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Abstract— Dynamic control for robotic automation tasks
is traditionally designed and optimized with a model-based
approach, and the performance relies heavily upon accurate
system modeling. However, modeling the true dynamics of in-
creasingly complex robotic systems is an extremely challenging
task and it often renders the automation system to operate
in a non-optimal condition. Notably, many industrial robotic
applications involve repetitive motions and constantly generate
a large amount of motion data under the non-optimal condition.
These motion data contain rich information, and therefore an
intelligent automation system should be able to learn from
these non-optimal motion data to drive the system to operate
optimally in a data-driven manner. In this paper, we propose a
learning-based controller optimization algorithm for repetitive
robotic tasks. To achieve this, a multi-objective cost function is
designed to take into consideration both the trajectory tracking
accuracy and smoothness, and then a data-driven approach is
developed to estimate the gradient and Hessian based on the
motion data for optimization without relying on the dynamic
model. Experiments based on a magnetically-levitated nanopo-
sitioning system are conducted to demonstrate the effectiveness
and practical appeals of the proposed algorithm in repetitive
robotic automation tasks.

I. INTRODUCTION

Dynamics modeling is one of the most fundamental prob-
lems in robotics [1]. Based on the dynamic equations which
explicitly describe the relationship between the force and
motion, various kinds of dynamic control algorithms can
be designed [2]–[4], i.e., a model-based approach. However,
obtaining the true model of present-day increasingly complex
robots, e.g. the quadruped robots [5] and soft robots [6], can
be an extremely challenging task. Therefore, the researchers
usually have to spend a significant amount of time to
fine-tune the controllers to compensate for the modeling
inaccuracies.

To address this issue, many learning-based data-driven
methods have been developed wherein the dynamic model
is not known, yet the optimal policy and parameters can
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Fig. 1. Learning-based optimization algorithm for repetitive robotic tasks.

be attained. These methods are generally based on self-
learning from past non-optimal control to achieve improved
performance in robot control. A promising trend in this line
of research is deep reinforcement learning [7], wherein a
neural network control policy is learned from the experi-
mental data as well as simulation. Also, neural networks
(NN) can be adopted in trajectory tracking tasks e.g., [8],
[9]. One of the limitations in NN-based control is the need
for a large amount of motion data. Furthermore, the stability
issue is another challenge often faced in applications that
require safety guarantees. It is also worthwhile to point out
that various learning-based kinematic control approaches are
available in the literature, such as [10], [11]. Our work, on
the other hand, is mainly focused on learning-based dynamic
control.

Many robotic applications, such as welding, painting, and
circuit-board assembly, consist of repetitive motions and
hence can adopt less computationally expensive methods. For
example, the iterative learning control (ILC) is one of the ef-
fective methods that is widely used in robotic arms [12], [13]
and soft robots [6], [14]. It is capable of learning from the
trajectory tracking data collected in the previous iteration to
improve the tracking accuracy in the next iteration. However,
the ILC provides only the feedforward control policy and the
feedback controller is typically not optimized. Nevertheless,
it can serve as a useful add-on module once the feedback
controller is optimized. In [15], [16], the authors developed
a Gaussian-process-based optimization method applied to
quadrotors (potentially applicable to other robotic systems
as well). While the algorithm is very effective in safety
guarantees, the convergence rate is relatively slow. Several
other Gaussian-process-based approaches and applications
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Fig. 2. Schematics of the maglev nanopositioning system.

are also available in [17]–[19]. The iterative feedback tuning
(IFT), on the other hand, is one of the fast-converging data-
efficient controller optimization algorithms [20]. It uses the
actual robot data to provide an estimation of the gradient and
Hessian of the cost function without knowing the dynamic
model. The Gauss-Newton optimization is then adopted to
find the optimal feedback control parameters in an iterative
manner. This idea can also be applied to various con-
trol structures other than the proportional–integral–derivative
(PID) controller, e.g., constrained linear quadratic regulator
(LQR) [21], fractional model reference control (FMRC) [22],
feedforward control [23], [24] and disturbance observer [25]–
[27]. Nevertheless, the majority of the work still focuses
on the more widely used PID controller, for instance, the
path-tracking control of networked industrial robots in [28]
and compliant rehabilitation robots in [29], etc. However,
these works focused primarily on high-precision tracking and
less on smooth tracking. In fact, in many automation ap-
plications such as chips inspection, welding, polishing, etc.,
both accurate and smooth tracking is required and challenges
in guaranteeing both criteria remain; several model-based
approaches in this aspect are already available in [30]–[32].

The main contribution of this work is to develop a data-
driven feedback control optimization algorithm to provide ac-
curate and smooth trajectory tracking (e.g., S-curve trajectory
[33]) in repetitive robotic tasks. The cost function considers
the tracking error as well as the control effort variation and
the optimization process is fast and efficient. An overview
of the algorithm is shown in Fig. 1. We demonstrate the
proposed algorithm with a magnetically-levitated (maglev)
system as shown in Fig. 2, which is a typical stage for
nanopositioning [34]–[36]. Its potential applications include
wafer lithography and organic light-emitting diode (OLED)
manufacturing [37]–[39]. It is further noted that the proposed
data-driven optimization is generic and could potentially be
applied to other repetitive robotics tasks as well.

II. MAGNETICALLY-LEVITATED NANOPOSITIONING
SYSTEM

In this section, the design principle of the maglev nanopo-
sitioning system is presented which enables a single-input
single-output (SISO) control design in Section III. As il-
lustrated in Fig. 2, the 6-DOF positioning (including 3
translational DOF and 3 rotational DOF) is achieved by four
forcers, and each forcer consists of a magnet-coil pair. The
square coil array is stationary and the currents are grouped
into two phases. The Halbach permanent magnet array is
mounted with the translator, which generates the 2-DOF
sinusoidal magnetic field on the bottom side of the array
while canceling the field to near zero on the other side. Each
forcer is able to provide coupled 2-DOF actuation forces, i.e.,
the vertical and horizontal forces. For this design, the planar
motion range is unlimited provided there are enough square
coils. More details can be found in [40].

The force within one square coil can be expressed based on
the relative position (x, z) between the coil and the magnet
arrays as

F cx(x, z) = Kx(x, z)I,

F cz (x, z) = Kz(x, z)I.
(1)

Here, I is the current, and Kx(x, z) and Kz(x, z) are the
force constants for x− and z−axes, respectively. The total
force generated can be derived as[
F fx (x, z)
F fz (x, z)

]
= N

[
Kx(x, z) Kx(x+ 3τ, z)
Kz(x, z) Kz(x+ 3τ, z)

] [
I1
I2

]
,

F f (x, z) = NΦK(x, z)I,
(2)

where F f (x, z) = [F fx (x, z) F fx (x, z)]T , I = [I1 I2]T , I1
and I2 are the currents of Phase 1 and 2, respectively. N
denotes the number of effective coils in each phase and

ΦK(x, z) =

[
Kx(x, z) Kx(x+ 3τ, z)
Kz(x, z) Kz(x+ 3τ, z)

]
. (3)

With the derived force model (2) on each forcer, the total
force and torque acting on the translator can be calculated
as

F tx = F f1x + F f3x , F ty = F f2x + F f4x ,

F tz = F f1z + F f2z + F f3z + F f4z ,

T tx = (F f4z − F f2z )La, T ty = (F f3z − F f1z )La,

T tz = (F f1x − F f2x − F f3x + F f4x )La,

(4)

where La represents the arm of torque as indicated in Fig. 2.
The 6-DOF motion control is realized through the control

of total force and torque vector [F tx F
t
y F

t
z T

t
x T

t
y T

t
z ], where

the total force and torque will be allocated to each forcer
through the inverse relationship of (4) as,

F f1x =
F t

x

2 +
T t
z

4La
, F f1z =

F t
z

4 −
T t
y

2La
,

F f2x =
F t

y

2 −
T t
z

4La
, F f1z =

F t
z

4 −
T t
x

2La
,

F f3x =
F t

x

2 −
T t
z

4La
, F f1z =

F t
z

4 +
T t
y

2La
,

F f4x =
F t

y

2 +
T t
z

4La
, F f1z =

F t
z

4 +
T t
x

2La
.

(5)
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Fig. 3. 4th-order S-curve reference used in repetitive robotic tasks. The
trajectory is defined with limited jerk and snap in order to guarantee motion
smoothness.

Physically, the local force F fi , i = 1, 2, 3, and 4 for each
forcer, is generated by energizing the two-phase current Ii =
[Ii1 Ii2]T on each forcer. According to (2),

Ii = ΦK(x, z)−1F fi/N. (6)

The maglev position sensing is done by three laser interfer-
ometers (x1, x2, y) and three capacitive sensors (z1, z2, z3)
as shown in Fig. 2. With the 6-axis real-time measurement,
each DOF can be controlled individually as a SISO system.

III. LEARNING-BASED CONTROLLER OPTIMIZATION
ALGORITHM

This section presents the methodology and technical de-
tails of the learning-based optimization algorithm. First, to
achieve smooth and accurate tracking, the reference profile r
should be designed as an S-curve as shown in Fig. 3. Then,
the feedback controller need to be designed and optimized
to take into account both the control effort variation and the
tracking accuracy. Hence, the cost function is defined as:

J(iρ) = w1e(
iρ)T · e(iρ)︸ ︷︷ ︸
Je

+w2u̇(iρ)T · u̇(iρ)︸ ︷︷ ︸
Ju̇

, (7)

where iρ is the feedback control parameter in the ith iteration,
and J(iρ) is the overall cost including both Je and Ju̇ with
weightings w1 and w2. e(iρ) is the tracking error in the ith

iteration, u(iρ) is the control effort and u̇(iρ) is the change
of control effort. As shown in Fig. 1, the robotic automation
system P (s) is controlled by

C(s, ρ) = ρT C̄(s), (8)

where s is the Laplace variable, ρ is the control parameter.
Assuming an accurate model P (s) is not available, our
objective is to use the experimental data collected (e.g. u

and y etc.) to obtain the parameters ρ that minimizes J(ρ)
(7), i.e., to find

ρ? = arg min
ρ
J(ρ). (9)

From (7), we can obtain the gradient of J(iρ) as

∇J(iρ) = 2w1[∇ ie(iρ)]T · ie(iρ)

+ 2w2[∇ iu̇(iρ)]T · iu̇(iρ), (10)

and the Hessian is

∇2J(iρ) = 2w1[∇ ie(iρ)]T · ∇ ie(iρ)

+ 2w2[∇ iu̇(iρ)]T · ∇ iu̇(iρ). (11)

∇J(iρ) and ∇2J(iρ) enable us to make use of the Gauss-
Newton optimization algorithm [41]:

i+1ρ = iρ− iγ(∇2J(iρ))−1 ∇J(iρ), (12)

where i+1ρ is the new parameter and iγ is the learning
rate. From (10) and (11), we note that ∇ ie(iρ), ∇ iu̇(iρ),
ie(iρ) and iu̇(iρ) are required. While ie(iρ) and iu̇(iρ) can
be collected easily from laser interferometer measurement
and the controller software, obtaining ∇ ie(iρ) and ∇ iu̇(iρ)
is less straightforward and need to be estimated using the
motion data. Similar to the IFT approach, the gradient of e
is derived as:

∇ie(iρ) =
−P ∂C(iρ)

∂iρ

[1 + PC(iρ)]2
· r = −

P ∂C(iρ)
∂iρ

1 + PC(iρ)
· ie(iρ).

(13)

∇ie(iρ) can then be obtained by setting ie(iρ) as the new
reference signal, and we can derive the following:

∇ie(iρ) = −∂C(iρ)

∂iρ
· 1

C(iρ)
· ys, (14)

where ys is the position signal collected for this special
experiment. The gradient of iu̇(iρ) can also be derived as

∇iu̇(iρ) =

∂C(iρ)
∂iρ

[1 + PC(iρ)]

[1 + PC(iρ)]2
· ṙ −

P ∂C(iρ)
∂iρ

C(iρ)

[1 + PC(iρ)]2
· ṙ

=
∂C(iρ)

∂iρ

1

1 + PC(iρ)
· ė. (15)

We can obtain ∇iu̇(iρ) using the same special experiment
as

∇iu̇(iρ) =
∂C(iρ)

∂iρ
· 1

C(iρ)
· u̇s, (16)

where us denotes the control effort of the special experiment.
Note that ∇ie(iρ) and ∇iu̇(iρ) are estimated based on the
motion data only without using the dynamic model P (s). In
addition, ie(iρ) and iu̇(iρ) are available based on the laser
interferometer measurement. Hence, ∇J(iρ) and ∇2J(iρ)
could also be estimated according to (10) and (11). It should
be noted that another trial with the reference r is needed for
obtaining unbiased estimate of the cost function gradient;
detailed proof is provided in the extended journal version
[42]. A step-by-step guide for implementing the proposed
algorithm is described in Algorithm 1.
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Algorithm 1 Learning-Based Controller Optimization Algo-
rithm

1) Initialize i = 0 and choose the baseline feedback control
parameters 0ρ.

2) Conduct the normal operation with r as the reference
and obtain y1 and e1.

3) Calculate J(iρ) and stop if the percentage redudction is
not siginificant compared with the previous iteration.

4) Use e1 as the new reference and collect y2.
5) Calculate ∇ ie(iρ) and ∇iu̇(iρ) using (14) and (16).
6) Perform another trial with r as the reference and mea-

sure e3 and u3.
7) Calculate ∇J(iρ) and ∇2J(iρ) according to (10) and

(11), where ie(iρ), iu̇(iρ) are obtained from Step 6 and
∇ ie(iρ),∇ iu̇(iρ) are obtained from Step 5.

8) Optimize according to (12), and obtain the new param-
eter value.

9) Continue with the next iteration starting from Step 2.
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Fig. 4. The 6-DOF maglev stage for experimental validation of the
proposed algorithm.
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IV. EXPERIMENTAL VALIDATION

In this section, a simple single-axis SISO point-to-point
tracking control is used to demonstrate the effectiveness of
the proposed algorithm. As mentioned earlier, this method is
generic and could potentially be applied to other repetitive
robotic tasks; therefore, we make the experimental study
rather general and less specific to this maglev nanoposition-
ing stage.

In the experiment, the National Instruments (NI) PXI-
8110 controller is used with a 5kHz sampling rate. The
Renishaw fiber optic laser interferometers and Lion Precision
capacitive sensors are used for position measurement with
high-precision. The overall setup is shown in Fig. 4. The
feedback controller in our experiments adopts a PID control
structure used in LabVIEW as well as many other industrial
controllers. Nevertheless, the algorithm is applicable to var-
ious types of feedback controllers with the form in (8). The
control effort u(t) is

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(t′)dt′ + Td
de(t)

dt

)
, (17)

and it can be expressed using the same form in (8) as

C(s, ρ) = ρT C̄(s) =
[
Kp Kp/Ti KpTd

]  1
1/s
s

 . (18)

TABLE I
PARAMETERS IN THE MAGLEV EXPERIMENTS

Parameter Initial Final
Kp 30 25.1221
Ti 0.002 2.8459× 10−4

Td 0.00012 1.3490× 10−4

TABLE II
COST REDUCTION IN THE MAGLEV EXPERIMENTS

Cost function Initial Final
Overall cost J 1.3892× 108 2.4833× 107

Tracking cost Je 1.0890× 108 5.6159× 106

Control variation cost Ju̇ 3.0017× 107 1.9217× 107

The initial controller parameter 0ρ is shown in Table I,
providing a stable and decent trajectory tracking result. The

initial controller can be designed by loop shaping if a rough
system model is available [43] or tuned manually via trial-
and-error. Note that the initial controller must at least be
designed or tuned to be a stable controller, as the algorithm
is not capable of recovering from an unstable initial control
policy.

The goal is to obtain the parameter value that provides a
smooth and high-precision tracking of the S-curve point-to-
point reference in Fig. 3. Since we are aiming for a data-
driven approach, no model information of P (s) is provided
to the algorithm. The result of the experiments is shown in
Table II, and we can observer both the tracking accuracy and
smoothness can be improved significantly. To further show
the cost function reduction more clearly, the convergence
diagram is plotted in Fig. 5. In addition, the convergence
diagram for the feedback controller parameters is shown
in Fig. 6. We can therefore see both the parameters and
the cost function converge fast and efficiently. Fig. 7 shows
the improvement of tracking accuracy before and after the
optimization. Here, the small sharp spikes may come from
computational delays or laser interferometer signal losses.
Fig. 8 and Fig. 9 shows the control effort and it variation,
respectively. The improvement in smoothness can also be
clearly observed, although it is relatively less significant
compared with the improvement in the tracking error. Hence,
we conclude that this proposed algorithm is able to provide
an accurate and smooth trajectory tracking effectively.

V. CONCLUSION

In this work, we propose a learning-based data-driven
controller optimization algorithm for improving the perfor-
mance of robots doing repetitive tasks. Without relying upon
any a priori dynamic model knowledge, the learning-based
algorithm is able to provide a fast and efficient feedback
controller optimization based on the rich information ob-
tained under the prevailing non-optimal conditions. The cost
function in this work only takes into account the smooth
and accurate tracking and therefore other criteria deemed
necessary (e.g. fast settling, minimum control effort, etc.)
for various other applications may be further explored for
future works.
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