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Abstract— For high-level human-robot interaction tasks, 3D
scene understanding is important and non-trivial for au-
tonomous robots. However, parsing and utilizing effective en-
vironment information of the 3D scene is not trivial due to
the complexity of the 3D environment and the limited ability
for reasoning about our visual world. Although there have
been great efforts on semantic detection and scene analysis,
the existing solutions for parsing and representation of the 3D
scene still fail to preserve accurate semantic information and
equip sufficient applicability. This study proposes a bottom-
up construction framework for structured 3D scene graph
generation, which efficiently describes the objects, relations and
attributes of the 3D indoor environment with structured repre-
sentation. In the proposed method, we adopt visual perception
to capture the semantic information and inference from scene
priors to calculate the optimal parse graph. Afterwards, an
improved probabilistic grammar model is used to represent the
scene priors. Experiment results demonstrate that the proposed
framework significantly outperforms existing methods in terms
of accuracy, and a demonstration is provided to verify the
applicability in applying to high-level human-robot interaction
tasks. The supplementary video can be accessed at the following
link: https://youtu.be/vEWNxnSwmKI.

I. INTRODUCTION

3D indoor scene understanding is one of the key factors
for intelligent robots to execute high-level human-robot inter-
action tasks in indoor environment. Real indoor environment
commonly contains several rooms (e.g., office, conference)
and more than one objects with the same class (e.g., red
cup, white cup, the cup on the desk or in the cabinet).
To reason the indoor environment, robots have to find an
effective way to represent the 3D scene information, such as
the objects, relations and attributes. This has attracted much
research attention and many achievements have been made.
However, the existing systems of 3D scene representation
and parsing still have many problems such as long processing
time, poor accuracy and limited applicability for robot. These
limitations motivate us to consider the 3D indoor scene
representation and parsing method.

In the existing literature, there are some works for address-
ing scene representation and parsing. In principle, the point
cloud map [1], probabilistic occupancy map [2] and semantic
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map [3] [4] can be constructed by SLAM to describe the
environment. But these methods contain lots of redundancy
information and can not reflect the relations of the objects.
Using computer vision, the objects, relations and attributes
of image can be acquired to generate semantic scene graphs.
The first dataset proposed the concept of scene graph is
Visual Genome [5], which provides annotated scene graphs
for 100k images. Following Visual Genome dataset, most
related works about scene graph have been developed, such
as scene graph generation [6] [7], image retrieval [8] and
scene synthesis [9]. However, those methods are only limited
to 2D scene graph, which is not suitable for moblie robots in
3D scene. With the development of object recognition [10]
[11], pose estimation [12] [13] and scene graph generation
[6] [7], Kim et al. [14] proposed 3D scene graph structure
as an environment model and expanded 2D scene graph into
3D space. In 3D scene graphs, the objects were described
by nodes, the relations between the pairs of objects were
described by edges. However, this method was limited by
single scene and didn’t make full use of the objects’ 3D
information during relation extraction. Armeni et al. [15]
extended the Visual Genome dataset to 3D space and ground
semantic information. This work confirmed the key of 3D
scene graph for robots navigation, but was unable to realize
real-time work for robots and needed expensive computing
resource. A probabilistic grammar model of spatial And-Or
graph (S-AOG) [16] was used to parse the 3D scene [17]
[18] and synthesize 3D room layouts [19]. Although these
grammar-based methods learn the priors to infer the best
result, they didn’t focus on the applicability of real-time work
for intelligent robots high-level semantic tasks.

Motivated by the above observations, a bottom-up frame-
work of 3D scene graph construction with structured repre-
sentation is proposed in this paper. In this proposed frame-
work, an improved S-AOG structure is designed to learn
from scene dataset and generate the structured scene priors.
Next, the visual perception is used to capture the semantic
information from 3D scene. Then, the inference from scene
priors are adopted to calculate the optimal parse graph as the
structured 3D scene graph, which can be used to represent the
objects, relations and attributes of the indoor environment.
Furthermore, 3D scene graph is utilized to complete the tasks
of high-level human-robot interaction navigation.

Our contributions are summarized as follows:
• We propose a bottom-up framework of the structured 3D

scene graph construction which efficiently represents the
semantic information of 3D indoor scene.

• An improved probabilistic grammar model is designed
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Fig. 1: Overall architecture of the scene graph construction and application framework. The framework with scene priors
receives RGB-D image and generates structured 3D scene graph for application.

to denote the scene priors, which can be used to infer
the optimal parse graph with structured representation.

• A demonstration is provided to show the applicability of
structured 3D scene graph for high-level human-robot
interaction navigation.

II. OVERALL SYSTEM ARCHITECTURE

The overall architecture of structured 3D scene graph
construction is illustrated in Fig. 1. The input includes the
sequence of RGB-D images and scene priors. In the first
step, to extract the relations and attributes, the image should
be preprocessed by object recognition and pose estimation.
Specifically, we use yolov-v3 [10] and apriltag [20] to recog-
nize object information. Limited by the recognition algorithm
for big objects like desk or room, we adopt the apriltag
to detect them. After object recognition, the object list of
category, 2D bounding box and detection probability can
be obtained. Using the depth information, the 3D bounding
box is estimated by the height and width of 2D bounding
box roughly. For the first frame, the relative position of
camera can be estimated by SLAM. Specifically, we use
ORB-SLAM2 [13]. Next, combining with the outputs of
object recognition and pose estimation, the object extraction
module removes the duplicate detection of the objects which
have the same category and the similar 3D position. The
relation extraction module is designed to obtain the relations
between objects using 3D position and 3D bounding box.
The attribute extraction module is designed to focus on the
3D position, size and color. Then using scene priors, a parse
graph pg can be calculated for each image by maximizing
a posteriori estimation (MAP), which is the best explanation
for extracted objects, attributes and relations. The output of
MAP is added to keyframe group filter (KGF) to remove
repeated and fake detection. After KGF optimization, parse
graph is added to local scene graphs and displayed in real-
time. Global scene graph can be obtained by updating and
merging the local scene graphs. The structured 3D scene
graph is also used to perform the high-level human-robot
interaction tasks, like finding a speacial object in multi-room
indoor environment according to the human command.

III. STRUCTURED 3D SCENE GRAPH
CONSTRUCTION

In this section, we describe the representation of struc-
tured 3D scene graph and the main modules of generation
framework. These modules can improve the efficiency and
reduce the inaccuracy of scene graph.

A. Representation

We follow the [19] method and use S-AOG to construct the
scene priors. Spatial And-Or graph is a probabilistic gram-
mar model which represents the hierarchical decompositions
from scene (top-level) to objects (bottom-level) by a set of
terminal and non-terminal nodes. The terminal ndoes repre-
sent objects, non-terminal nodes encode the grammar rules.
Contextual relations encode the spatial relations through
horizontal links. For meeting the requirement of parsing the
environment, an improved structure of S-AOG is proposed
as shown in Fig. 2. Formally, the improved S-AOG of a
scene is denoted by: Gs =< S,V,R,E,P >, where S is the
root node of scene, V is the vertex set, R is the production
rules, E is the contextual relations, and P is the probability
model defined on S-AOG. Different from [19], the hierarchy
of scene component is removed and the representation of
object category hierarchy is improved. Each member of
object category hierarchy is a finite category set of Or-node,
in which each Or-node can be alternatived to the instantiated
object or empty. Therefore, the set of Or-node can represent
different number of objects.

In principle, a scene configuration is represented by a
parse graph pg, where the terminal nodes are the objects
in the scene with their attributes and relations. By selecting
a child node from the Or-nodes, parse graph can be the
instantiation of the S-AOG. A pg can be decomposed as
pg = (pt,Ept), where pt is the hierarchical structure of
pg, Ept is a part of contextual relations E on parse tree.
For one scene, we extract the object features ΓO, spatial
relations features ΓS and attribute features ΓA from a group
of input RGB-D image Tt =

{
Ik
t
}

k=1,...,N , where t is the
KFG group index, N represents the number of image in
the KFG group. Based on Γ =< ΓS,ΓO,ΓA > and Gs, the
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local scene graphs can be inferred and defined as PGt ={
pgk

t
}

k=1,...,N after the KFG optimization. The global scene
graph PGglobal can be obtained by updating and merging the
set {. . .PGt−1,PGt ,PGt+1 . . .}.
B. MAP Probabilistic Formulation

In this section, we introduce the probabilistic model de-
fined on this framework. Given the image features Γ and
scene priors Gs, the posterior probability of a parse graph
sequence PG is defined as:

p(PG|Γ,Gs) ∝ p(Γ|PG)p(PG|Gs)

= p(ΓO,ΓS,ΓA|PG) p(PG|Gs)

= p(ΓO|PG)︸ ︷︷ ︸
object

p(ΓS|PG)︸ ︷︷ ︸
spatial

p(ΓA|PG)︸ ︷︷ ︸
attribute

p(PG|Gs)︸ ︷︷ ︸
grammar prior

(1)
The first three terms are likelihood terms for objects, spatial
relations and attributes, respectively. The last term is a prior
probability of the parse graph given the grammar Gs of scene.

1) Likelihood of Parse Graph: In this part we use [21]
method to represent the likelihood. We assume that both
the prior probability for the image P(Γ) and P(PG) for
object, relation and attribute are uniformly distributed. So
the likelihood of object P(ΓO) given a parse graph PG is
defined as:

p(ΓO|PG) = p(ΓO|PGO) =
p(PGO|ΓO)P(ΓO)

P(PGO)

∝ p(PGO|ΓO) =
N

∏
k=1

p
(

pgk
O|Γk

O

) (2)

where p
(

pgk
O|Γk

O

)
is the detection probability of object in

image Ik. Similarly, the likelihood of spatial relation P(ΓS)
can be expressed as:

p(ΓS|PG) ∝ p(PGs|ΓS) =
N

∏
k=1

p
(

pgk
S|Γk

S

)
(3)

where p
(

pgk
S|Γk

S

)
is the detection probability of relations.

The likelihood of attribute P(ΓA) can be denoted as:

p(ΓA|PG) ∝ p(PGa|ΓA) =
N

∏
k=1

p
(

pgk
A|Γk

A

)
(4)

where p
(

pgk
A|Γk

A

)
is the detection probability of attributes.

2) Grammar Prior of Parse Graph: The Grammar prior
of parse graph can be described by three subsets: prior of
object, relation and attribute:

p(PG|Gs) = p(PGO,PGS,PGA|Gs)

= p(PGO|Gs) p(PGS|Gs) p(PGA|Gs)

=
N

∏
k=1

p
(

pgk
O|Gs

) N

∏
k=1

p
(

pgk
S|Gs

) N

∏
k=1

p
(

pgk
A|Gs

)
(5)

where p(pgO|Gs), p(pgS|Gs) and p(pgA|Gs) are the prior
of object, spatial relation and attribute.

3) Inference: For a group of images, the PG is found
for each scene that best explains the extracted features Γ by
maximizing the posterior probability:

PG = argmax
PG

p(PG|Γ,Gs)

= argmax
PG

{p(ΓO|PGO) p(ΓS|PGS) p(ΓA|PGA)

p(PGO,PGS,PGA|Gs)}

(6)

C. Learning

The learning of the S-AOG consists of two main parts: 1)
learn the S-AOG grammar structure of each scene, and 2)
learn the parameters of the S-AOG, including the branching
probabilities of the Or-nodes.

1) Grammar Structure: Due to the different prior distribu-
tions of different scenes, the distributions of seven scenes is
learned from the indoor scene dataset, including bedroom,
living room, kitchen, office, bathroom, dining room and
conference room. Each scene has its own distribution to the
objects. Each object also learns its attributes and relations
with others.

2) Parameter Learning: The branching probability of Or-
node is simply given by the frequency of each alternative
choice: (

OA→ Oβi

)
=

#
(
OA→ Oβi

)
∑

n(OA)
j=1 #

(
OA→ Oβi

) (7)
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where OA is the Or-node, Oβi is one sub-node of OA,
#
(
OA→ Oβi

)
is the number of times OA → Oβi occurred

in all dataset [16]. We compute the objects probabilities,
attributes probabilities and relations probabilities with others
in each scene.

D. Spatial Relation Extraction

3D space is more stable and invariant. According to the
results of analyzing the Visual Genome dataset [7], we find
that a number of semantic relations are concerned with
person. Without person, the spatial relation makes up a large
proportion in dataset. Therefore, we consider no person in
indoor scene and raise three abstract spatial relations from
dataset including support, parent and adjacency relations.
Three relation transforms are defined such that the specific
relations in dataset can be mapped in abstract relations which
is Table I.

TABLE I: Transforms from Specific Relation to
Abstract Relation.

abstract specific

Support on, over, under, cover, handing on, on bottom of, on top of . . .
Parent of, with, inside of, has, has a, in, sitting on, part of . . .

Adjacency beside, next to, around, at, in front of, behind . . .

1) Support relation: Support is the most common relation
in 3D indoor scene. Since the noise of camera makes it
difficult to get the accurate position and size of the objects
exactly. Hence, the possibility of support relation is denoted
according to human knowledge:

1) The supported object is located on the supporting
object (e.g., a cup on a desk), and the size of supported
object is commonly larger than supporting object’s
size.

2) The lower surface of supported object is close to top
surface of supporting object.

Then we judge the support relation between two objects
o1,o2 by sampling the points of o1 on xy plane and get
the statistic proportion Pxy(o1,o2) of how many points are
in o2’s range xy plane. For the second condition, Ph(o1,o2)
is defined to measure the high error of o1’s low surface and
o2’s top surface

Ph(o1,o2) =

{
cos
(

πhe
2HT

)
, he < HT

0, he ≥ HT
(8)

where HT is the threshold of the high error from o1’s
low surface to o2’s top surface, he is the detection of the
high error. Finally, the probability PS(o1,o2) of the support
relation between o1 and o2 can be represented as

PS(o1,o2) = Pxy(o1,o2) ·Ph(o1,o2) (9)

2) Parent Relation: Parent relation represents that one
object contains another object in 3D space. The child object
can be a part of parent object (e.g., a bottle and a lid) or
just exists in parent object (e.g., a milk in a refrigerator). A
volume sample frequency PP(o1,o2) is adopted to measure
the probability of parent relation between o1 and o2.

3) Adjacency Relation: Considering the stardard of adja-
cency relation is subjective in 3D space, and the judgement of
adjacency depending on the current view of camera, we only
judge the relation in spatial state by finding the closest object
of what we want, like “the mouse next to the keyboard”.

After MAP module, the relation whose probability lower
than a threshold value are deleted from the graphs.

E. KeyFrame Group Filter

Due to the process of detection unavoidably produce the
erroneous results, and the object recognition do not detect
every object perfectly, the keyframe group is imported to
remove repeated and fake detection. Two types of groups
are defined:

1) Active KeyFrame Group: Active keyframe group ac-
cepts the image frame results when the object detection
module outputs. When one frame is captured, the objects,
relations and attributes can be calculated as outputs and taken
in active keyframe group. When the number of frame reaches
N, copy the group to optimal keyframe group for optimizing
and removing before half part of active keyframe group.
When the next frame result comes in, index it as the N/2+1.

2) Optimal KeyFrame Group: Optimal keyframe group
inherit active keyframe group when active group is full. After
receiving the date, we proceed as the following:
• Filter the fake detection which appears discrete and

infrequent.
• After removing repeated and fake detection, the mean

values of the position and size for each object are
calculated.

• Improve the relations and attributes using optimized
results for each object.

• Take the optimized results pg in the local scene graphs.
Afterwards, the optimized local scene graphs can be

obtained because of reducing the inaccurate effectively.

F. Local and Global Scene Graph Construction

Each frame Ii only captures an incomplete part of scene,
and the result can be represented by pgi which can be
regarded as view-centric parse graph. When a sequence of
pg is jointed, the scene-centric scene graph can be got. The
illustration is shown in Fig. 3. When the number of frame
for each group reach N, the local scene graphs can be repre-
sented by PG=

{
pgk
}

k=1,...,N . With the development of local
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Fig. 3: Parse graph of scene-centric and view-centric

scene graphs, the global scene graph PGglobal can be obtained
by updating and merging the set {. . .PGt−1,PGt ,PGt+1 . . .}.

To calculate PGglobal , the similarity score is proposed to
merge the same object node from the set of PG. The color
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distribution is unstable in real scene duo to illumination and
view. We define that the similarity score Score(o1,o2) of
two objects o1, o2 depends on the category Sc(o1,o2) and
3D position Sp(o1,o2). The category similarity Sc(o1,o2) is
denoted as

Sc(o1,o2) =
{

max{po(o1), po(o2)} , Co1 =Co2
0, Co1 6=Co2

(10)

where po(o1) and po(o2) are the detection probabilities of
objects, Co1 and Co2 are the categories of objects. For 3D
position similarity, the Sp(o1,o2) is represented as

Sp(o1,o2) =

max
{

1− abs(Pose(o1)−Pose(o2))
α ·max{SizeM(o1),SizeM(o2)}

,0
}

(11)

where Pose(o1) and Pose(o2) are the 3D position of o1 and
o2, SizeM(o1) and SizeM(o2) are the largest length of objects’
size, α is a parameter which depends on the size of object to
improve the detection accuracy. The smaller the object’s size,
the larger the α . Therefore, the similarity score Score(o1,o2)
can be described as

Score(o1,o2) = βSc(o1,o2)+(1−β )Sp(o1,o2) (12)

When the similarity score Score(o1,o2) higher than a thresh-
old, the o1 and o2 can be detected as the same object.

IV. EXPERIMENT

In this section, we focus on the accuracy of structured
3D scene graph construction, and the applicability of scene
graph based robots application. First, the proposed method
is evaluated in real indoor environment by reporting the
performance. Next, the scene graph is used in a high-level
human-robot interaction navigation.

A. Structure 3D Scene Graph Construction

1) Experiment Details: We choose two real indoor scenes
which consist of an office room and a conference room to
assess the algorithm. The realsense camera is used to obtain
the RGB-D image. The resolutions of the image frames are
640 * 480 (color) and 640 * 480 (depth) with 30-Hz frame
rate, and all the color and depth images are aligned. The
camera parameters are provided as well. Finally, the number
of image sequence we get is 7103.

In our experiments, the scene priors are learned from
Visual Genome dataset. Our system runs in real time and
mixes other modules in ROS. C++ and python are used to
integrate our work with other techniques. All experiments are
carried out in Inter Core i7-7700HQ (four cores @2.80GHz),
8GB RAM and GTX1060 with Max-Q. For the keyframe
group, N is set as 50. The threshold of object and relation
after MAP module is set as 0.05, and the threshold of
support relation Ht is set as the supported object’s high. The
similarity score threshold is set as 0.5, and β is set as 0.2.
The global scene graph is saved in the JSON format and
displayed in real-time.

2) Algorithms: For assessing the accuracy of the scene
graph, a few baseline methods are shown as follow:

• The 3D scene graph construction framework [14] is used
as baseline.

• The attributes extraction, objects extraction and relation
extraction modules are adopted to construct the 3D
scene graph as the base method.

• The base-MAP method add scene priors in MAP prob-
abilistic formulation to infer the optimal scene graph
based on base method.

• The last method is the full method, the proposed struc-
tured 3D scene graph construction framework, which
adds keyframe group filter to the base-MAP method.

3) Evaluation Framework: Since the attribute in dataset
is incomplete and random, the prior distribution of attribute
is poor, the attribute is extracted from scene directly. In
our experiment, we only assess the performance of object
and relation. A human judgement metric is used to evaluate
the accuracy of each method. We follow the [14] method
to recruited five experiment participants and gathered five
responses for each graph. For each resulting graphs, the
number of false entities (objects and relations) and missing
entities is counted by the participants to calculated the
precision (PR), recall (RE) and F1-measure (F1-M) for
each method. We measured the runtime of each method to
compare the efficiency as well.

TABLE II: Results of Comparative Study.

Method
Object Relation Average

Runtime
(sec/frame)PR RE F1-M PR RE F1-M

3D scene [14] 0.684 0.464 0.553 0.545 0.375 0.444 3.267
base 0.450 0.941 0.606 0.483 0.875 0.622 0.101

baseMAP 0.635 0.943 0.759 0.560 0.875 0.683 0.103
full 0.968 0.882 0.923 0.929 0.867 0.897 0.117

4) Result: The quantitative results of the comparision
study are reported in TABLE II. The scene graphs results of
3D scene [14] and our methods are shown in Fig. 4. It can
be seen from the base method that the precision is too low
and the recall is high by erroneous and repetitive detection
of the objects and relations. Similarly, the resulting scene
graphs from base-MAP method contain repetitive detection
of the objects and relations, so the recall is the same with
base method. However, the precision of object and relation
improves a little. Comparison between base and base-MAP
verifies the performance of MAP in boosting the precision.
But affected of the repetitive data, MAP can only remove the
low probabilistic objects and relations. The full method adds
the KGF to the base-MAP method and makes a successive
improvement of the accuracy performance. Although a little
objects and relations are missing in the resulting scene graphs
(the recall is reduced), KGF rejects most of the repetitive
objects and relations, and improves the precision of the
framework. The number of erroneous detection in scene
graphs from full is much less than base-MAP. From TABLE
II, we can alse see that our method outperforms the 3D scene

8228



(a) 3D scene graph from [14].

(b) Structured 3D scene graph from base method.

(c) Structured 3D scene graph from base-MAP method.

(d) Structured 3D scene graph from full method.

Fig. 4: The display of the experiment results. Wathet, red, green, blue and orange denote the scene, object, relation, attribute
and terminal node, respectively. From base method to full method, the performance of the results become more accuracy.

[14] in terms of precision, recall, F1-measure and average
runtime.

In summary, the experiment results verify the perfor-
mance of the proposed structured 3D scene graph generation
framework in accuracy and efficiency. The performance of
visual perception and inference are shown in Fig. 5. Each
pair of images are the results of object recognition module
and inference module. In the step of visual perception,
objects, relations and attributes are detected completely.
After inference, the entity whose probability lower than the
related threshold is deleted from the graphs. We also use the
prior relations to enhance the detection result by updating
objects probabilities, but the module can not improve the
performance. We suspect the prior distributions of relations
are not enough to assure the performance.

scene scene

(a)
scene scene

(b)

Fig. 5: The results of the visual perception and the inference
from scene priors. The blue lines represent the process of
visual perception, orange lines represent the inference. After
inference, the optimal objects and relations can be extracted.
The green line and red line describe support and parent
relations. (a) shows the support relation that two bottles and
one cup are on the desk. (b) shows the parent relation that
bottle is in cabinet.

B. Applicability Demonstration

To verify the applicability, the structured 3D scene graph
is used in human-robot interaction navigation.

(a) (b)

Fig. 6: Robots navigation in webots simulation. (a) The con-
ference and office room in webots simulation environment.
(b) The 2D map construction and navigation using SLAM
and other ros packages.

1) Experiment Details: A conference and an office room
simulation environment modeled from the real environment
are constructed, so that the structured 3D scene graph from
the real scene can be directly used in the simulation. We
implement the simulation environment using Webots. The
Pioneer 3-AT is used in webots simulation which has 4
motors and 16 sonar sensors with power supply, and kinect
camera and laser are added to it. The demonstration is
implemented in ROS as well.

2) Result: In the first step, the 3D scene graph con-
struction framework is run in real environment and then
scene graphs are obtained through camera. The 2-D map
is built by Pioneer 3-AT to provide location in simulation.
The simulation and map are shown in Fig. 6 and the specific
scenes in conference and office are shown in Fig. 7. Then, the
scene graphs can be utilized to navigate in the same scene
simulation environment according to the human command
which containes the object and the relations. Based on the
semantic command, we use graph search algorithm to find
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Fig. 7: The real scene and simulation scene in conference
and office.

the semantic goal in the structured scene graphs quickly.
According to the Fig. 6, Pioneer 3-AT is in office. After
receiving the human command “the mouse on the desk and
in the conference”, Pioneer 3-AT can extract the object
“mouse” and relations “on the desk” and “in the conference”.
According to these objects and relations, Pioneer 3-AT can
search the goal in 3D scene graphs and confirm the position
shown as the red arrow. Then ros packages are used to plan
the path to conference and the navigation can be executed.

Overall, the demonstration verify the applicability of high-
level human-robot interaction tasks using structured 3D scene
graph in multi-room environment. In traditional methods, the
position of navigation is given by humans and the robot can
not understand any semantic information. The application of
3D scene graphs can fuse geometry and semantic informa-
tion, which help robots to execute the semantic navigation
tasks intelligently.

V. CONCLUSIONS AND FUTURE WORK
This paper presented a bottom-up framework of structured

3D scene graph generation from RGB-D image and scene
priors. The proposed framework contains an improved gram-
mar model, which is used to learned from scene dataset and
describe the scene priors. The visual perception is used to
capture the objects, relations and attributes from 3D scene,
and the inference is adopted to obtain the optimal parse
graph from scene priors. We implement our framework in a
real indoor scene to demonstrate its accuracy in representing
the semantic information, and the applicability of the high-
level human-robot interaction navigation tasks is also verified
in multi-room scene using human command. For further
research, the dynamic semantic segmentation system can
be used to improve the visual perception. The structure of
the S-AOG is easy to expand, with the hierarchy of the
S-AOG addition can help robots to execute more complex
semantic tasks, such as autonomous exploration in unseen
scene and the improvement of the visual perception using
context grammar.
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