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Abstract— Video object segmentation plays a vital role to
many robotic tasks, beyond the satisfied accuracy, quickly
adapt to the new scenario with very limited annotations and
conduct a quick inference are also important. In this paper,
we are specifically concerned with the task of fast segmenting
all pixels of a target object in all frames, given the annotation
mask in the first frame. Even when such annotation is
available, this remains a challenging problem because of the
changing appearance and shape of the object over time.
In this paper, we tackle this task by formulating it as a
meta-learning problem, where the base learner grasping the
semantic scene understanding for a general type of objects,
and the meta learner quickly adapting the appearance of
the target object with a few examples. Our proposed meta-
learning method uses a closed form optimizer, the so-called
“ridge regression”, which has been shown to be conducive for
fast and better training convergence. Moreover, we propose
a mechanism, named “block splitting”, to further speed up
the training process as well as to reduce the number of
learning parameters. In comparison with the state-of-the
art methods, our proposed framework achieves significant
boost up in processing speed, while having highly comparable
performance compared to the best performing methods on the
widely used datasets. Video demo can be found here 1.

I. Introduction
The goal of video object segmentation is to distin-

guish an object of interest over video frames from its
background at the pixel level. Fast and accurate video
object segmentation plays an important role in robotics
research and has various applications, including, but not
limited to, robotic vision [18], film making [11], public
surveillance [39].

In contrast to many vision tasks such as image classifi-
cation [15], face recognition [26] and object detection [29],
[12] for which the performance of the algorithms reach
to the point of being suitable for real-world applications,
the performance of video object segmentation algorithms
are still far beyond the human performance [28]. This is
mainly because to acquire the dense pixel-wise labeling
is super expensive, thus this problem does not benefit
from availability of a massive corpus of training data,
unlike the other aforementioned tasks.

Recently, deep learning-based approaches have shown
promising progresses on video object segmentation
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Fig. 1. A comparison of the quality and the speed of previous
video object segmentation methods on DAVIS2016 benchmark.
We visualize the intersection-over-union (IoU) with respect to the
frames-per-second (FPS).

task [3], [37], [22]. However, they still struggle to satisfy
both good accuracy and fast processing inference. In this
paper, we aim to bridge this gap.
Inspired by the meta-learning method which is pro-

posed for image classification task [2], we propose an
intuitive yet powerful algorithm for video object seg-
mentation, in which the reference frame is available with
its annotated mask. In addition, we also propose block
splitting to speed up the matrix computation, signifi-
cantly improving the efficiency of the whole framework.
Our objective is to train a system that can “adapt” this
annotation information to subsequent frames in a fast yet
flexible way at inference time. Specifically, at inference
time the reference frame (i.e. one with ground-truth
annotation) is mapped to vector in a high dimensional
embedding space X = ϕ(I) using a CNN ϕ.
We then determine using ridge regression [23], the co-

efficients of a matrix W that best maps X to the ground
truth, Y = WX. W is then the video-specific “adaptor”,
and it maps the feature vectors for every query image
(i.e. every other image in the video sequence) to their
predicted segmentation masks. Training comprises the
process of learning the mapping ϕ(.) by presenting the
network with pairs of images (from a variety of videos
but with each pair coming from the same video), each
with ground-truth annotation, and back-propagating the
loss through ϕ. This is illustrated in Fig. 3 and described
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Fig. 2. Example result of our technique: The segmentation of the first frame (red) is used to learn the model of the specific object to
track, which is segmented in the rest of the frames independently (green). One every 10 frames shown of 50 in total.

in more detail later in the paper.
We observe that a limitation of the proposed approach

is that the ridge regression scales poorly with the
dimension of the feature feature produced by ϕ(.) because
the optimization requires an huge matrix inversion. We
address this through the use of a “block splitting”
method that approximates the matrix in block diagonal
form, meaning the inversion can be done much more
efficiently.

Our main contributions are three-fold:
• A meta-learning based method for video object

segmentation is developed, using a closed form
solver (ridge regression) as the internal optimizer.
This is capable of performing fast gradient back-
propagation and can adapt to previously unseen
objects quickly with very few samples. Inference
(i.e. segmentation of the video) is a single forward
pass per frame with no need for fine-tuning or post-
processing.

• Ridge regression in high-dimensional feature spaces
can be very slow, because of the need to invert a
large matrix. We address this by using a novel block
splitting mechanism, which greatly accelerates the
training process without damaging the performance.

• We demonstrate the state-of-the-art video segmen-
tation accuracy relative to all others methods of
comparable processing time, and even better accu-
racy than many slower ones (see Fig. I).

II. Related Works
A. Semi-supervised Video Object Segmentation

The goal of video object segmentation is to ‘cutout’
the target object(s) from the entire input video se-
quence. For semi-supervised video object segmentation,
the annotated mask of the first frame is given, and
the algorithm is designed to predict the masks of the
rest frames in the video. There are three categories in
this spectrum. The first one, which include MSK [27],
MPNVOS [33] etc, is to use optical flow to track the
mask from the previous frame to the current frame.
Similarly, the second category formulates the optical
flow and segmentation in two parallel branches, and
utilizes the predicted mask from the previous frame
as a guidance, some representatives are Segflow [7],
OSNM [40] etc. The final class which keeps the state-
of-the-art performance on DAVIS benchmark [28] is to
try to over-fit the appearance of the target object(s),
and expect the method can generalize in the subsequent

frames. Specifically, OSVOS [3] uses one-shot learning
mechanism to conduct fine-tuning on the first frame
of test video to capture the appearance of the target
object(s), and conduct inference on the rest frames.
The limitations of OSVOS are: (1) it can not adapt
to the unseen parts (2) when dramatic changes of
appearance happen in subsequent frames, the method’s
performance significantly degrade. Inspired by the overall
design principle of OSVOS, there are some following
methods which employ various additional ingredients to
improve the segmentation accuracy. Such as OSVOS-
S [22], OnVOS [37], but they all suffer the the limitation
of super-slow for inference.
In this paper, we mainly target to fast video object

segmentation, since no optical flow and fine-tuning pro-
cesses are used, the proposed method is appropriate for
real-world applications.

B. Meta Learning

Meta learning is also named learning to learn [31],
[24], it is an alternative to the de-facto solution that
has emerged in deep learning of pre-training a network
using a large, generic dataset (eg ImageNet [8]) followed
by fine-tuning with a problem-specific dataset. Meta-
learning aims to replace the fine-tuning stage (which can
still be very expensive) by training a network that has a
degree of plasticity so that it can adapt rapidly to new
tasks. For this reason it has become a very active area
recently, especially with regard to one-shot and few-shot
learning problems [16], [9].
Recent approaches for meta-learning can be roughly

put into three categories: (i) metric learning for acquiring
similarities; (ii) learning optimizers for gaining update
rules; and (iii) recurrent networks for reserving the mem-
ory. In this work, we adopt the meta-learning algorithm
that belongs to the category of learning optimizers.
Specifically, inspired by [2] which was originally designed
for image classification, we adopt ridge regression, which
is a closed-form solution to the optimization problem.
The reason for using it is because, compared with the
widely-used SGD [17] in CNNs, ridge regression can
propagate gradient efficiently, which is matched with the
goal of fast mapping. Through extensive experiments,
we demonstrate that the proposed method is in the
first echelon regarding to speed for fast video object
segmentation, while obtaining more accurate results
without any post-processing.
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Fig. 3. Workflow of the proposed method. An image pair sampled from the same video as the input to the network. The first image
IR and its annotation MR as the reference frame, and the second image IQ and its annotation MQ ( or prediction PQ during inference)
as the query frame. The image pair first passes through the feature extractor (DeepLabv2 [4] with ResNet101 [13]) to compute a 800D
embedding tensor FR, FQ. Then a mapping matrix W between FR and MR is calculated in the reference frame (Eq. 1) using ridge
regression. After that, the prediction result PQ in the query frame is acquired by multiplying FQ and W (Eq. 2). During training, the
loss error between PQ and MQ is back-propagated to enhance the network’ adaptation ability between the reference frame and the query
frame. During inference, the reference frame (IR and MR) is always the first frame, and the query image IQ is the rest sequence from the
same video. Through iterative meta-learned, our network is capable of quickly adapting to unseen target object(s) with a few examples.

C. Fast Video Object Segmentation
A few previous methods proposed to tackle fast video

object segmentation. In particular, FAVOS [6] first tracks
the part-based detection. Then, based on the tracked
box, it generates the part-based segments and merges
those parts according to a similarity score to form the
final segmentation results. The limitation of FAVOS is
that it can not be learned in an end-to-end manner, and
heavily relies on the part-based detection performance.
OSNM [40] proposes a model which is composed of
a modulator and a segmentation network. Through
encoding the mask prior, the modular can help the
segmentation network quickly adapt to the target object.
RGMP [38] shares the same spirit with OSNM. Specif-
ically, it employs a Siamese encoder-decoder structure
to utilize the mask propagation, and further boosts
the performance with synthetic data. The most similar
work to ours is PML [5], which formulates the problem
as a pixel-wise metric learning problem. Through the
FCN [21], it maps the pixels to high-dimensional space,
and utilizes a revised triplet loss to encourage pixels
belonging to the same object much closer than those
belonging to different objects. Nearest neighbor (NN)
is required for retrieval during inference. In contrast
our meta-learning approach acquires a mapping matrix
between the high-dimensional feature and annotated
mask in reference image using ridge regression, and then
can be adapted rapidly to generate the prediction mask.
Compared to baseline method PML [5], our method is
twice faster and achieves 3.8 percent gains regarding to
segmentation accuracy. And with the same efficiency,
the J mean of our method is 3.4 percent better than
OSNM [40] on the DAVIS2016 [28] validation set.

III. Methodology

A. Overview
We formulate the video object segmentation as a meta-

learning problem. For each image pair which comes from
a same video, ridge regression is used as the optimizer
to learn the base learner. Meta learner is naturally built
through the training process. Once the meta learner is
learned, it possesses the ability of fast mapping between
the image features and object masks, and can be adapted
to unseen objects quickly with the help of the reference
image.
According to the phase that user input involved in

the training loop, the current existing methods can be
classified into three categories.
User input outside the network training loop This
category utilizes the user input to fine-tune the net-
work to over-fit the appearance cues of target object(s)
during inference. The representatives are OSVOS [3]
and its following works [22], [1], [37]. Since online fine-
tuning is required during inference, the limitation of
these algorithms is time-consuming, which usually take
seconds per image, thus is not practical for the real-world
applications.
User input within the network training loop This cat-
egory of work injects the user input as the additional
input for training the network. Through this way, no
online fine-tuning is needed. These algorithms incorpo-
rate the user input either by using a parallel network or
concatenating the image with the user input [38], [40].
One limiation of this kind of methods is that the model
needs to be recalculated once the user input changes,
thus it is not practical for adaptation especially for long
videos.
User input is detached from the network training loop In
contrast to the previous methods, our algorithm shares
the same spirit with PML [5] in design. The network and
user input are detached, and the user input can be much
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more flexible. Moreover, once the user input is given
(for example, the annotation in the reference image), the
network can quickly adapt to the target objects without
any extra operations.

B. Segmentation as Meta-Learning
For simplicity, we assume single-object segmentation

case, and the annotation of first frame is given as the
user input. Note that our method can also be applied
for multi-objects and easily extended to other types of
user input, e.g., scribble, clicks etc.

We adopt the following notation:
• C: the number of feature channels (in our case 800);
• w, h: the spatial resolution of the extracted features

(in our case 1/8th of the orginal image size);
• FR, FQ: the feature tensors of size C×h×w produced

by ϕ;
• X: a flattened tensor of FR or FQ, with shape h ·

w × C;
• Y : the flattened tensor of annotation mask MR or

MQ, with shape h · w × 1;
• W : the mapping matrix of size C × 1 between the

feature space and annotation mask.
As noted above, there are two components to the

learner: (i) ϕ(.) an embedding model that maps images
to a high-dimensional feature space, C × h×w; and (ii)
an adaptor W of size C × 1, found using ridge regres-
sion, that maps the embedded features to a (flattened)
segmentation mask (of size h · w × 1).
Embedding Model We adopt DeeplabV2 [4] built on
the ResNet-101 [13] backbone structure as our feature
extractor ϕ. This choice allows a direct comparison
of our method with the baseline, PML [5]. First, we
use the pretrained model on COCO [20] dataset as
the initialization for semantic segmentation. Then the
ASPP [4] layer for classification is removed and replaced
by our video-specific mapping W .
Ridge Regression Ridge regression is a closed form solver
and widely-used in machine learning community [30],
[25]. The learner seeks W that minimizes Λ as follows:

Λ(X,Y ) = argmin
W

||XW − Y ||2 + λ||W ||2

= (XTX + λI)−1XTY
(1)

where, X,Y and W are as defined above, and λ is a
regularization parameter, and set to 5.0 in all of our
experiments. As can be seen in Fig. 3, during training,
an image pair as well as their annotations are sampled
from the same video sequence. The feature FR extracted
from the reference image IR (in the Fig. 3 this is the first
image) and its annotation MR will be used to calculate
the mapping matrix W .

PQ = FQ ×W (2)

(where we abuse notation and use the unflattened feature
tensors for clarity).

For the query image IQ, likewise we compute the
feature FQ, map these to the predicted segmentation

Splitting

Approximate

200800
Computation cost: 200x200x4=160000Computation cost: 800x800=640000

Fig. 4. Illustration of the proposed block splitting: during
matrix inverse calculation of ridge regression, the computation
of the higher dimensional feature is approximated by the sum
of computation of that lower dimensional features. Which can
effectively speed up the training process as well as reducing the
parameters and memory.

mask PQ using Equation 2 in which W is the matrix
computed from the reference image and its ground
truth. The loss between the prediction mask PQ and
the annotation MQ for the query provides the back-
propagation signal to improve ϕ’s ability to produce
adaptable features.

During inference in our case, the reference frame IR
will be always the first frame, for which the annotation
mask is provided, and the query frames IQ will be the
rest of frames in the same video.

C. Block Splitting
Thanks to ridge regression, the computation of the

mapping matrix and gradient back-propagation are al-
ready very fast compared with other algorithms, which
also focus on video object segmentation.

F (X) = (XTX + λI)−1 (3)

During the experiments, we found the higher dimen-
sion of the feature used as the input for meta-learning
module, the more accurate segmentation results likely
be achieved. However, we also observed that the higher
dimension of the feature being utilized, the slower of the
training process. Specifically, during the computation
of mapping matrix W, it involves a matrix inverse
calculation. as denoted by Equation 3, which will become
the bottleneck of fast propagation when the very high
dimensional feature is used.
In order to further speed up the training process

of the proposed network, we deliver a block splitting
mechanism, and its work principle as shown in Fig. 4.
In particular, our motivation is that the matrix inverse
computation F (X) for much high-dimensional feature
(eg. 800D) can be approximated by the sum of the
computations of that relative low-dimensional features
(eg. 200D × 4). From the work principle, it can be
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viewed that a n × n matrix can be approximated by
four n/4× n/4 irrelevant diagonal matrix.

The advantages of using the proposed block splitting
mechanism are: Firstly, it can largely speed up the ma-
trix inverse process involved in ridge regression, thus it
saves the training time to some extent. Secondly, through
the matrix approximation step as aforementioned, the
network parameters involved in the ridge regression as
well as memory utilized in our network are reduced. The
experimental evidence can be found in Ablation Study
( Section V).

D. Training
Training Strategy For training, optimizer is SGD with
momentum 0.9, with weight decay 5e-4. We use the
DeepLabV2 [4] with backbone network ResNet-101 [13]
as the feature extractor, and the constant learning rate,
i.e. 1.0e-5, is used during the whole training process.
The dimension of extracted feature is 800 outputed by
the feature extractor, which is used as the input for the
meta-learning module.
Loss BCEWithLogitsLoss2 is employed for training the
proposed network, it essentially is a combination of the
Sigmoid layer and binary cross entropy (BCE) loss, it
benefits from the log-sum-exp trick for numerical stabil-
ity. And compared to BCE loss, it is more robust and
less likely to cause numerical problem when computing
the inverse matrix in the ridge regression step.

ℓ(x, y) = L = {l1, ..., lN}T
ln = −wn[yn · log δ(xn) + (1− yn) · log(1− δ(xn))]

(4)

where N is the batch size. xn is the input of the loss
calculation, and yn (yn ∈ [0, 1]) is the ground truth label.
wn is a rescaling weight given to the loss of each batch
element.

IV. Experiments
A. Dataset

We verify the proposed method both on
DAVIS2016 [28] and SegTrack v2 [19] datasets.

On DAVIS2016, which contains 50 pixel-level anno-
tated video sequences, and each video only contains
one target object for segmenting. Among these 50 video
sequences, 30 video sequences as the training set with
which the annotated mask is provided for every frame.
And another 20 video sequences as the validation set,
and only the annotation of the first frame is allowed to
access.

SegTrack v2 [19] is extended from SegTrack [34]
dataset. Both of them contain the dense pixel-level
annotation for each frame within each video. For segtrack
v2 dataset, we test our algorithm on all the sequences
which contain one target object.

2https://pytorch.org/docs/stable/nn.html

TABLE I
Performance comparison of our approach with recent approaches

on DAVIS 2016 Performance measured in mean IoU. PML*
denotes PML without spatial-temporal and online adaptation

which is the same case with our method.

Method DAVIS
Online

OptFlwCRF BS Speed(s)Tuning
OFL 68.0 - 7 3 7 42.2
BVS 60.0 - 7 7 7 0.37
ConvGRU 70.1 7 3 7 7 20
VPN 70.2 7 7 7 7 0.63
MaskTrack-
B 63.2 - 7 7 7 0.24

SFL-B 67.4 7 3 7 7 0.30
OSVOS-B 52.5 7 7 7 7 0.14
OSNM 72.2 7 7 7 7 0.14
PML* 72.0 7 7 7 7 0.28

Ours 75.8 7 7 7 7 0.145
PLM 70.0 3 7 7 7 0.50
SFL 74.8 3 7 7 7 7.9
MaskTrack 69.8 3 7 7 7 12
OSVOS 79.8 3 3 7 3 10

B. Results on DAVIS2016
Quantitative Results Table I shows the experimental
results on DAVIS2016 [28] on different methods. Apart
from the performance (measured by J mean), switches for
online-fining, using optical-flow, dense CRF (CRF) and
boundary snapping (BS) are also described. Meanwhile,
the inference time is also shown. In particular, compared
with most of the competitors, our algorithm shares the
same or much faster processing time with superior perfor-
mance regarding the segmentation accuracy. Compared
with OSVOS [3], for which the online fine-tuning is
necessary, our method just takes a smaller fraction of
time to do inference. Compared to the baseline method
PML [5] which use the same feature extractor, our
method is twice faster and achieve 3.8 percent gains with
the same settings. Compared OSNM [40], with the same
efficiency, our method achieve 3.4 percent improvements
regarding to the segmentation accuracy.
Qualitative Results Fig. 5 demonstrates some visualized
results of our method. As shown in Fig. 5, our method
is not only good at recovering object details (e.g.,
the results on the sequence of blackswan), but also
robust against heavy occlusions (eg. the results on the
sequences bmx-bumps and libby, dramatic movement as
well as abrupt rotation (eg. the results on the sequence
motocross-bumps). However, there are very few scenarios
which may lead to failure cases (denoted by the red box),
and mainly caused by the (noisy) objects which have
not appeared at the first frame of the video, and can
be easily cured by some post-processing steps, including
tracking [6], online adaptation [37], [5].
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Fig. 5. Qualitative results: Homogeneous sample of DAVIS sequences with our result overlaid.

Fig. 6. Per-sequence results of mean region similarity (J) . Sequences are sorted by the performance of our algorithm.

In Fig. 7, we show some visualized results compared
with OSVOS [3] and PML [5]. For the breakdance,
scooter-black and dance-jump sequences, which contain
fast moving and abrupt rotation, OSVOS [3] performs
worse than PML [5]. And for the dog sequence, PML [5]
can not achieve a satisfied result due to the dramatic
change of the light conditions. However, on both of these
two scenarios, the proposed method performs better than
both of OSVOS and PML, which is benefit from robust
adaptation ability of our network.

C. Results on SegTrack Dataset
In Fig. 8, some visualized results in the segTrack [34]

dataset are shown. Which are acquired by direcly utlized
the model trained on DAVIS2016 dataset. As can be seen,
in most cases, our model maintain a good segmentation
accuracy, and with a few case fails (as denoted by the red
box), which mainly due to the dramatically changes of
the light conditions and exact same appearance between
the background and the target object. These results

prove our method has a better generalization ability and
can be quickly adapted to other unseen objects with very
few examples (here, only the annotation in the first frame
is provided).

V. Ablation Study

A. Comparison with PML with different adds-on

TABLE II
Comparison with basedline method PML [5] under different

settings.

Method Spat.-Temp. Online Adapt. MaskIoU
PML-Abal1 7 7 72.0
PML-Abal2 7 3 73.2
PML-Abal3 3 7 74.3
PML 3 3 75.5
Ours 7 7 75.8
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Fig. 7. Visualized comparison between the proposed method and
other methods. With the red box to denote the error region.

Fig. 8. Qualitative results: Homogeneous sample of SegTrack
sequences with our result overlaid.

Compared to baseline method PML [5] which with
same backbone network (DeepLabV2) under the same
settings, our method achieved 3.8 percent improvement
regarding to MaskIoU accuracy as shown in Table II. And
compared with baseline method adding spatial temporal
attention and online adaptation, our method is still
slightly better and twice faster.

B. Feature Dimension and Block Splitting
As mention in Section III-C, since our meta learning

module (ridge regression) requires the computation of
matrix inverse, the training speed will varies significantly
regrading the features with various dimensions utilized
for this step. And based on the fact that low dimensional
features usually have the faster speed but lose some
details of image information. On the contrary, high
dimensional features are time-consuming but carry much
rich information. We propose a block splitting mecha-
nism to train the meta learner. In Table III, the splitting
number (of feature), feature dimension, running speed

TABLE III
Ablation study on block splitting: feature dimension, running

speed, memory and computation cost with different settings are
listed out.

Split No Feature Speed(s) Memory Computation
1 800 1.50 11590 640k
2 400 1.23 11720 320k
4 200 0.75 11580 160k
8 100 0.86 11584 80k

(per iteration), memory cost (of the whole network),
as well as computation cost (of the computation of
matrix inverse) with different settings are listed out. As
can be seen, with the feature dimension decreasing, the
overall trend are running speed increasing, computation
cost decreasing, dramatically. However the memory cost
reduce slightly, which mainly because of the backbone
feature extractor take up most of the memory usage. All
the numbers are tested on the single GPU card (with
type of GTX 1080). Please note, the performance of using
different splits change slightly during the preliminary
experiments. The reason for using feature with 800D is
based on the observation that: The higher dimension
of the feature, the stronger representation ability and
the slower training speed. 800D feature is somehow a
compromise between the good performance and fast
training speed.

C. Per Sequence Performance Analysis
In Fig. 6, J mean of per sequence of different methods

are outlined. It is sorted according our algorithm’s
performance in each sub-sequence, which provides a
more intuitive understanding for the proposed algorithm.
Firstly, the proposed method achieve a better video seg-
mentation accuracy when compared to many other meth-
ods. Secondly, our algorithm works quite well on most
of sequences, even on the most challenging sequences,
e.g., breakdance and bmx-tree, the J mean is above 0.5.
Thirdly, benefit from the quick adaption ability of meta-
learning, around half of sequence achieve J mean over
0.8. Moreover, our method can well recover the object
details as well as robust against fast movement and
heavy occlusion, which are aligned with our conclusion
in Section IV-B

VI. Conclusion
In this paper, we explore applying meta-learning into

video object segmentation system. A closed form opti-
mizer, i.e., ridge regression, is utilized to update the meta
learner, which achieves fast speed while maintains the
superior accuracy. Through iteratively meta-learned, the
network is capable of conducting fast mapping on unseen
objects with a few examples available. Compared to the
fine-tuning methods, our algorithm with similar perfor-
mance but just a smaller fraction time is required, which
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is appeal to the real-world applications. In addition, a
block splitting mechanism is delivered to speed up the
training process, which also has the benefits of reducing
parameters and saving memory. In future work, we would
like to use other basic optimizers, such as, Newton’s
methods and logistic regression. Meanwhile, based on the
flexible design of our meta-learner, instead of inferring
the rest frames from the given whole annotation of the
first frame. Inferring whole object from only part of
annotation or user feedback is also worth to investigate.
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