (Fig. 1b) is significantly smaller, and
is intended for use in lower force applications in which
the same information about forces and contact location is
beneficial, such as manipulation. The sensor is particularly
suited to integration into fingertips for manipulation due to
its small size, hemispherical, fingertip-like form factor, lower
force range, and high sensitivity (< 0.5N).

It follows the same general design of that of the footpad
sensor, but with new sensing components and a modified
PCB design to allow for the smaller form factor.

Some key changes in the fabrication process that allow for
development of the new, smaller fingertip sensor include:

« New piezoresisitive sensing element

« Method of covering the sensing elements during poly-
mer molding using folded transparency sheets

« Modification to the mounting insert size and location

This sensor utilizes eight BMP388 barometric pressure
sensors (Bosch Sensortec), which have a pressure range
of 300-1250 hPa, a footprint of 2x2mm, and a maximum
sampling rate of 200 Hz. These digital sensors utilize SPI
communication and do not require an additional on-board
ADC. The barometric pressure sensors are arranged on the
PCB in the same x-shaped array as in the footpad sensor.

The overall fingertip sensor is 22mm in diameter, has a
maximum sampling rate of 200 Hz, and can experience a
maximum normal force of 25N at location 6 = ¢ = 0° before
hitting saturation.

The different properties of the footpad and fingertip sen-
sors are summarized in Table 1.
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3 Axis CMC Mill
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(a) Mill Data Collection Setup

(b) Handheld Data Collection Setup
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Fig. 2. Experimental Setup. (a) A CNC mill setup is used to collect asterisk and roll data. The sensor is mounted on the mill in place of a spindle, brought
in contact with a force/torque sensor, and driven through a number of pre-programmed paths. (b) An IMU is mounted on top of the sensor to provide
ground truth contact location information when collecting handheld data. The IMU mount also serves as a handle to allow for easy manual manipulation
of the sensor through unstructured paths. (c) The contact location on the hemispherical surface is defined by sequential rotations about the x and y axes
of the sensor of angles 6 and ¢, respectively. At each contact location, the shear forces f; and fy are defined locally as being tangent to the spherical

surface, while the normal force f; is defined to be orthogonal.

III. DATA COLLECTION SETUP

Training and validation datasets were collected for both
hemispherical sensors using two different data collection
setups, seen in Figure 2.

In the first, a modified 3-axis CNC milling machine
(MicroMill DSLS 3000 from MicroProto Systems) was used
to control the position and motion of the sensor. The machine
was modified to allow for rotation about the x axis of the
mill through the addition of a trunnion table and about the
z axis of the mill through the addition of a manual rotation
stage. This setup is the same as that described by Chuah et.
al. [17]-[20]. It was used to collect two separate datasets -
an asterisk dataset, which was used to train the sensor, and a
roll dataset, which was used to test the sensor performance.

A separate setup was used to collect the handheld dataset.
This setup utilized the same force/torque sensor (ATI Delta
SI-660-60 from ATI Industrial Automation) for ground truth
force data as in the mill setup, but added an integrated IMU
(3DM-CX5-25 AHRS from MicroStrain) mounted on top of
the footpad or fingertip sensor to provide ground truth contact
location information without use of the mill. This data was
collected and logged using Visual Studio C++. The transition
to C++ allows for real-time estimation through integration of
the neural network evaluation into the data processing code
using the frugally deep library! and eases the transition onto
a microcontroller (Sec. VI).

A. Asterisk Data

For the asterisk dataset, data was collected at multiple con-
tact locations across the hemispherical surface. At each test
point, the hemispherical sensor was compressed against the
force/torque sensor, then driven along an asterisk-shaped path
on the force/torque sensor surface at increasing compression
levels. Asterisk data was collected for contact locations in
the range 0 = —45° to 0 =45° and ¢ = —45° to ¢ =45°.

Uhttps://github.com/Dobiasd/frugally-deep

Force and angle conventions can be seen in Fig. 2c. Forces
are defined such that shear forces f, and f, are tangent to
the rubber hemisphere surface, and the normal force f; is
perpendicular to the hemispherical rubber surface. 0 and ¢
are defined as sequential explicit rotations about the x and y
axis, respectively.

B. Roll Data

To represent “rolling” contact that a footpad or fingertip
could undergo during locomotion or manipulation, the roll
dataset was used. For this dataset, the sensor was compressed
against the force/torque sensor to a set level at various fixed
rotations about the z axis. The force/torque sensor was then
“rolled” along the surface of the sensor using the mill’s
trunnion table. For the fingertip roll dataset, the compression
level was decreased part-way through rolling to prevent the
sensor from saturating.

C. Handheld Data

A handheld dataset was also collected to test the sensor
performance. In generating the handheld dataset, the output
from the IMU acted as a ground truth for contact location as
the sensor was manipulated against the force/torque sensor
by hand, rather than by the mill, to provide a more organic
set of forces and contact locations.

IV. FORCE AND ANGLE ESTIMATORS

Two different methods of estimating the contact forces
and location from the readings of the eight pressure sensors
are investigated for both the footpad and fingertip sensors.
In both methods, the estimator is trained using a combined
dataset consisting of the asterisk data and one set of handheld
data. It is then evaluated on two new datasets - the unseen
roll dataset and a separate, unique handheld dataset.

Before training or testing the estimators, the force data
from the force/torque sensor is filtered using a convolutional
filter to eliminate high frequency noise due to the motion
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Footpad Sensor ANN and GPR Results (a) Contact force and angle ANN estimations are plotted versus ground truth data for the roll dataset.

They are very closely aligned, even in regions outside the force range of the training dataset. Some spikes are seen in the angle estimation when the normal
force is very low. For the GPR estimator, all five outputs match well with the ground truth below 120N normal force, but deviate significantly in the range
f= 2 120N. (b) Results for the handheld dataset. ANN predicted output closely tracks the ground truth, including on an unstructured dataset.

TABLE I
FOOTPAD SENSOR PERFORMANCE

Artificial Neural Network
Asterisk Data Roll Data Handheld Data

RMSE (N) Norm. RMSE (%) R*(%) | RMSE (N) Norm. RMSE (%) R*(%) | RMSE (N) Norm. RMSE (%) R*(%)

fr 1.937 1.330 0.974 1.921 2.564 0.959 1.883 2.901 0.964
5 2.078 1.407 0.971 2.677 3.484 0.926 2.656 5.057 0911
e 2.717 1.397 0.994 4.175 2.151 0.990 2.327 3.130 0.964
%] 0.092 5.852 0.941 0.040 3.859 0.963 0.040 3.644 0.972
¢ 0.098 6.193 0.942 0.028 2.679 0.983 0.045 3.978 0.953

Gaussian Process Regression

fr 1.051 0.722 0.993 4.263 5.689 0.801 1.327 2.044 0.982
S 0.919 0.622 0.995 4.435 5.772 0.797 2224 4.235 0.938
fz 2.086 1.079 0.996 31.279 16.314 0.464 1.147 1.595 0.991
0.027 1.709 0.995 0.076 7.264 0.871 0.026 2.385 0.988

¢ 0.035 2.190 0.992 0.077 7.286 0.875 0.034 3.009 0.973

of the mill. This filtering was not implemented in previous
work [17].

A. Gaussian Process Regression

The first method investigated is Gaussian process regres-
sion (GPR) [21]. In GPR, the equation:

9=k (K+02I) y;, (1)

is used to estimate the scalar output y; (estimated f;, fy, fz, 6,
or ¢) from the input vector x, which is comprised of the eight
analog pressure readings ([si, s, -, s8]T). Because
this equation produces a scalar output it must be calculated
five times — once for each output being estimated. This
method was used previously to train and evaluate the original
footpad sensor design; in-depth implementation details and
variable definitions can be found in [17].

GPR performs well for training and testing the sensor
on 1/ 8" of the hemisphere surface [17]. However, as the

number of training data points increases to cover the full
surface of the hemisphere, the computation time of GPR
increases exponentially. This is due to the large matrix
inversion and multiplication in Eq. (1), as well as the fact
that all five outputs must be solved for individually.

B. Artificial Neural Network Estimator

An artificial neural network (ANN) is also investigated.
The goal of this approach is to offer an alternative to GPR
that is faster, able to handle larger training datasets, and more
robust to unseen data.

The structure of the ANN used for both the footpad and
fingertip sensors is as follows: the eight pressure sensor read-
ing inputs [sl, 52, -, SS} are connected to a layer of 12
neurons. These neurons are fully connected to a hidden layer
of 25 neurons, which are then fully connected to an output
layer that predicts the five outputs [fy, f, f. 6, ¢].
The neurons in each layer use the activation functions ReLU,
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Fingertip Sensor ANN Results Similar to the footpad sensor, for both test datasets the ANN estimation very closely follows the ground truth

forces and contact angles for the fingertip sensor. (a) Roll data results. (b) Handheld data results.

TABLE III
FINGERTIP SENSOR PERFORMANCE

Artificial Neural Network
Asterisk Data Roll Data Handheld Data

RMSE (N) Norm. RMSE (%) R*(%) | RMSE (N) Norm. RMSE (%) R*(%) | RMSE (N) Norm. RMSE (%) R*(%)
fr 0.678 2.272 0.956 0.601 4.650 0.915 0.697 4.960 0.929
f 0.884 3.052 0.926 0.832 6.183 0.840 0.730 5.621 0.876
Iz 0.382 1.918 0.986 0.662 2.866 0.984 0.299 2.148 0.985
6 0.123 7.814 0.903 0.058 4.138 0.964 0.027 2.596 0.985
¢ 0.099 6.297 0.945 0.050 3.561 0.976 0.024 2.894 0.964

Gaussian Process Regression

fr 0.582 1.950 0.968 1.649 12.815 0.218 0.790 5.663 0.907
f 0.610 2.104 0.965 1.801 13.437 0.087 1.194 9.296 0.665
e 0.350 1.768 0.986 3.010 13.027 0.674 0.368 2.573 0.979
6 0.042 2.700 0.988 0.083 5.950 0913 0.039 3.778 0.967
¢ 0.043 2.757 0.989 0.093 6.670 0.901 0.028 3.332 0.952

ELU, and Sigmoid, respectively, and the ANN is trained in
Keras 2 with a Tensorflow backend. Training is completed
with the Adam optimizer and a mean squared error cost
function.

In addition to filtering, all input and output data is scaled
to the range [0,1] before being used to train and test the
ANN. Because the final layer of the ANN uses a sigmoid
activation function, the outputs of the ANN automatically
fall on the range [0,1]. These outputs are then re-scaled to
their final values using the initial scaling parameters (i.e.
maximum and minimum values) from the training data.

V. RESULTS

When evaluated on the asterisk dataset, roll dataset, and
handheld dataset, the footpad and fingertip sensors are found
to have comparable performance. While the GPR estimator
outperforms the ANN on the training data, the new ANN

Zhttps://keras.io/

estimator is found to generalize better to unseen data, particu-
larly to unsee data outside the force range of the training data.
For this reason, as well as the training dataset size limitations
of GPR, the ANN is selected as the primary estimator when
evaluating both footpad and fingertip sensor performance.

The root mean squared error (RMSE) and coefficient
of determination R’ are used as metrics to quantify the
performance of the GPR estimator and the ANN estimator
on the asterisk, roll, and handheld datasets.

A. Footpad

The results for the footpad sensor with the ANN estimator
are shown in Fig. 3. For both test datasets, there is a very
close match between the predicted outputs and the ground
truth values for f;, f,, f; 0, and ¢. In Fig. 3a some discrete
spikes can be seen in the ANN estimations of 6, and ¢. These
occur when the normal force is very low, as the sensor has
difficultly estimating contact location when there is little or
no contact being made. These deviations were included when
calculating RMSE and R? values.
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Footpad Sensor

Mini Cheetah Leg

Fig. 5. Contact Tracking Application Experimental setup for the constant
force contact location tracking application. The footpad sensor is mounted
on the end of a modified Mini Cheetah leg, which then uses the contact
location estimate from the footpad sensor to follow a manually manipulated
block of plastic. An IMU mounted on the block allows for evaluation of
the sensor performance.

The corresponding RMSE, normalized RMSE, and R?
values, as well as a comparison to the GPR estimator
performance on all three datasets, can be seen in Table II.
As mentioned previously, the GPR estimator outperforms the
ANN on the training dataset, however it performs signifi-
cantly worse than the ANN when generalizing to data outside
of the force range of the training set, such as that seen in the
roll dataset. The high error in the GPR estimate outside of
the force range of the training dataset can be seen in Fig. 3a,
where the GPR estimated forces deviate significantly from
the ground truth when f; 2 120N. This cutoff is likely caused
by the training data distribution, which fell primarily below
this force range. This was not seen in previous experiments
with GPR [17] as the force range of the previous test datasets
did not exceed that of the previous training dataset.

B. Fingertip

The results for the fingertip sensor ANN estimator are
shown in Fig. 4. Similar to the footpad sensor results, there
is a very close agreement between the predicted outputs and
the ground truth values for fy, fy, f;, 6, and ¢ for both
test datasets. This demonstrates that the overall sensor and
estimator design is scalable and can function across multiple
sizes and force ranges. As with the footpad sensor data, some
spikes can be seen in the estimations of 6 and ¢ when there is
little or no contact being made with the surface. These could
likely be avoided by filtering the angle estimation output.

Table III shows the RMSE, normalized RMSE, and R?
values for all three datasets, as well as a comparison to the
GPR estimator performance on the same datasets. The ANN
has lower RMSE and higher R? values than the GPR for all
five outputs for both evaluation datasets, indicating superior
performance and better generalization to unseen data.
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Fig. 6. Contact Tracking Sample Data Sample of collected data for

the contact tracking application. (a) Estimated normal force and desired
(constant) normal force. (b) Components of the estimated contact normal
(¢x» ¢y, ;) and the measured components from the IMU (my, my, m;).

VI. APPLICATION

To further validate the sensor performance a footpad
sensor was attached at the end of a single leg of the MIT
Mini Cheetah [22], which had been previously repurposed
as a three degree-of-freedom arm [23]. A microcontroller
(Nucleo-64 STM446RE) was used to collect data from the
footpad sensor, evaluate the neural network to determine the
contact forces and angles, and send control commands to
the three motors of the arm over a CAN bus. Using this test
system, two simple applications of the sensors were explored.
Video of the testing can be found in the supplementary
material.

A. Tracking and Maintaining Contact

For the first application, the robot end-effector was com-
manded to exert a constant 10N force normal to the sensor
surface at the contact point. The contact normal vector was
calculated in the world frame from the estimated sensor
contact angles and the robot’s joint angles. In order to
increase the accuracy of the rendered force at the end-
effector, torques for compensating the weight of the robot
arm and sensor were added. To measure the true contact
normal, the same IMU used for the handheld data collection
was mounted on a block of plastic and used to contact
the sensor. Since the sensor’s estimate of normal force was
not used in the control loop, it was used to measure how
accurately the system was tracking the desired force. The
arm with the mounted sensor and the IMU plate can be seen
in Fig. 5. For this application, data was collected and plotted
from the IMU and the arm at 250 Hz.

Fig. 6a shows the normal force measurements from the
sensor as well as the commanded normal force. Fig. 6b shows
the contact normal as calculated from the sensor readings and
robot kinematics compared to the normal vector as tracked
by the IMU. The normal force is only roughly tracked,
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Fig. 7. Slip Detection and Prevention Sample Data Sample of collected data for the slip detection and prevention application. (a) Measured shear force,
labeled with important testing events. The expected shear force for the larger added weights are also shown. (b) Measured normal force and calculated
minimum normal force to avoid slip. The calculated slip threshold is found by dividing the measured shear force by u = 0.8.

Fig. 8. Slip Detection and Prevention Application Experimental setup
for the slip detection and prevention application. The footpad sensor’s
estimation of the applied shear force is used to calculate the normal force
required to prevent the sensor from slipping on the table surface.

and could be improved by compensating for motor non-
linearities (e.g. friction, cogging) as well as remaining in a
”quasi-static” regime when moving the contact surface. More
importantly, the components of the contact normal vector
are very accurate to the ground truth provided by the IMU.
This results in a qualitatively stable demonstration in which
the end-effector appears to “stick” strongly to the contact
surface, as seen in the supplementary video.

B. Slip Detection and Prevention

For the second application, the shear and normal force
measurements were used to detect and prevent slip at the
robot end-effector. To begin, the robot was commanded to

exert a small normal force of 5N directly into the table
surface. A bucket was attached to the lower limb of the
arm and suspended over the corner of the table. This setup
can be seen in Fig. 8. The coefficient of friction between
the table and the sensor surface was estimated as t = 0.8.
Using this coefficient of friction, the controller modulated the
commanded normal force such that the sensed shear force
was within the friction cone by a small buffer amount. As
a result, the controller would not exert unnecessarily large
normal forces for small values of shear force and would not
apply so little force as to let the arm slip.

During testing, two groups of weights added to the bucket
resulted in approximately 10N steps in the shear force
measured by the sensor. After the weights were added, the
sensor base was hit with a hammer in order to induce large,
rapid spikes in the shear force. Shear force was also manually
applied at the sensor base in various directions. The weights
were then unloaded in the reverse order. Finally, smaller
weights were added and removed to show that the sensor
maintains good resolution even at lower force magnitude.

In Fig. 7a, the measured shear force is plotted along with
the expected measurements from each of the large weights.
The shear measurements track the expected values well and
also show the high-frequency oscillations due to the impacts
of the dropped weights and the hammer. In Fig. 7b, the
measured normal force is shown along with the calculated
slip threshold. The normal force is successfully controlled
such that it is always above the slip threshold, even in the
case of the sudden high-magnitude hammer impacts and the
manual loading, thereby detecting and preventing slip.
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VII. DISCUSSION AND CONCLUSION
A. Discussion and Future Work

Both the footpad and fingertip sensors demonstrate the
ability to simultaneously and in real time determine contact
location and measure forces along three axes. Due to the
sensor design and the nature of stress field force sensing,
both sensors are low cost, robust, insensitive to inertial noise,
high-bandwidth, and have a hemispherical shape for easy
integration on to point feet or fingertips.

Overall, the newly developed ANN estimator outperforms
the GPR estimator for both the footpad and fingertip sensors.
The ANN demonstrates better generalization to unseen data,
is faster and less computationally intense than the GPR, and
is not limited in the amount of training data it can utilize. The
footpad sensor with ANN estimator also demonstrates the
ability to successfully implement surface normal following
and slip detection and prevention in real time (up to 1kHz).

Future work on these sensors will include testing the
footpad sensor on the MIT Cheetah [4] and integrating the
fingertip sensor into a robotic gripper to further evaluate
performance. It will also include further streamlining the
sensor fabrication processes to make them more repeatable,
and working to characterize and quantify key properties of
the sensors including precision, durability, and drift over
time. Future improvements to the sensors could also include
investigating alternate sensing element arrangements, such
as inclining the pressure sensing elements or changing their
locations, to increase the active sensing area or improve
performance.

B. Conclusion

This paper presents a new fingertip sensor for 3-axis
contact force and contact location detection as well as
a new ANN estimator that improves performance of the
existing footpad sensor. Both sensors demonstrate the ability
to accurately sense applied shear and normal forces, as well
as contact location for quasi-point contact. The bi-modal
capability of the footpad sensor is further demonstrated
through two applications. First, the footpad sensor is used on
a robot arm to track a block using contact location estimation,
and second, the sensor is used to detect and prevent slip at
its surface.

These sensors are inherently robust and low cost, and have
the potential to greatly expand the capabilities of robots in
both locomotion and manipulation.
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