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Abstract— This paper presents the design of an Interacting
Multiple Model (IMM) filter for improved navigation perfor-
mance of Micro Aerial Vehicles (MAVs). The paper considers
a navigation system that incorporates rotor drag dynamics and
proposes a strategy to overcome the sensitivity of the system to
external wind disturbances. Two error state Kalman filters are
incorporated in an IMM filtering framework. The first filter
has a model that uses conventional Inertial Navigation System
(INS) mechanization equations, while the second filter considers
a dynamic model with rotor drag forces of the MAV. In order
to support the two error state Kalman filters, the generic IMM
algorithm [1] is modified for error state implementation, handle
dissimilar state definitions, and adaptive switching during oper-
ation. Numerical simulations and experimental validation using
the EuRoC dataset are conducted to evaluate the performance
of the proposed IMM filter design for changing flight conditions
and external wind disturbance scenarios.

I. INTRODUCTION

Reported visual intertial navigation systems (VINS) de-
signs primarily rely on either optimization-based approaches
[2] or filtering-based approaches [3, 4]. Filtering-based ap-
proaches are preferred for computationally efficient imple-
mentation of VINS as compared in [5]. The number of
camera poses stored in filtering-based VINS dictates the type
of measurement model used for filter update. The number of
camera poses appended to the state vector could be as small
as two, as in the Epipolar constraint measurement model [4],
or more [3]. Incorporating more camera poses improves the
estimation accuracy but with an increase in the computational
resource requirement of the filter.

For improved performance the process model of the filter
should be modified to address the aerodynamic rotor drag
forces of the micro-aerial vhicle (MAV) [6]. Recent studies
show performance improvement of VINS when the drag
force model is used in the navigation equations [4]. Per-
formance improvement as a result of the drag force model
is also reported in feedback controller design for aggres-
sive flight of MAVs [7]. However, when there is external
disturbance such as wind, ground effects, and modeling
errors, or if the MAV has landed, the drag force model is
invalid [8, 9]. Many research work in the literature assumes a
disturbance-free environment which is only valid for limited
number of applications [4, 9]. One approach to address
periods with external disturbance is to adaptively switch to
the conventional kinematic model, which is unaffected by the
existence of wind. This means that there should be a multiple
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model filtering technique in place to address these changing
conditions, i.e., transition between a conventional kinematic
model VINS and a drag force model VINS to improve the
estimation accuracy.

Literature shows successful application of multi-model
techniques, specifically when it comes to the Interacting
Multiple Model (IMM) algorithm [10, 11]. IMMs are typ-
ically applied to linear systems or system models with low
order non-linearities. For instance, target tracking IMMs [12]
and image tracking IMMs [13] deal with linear models in
the multi-model filtering bank. Similarly, the ground vehicle
models and steering geometry models used for IMM filters
in [10, 14] exhibit stable dynamics with non-linearities which
are significantly different from spatial geometric and projec-
tive non-linearities present in VINS filters [3]. Furthermore,
IMM is generally applied to filters that share similar state
vectors and measurement models, whereas the conventional
VINS [15] and drag force VINS [4] filters have a set of
conceptually different state and measurement models.

To address these drawbacks, this paper develops an error
state implementation of the IMM algorithm incorporating
geometrically consistent error definitions, which allow to
address non-linearities of VINS filters in the IMM algorithm.
The paper introduces an approach to handle dissimilar states
and measurement models of the two filters in the filter
bank. The performance of the proposed IMM-VINS filter
is compared to the drag force VINS proposed in [4]. To
the best of authors’ knowledge, this paper performs the first
reported application of IMM for VINS filters on MAVs.

II. ESTIMATOR DESIGN

A. System Description
Fig 1 defines the coordinate system of the proposed VINS

on MAV. Frames {G} is the Global frame, {B} is attached
to MAV center of gravity. The IMU of the MAV is located
at frame {I} and a forward-facing monocular camera is at
frame {C}. For simplicity, assume that {I} and {B} are
aligned, which will be relaxed when validating the filter for
experimental data.
The nonlinear state-space model of the system is given as,

ẋ = f(x,u,nw) , y = h(x,nν) (1)

where x = system state, u = input, nw = process noise
with zero-mean Gaussian, y = measurement , and nν =
measurements noise with zero-mean Gaussian. The state
vector of the system has a dimension of 23 and is defined
as follows.

x =
[
GpB

T BqG
T Bv

T
ba

T bg
T GṕB

T Bq́G
T
]T
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Fig. 1: Coordination systems related to VINS on MAV.

The state includes the position with respect to the global
frame GpB , unit quaternion BqG corresponding to the MAV
rotation from {G} to {B}, MAV velocity Bv of {B} relative
to {G} expressed in {B}, accelerometer bias ba, and gyro-
scope bias bg expressed in {B}. A keyframe based approach
is used to handle visual measurements similar to [2, 4]. As a
result, the position and orientation of the MAV corresponding
to the previous keyframe are also stored in the state vector,
which are denoted using GṕB and Bq́G respectively. The
error state vector corresponds to the geometric difference
between the true state vector x and the estimated state vector
x̂. The error state is defined as, x̃ = x	 x̂, where the inverse
mapping 	 is used to capture geometrically consistent error
terms. This inverse mapping is same as standard subtraction
in case of position, velocity, and bias states, but is different
for quaternions. The quaternion error state is computed as,
q̃ = q ∗ q̂−1

Linearize−−−−−→ δq =
(
1 1

2δθ
T
)T

, where δθ is
a small angle approximation of rotation and ∗ denotes the
quaternion multiplication.

First order linearization of the continuous error state
dynamics ˙̃x results in,

˙̃x
Linearize−−−−−→ δẋ = Fδx + Gwδnw (2)

where F and Gw are the process model and noise Jacobians.

B. Mathematical model of the conventional VINS (C-VINS)

The C-VINS process model corresponds to the INS mecha-
nization equations given by,

GṗB = R(BqG)T Bv , Bq̇G = −1

2
Bω ∗ BqG

Bv̇ = R(BqG)Ggē3 + Ba− Bω × Bv
G ˙́pB = 03×1 , B ˙́qG = 03×1

(3)

where the platform angular velocity input Bω and accelera-
tion input Ba are driven using measurements from an inertial
measurement unit given by,

ωm = (Bω + bg + ng) , am = (Ba + ba + na)

ḃa = nba , ḃg = nbg.
(4)

In (3,4), R(BqG) is the rotation matrix from frame {G} to
{B}, Gg is the gravitational acceleration expressed in {G},
the standard basis ē3 =

[
0 0 1

]T
, ωm is the gyroscope

measurements vector, am is the accelerometer measurements
vector, and na, ng , nba, nbg are stochastic Gaussian noise
variables of the accelerometer measurement, gyroscope mea-
surement, accelerometer bias random walk, and gyroscope

bias random walk, respectively. The system noise vector
given in (2) is defined as nw =

[
nTg nTa nTba nTbg

]T
.

The pose stored for the previous keyframe has zero dynamics
since it does not change with time. The F and Gw matrices
corresponding to this model can be found as,

F =


O3 −R(q̂)T

[
Bv̂
]
× R(q̂)T O3 O3 O3×6

O3 − [ω]× O3 O3 −I3 O3×6
O3

[
R(q̂) Ggē3

]
× − [ω]× −I3 −

[
Bv̂
]
× O3×6

O12×3 O12×3 O12×3 O12×3 O12×3 O12×6



Gw =


O3 O3 O3×6
−I3 O3 O3×6

−
[
Bv̂
]
× −I3 O3×6

O6×3 O6×3 I6
O6×3 O6×3 O6


where, [·]× is the skew symmetric matrix operator. For the
sake of brevity, R(q̂) is the same as R(Bq̂G), Ii is an i× i
identity matrix, Oi is an i× i zero matrix, Oi×j is an i× j
zero matrix, and ω = ωm − b̂g .

We consider visual measurements from one forward-facing
monocular camera. Corresponding features pi and ṕi be-
tween each pair of consecutive images are extracted using
features detection and features matching techniques. These
matched features are used to construct the visual measure-
ment residual using the epipolar geometry constraints as
follows,

ỹv = h̃(x,pi, ṕi) = (pi)
TK−TEK−1ṕi

E = R(CqB)R(BqG)
[
GṕC − GpC

]
×R(Bq́G)TR(CqB)T

(5)
where E is the essential matrix, R(CqB) is the rotation
matrix from frame {B} to {C}, K is the camera intrinsic
matrix, and GpC and GṕC are the position of {C} with re-
spect to {G} of the current and previous poses, respectively.

The linearized error state visual measurement model is
formulated as, δyv = Hvδx+Gvδnv , where Hv and Gv are
the Jacobian measurement and noise matrices of the visual
measurement model given in (5). δnv =

(
δpi δṕi

)T
is the

camera measurement noise vector in pixels where δpi and
δṕi are the camera noise vectors in pixels for feature points
in current and previous keyframes, respectively. Using the
error state formulation, the matrices Hv and Gv are found
as,

Hv =


pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×

Hv2

O9×1
−pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×

Hv7


T

Gv =

(
ṕTi BTR(B ˆ́qG)[C]T× R(Bq̂G)TAT

pTi AR(Bq̂G)[C]× R(B ˆ́qG)TB

)T
where Hv2, Hv7, A, B, and C are defined as follows.

Hv2 = −pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×R(Bq̂G)T [BpC ]×−
ṕTi BTR(B ˆ́qG)[C]T×R(Bq̂G)T [AT pi]×
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Hv7 = pTi AR(Bq̂G)[R(B ˆ́qG)T B ṕi]×R(B ˆ́qG)T [BpC ]×−
pTi AR(Bq̂G)[C]×R(B ˆ́qG)T [B ṕi]×

A = K−TR(CqB) , B = R(CqB)TK−1

C = G ˆ́pB − Gp̂B +
(
R(B ˆ́qG)T −R(Bq̂G)T

)
BpC

C. Mathematical model of the drag-force VINS (DF-VINS)

The system dynamics of the DF-VINS process model is
similar to the process model of C-VINS given in (3) except
for the velocity dynamics which is given as,

Bv̇ = R(BqG)Ggē3 − D̄L
Bv + fip + nm (6)

where
fip = T̄Lē3 − (ωm − bg + ng)× Bv

T̄L = amz − baz, D̄L = diag(k1x , k1y , k1z )

The random Gaussian noise in the MAV drag force model
is denoted by nm, amz is the accelerometer measurement in
z direction, and baz is the accelerometer bias in z direction.
The mass normalized thrust is denoted by T̄L. The mass
normalized drag parameters matrix D̄L is a diagonal matrix
with elements k1x , k1y , k1z and is crucial for estimation
accuracy of the DF-VINS. The drag parameters in x-axis
and y-axis can be estimated following a least squared op-
timization procedure while it is reasonable to assume that
the drag parameter in z-axis to be zero similar to work in
[7]. The system model noise vector given in (2) is defined
as nw =

[
nTg nTm nTba nTbg

]T
. The filtering matrices F

and Gw corresponding to the DF-VINS are similar to the
matrices of C-VINS except for the 7th, 8th, and 9th rows of
F matrix (F(7 : 9, :)), which were found to be,
F(7 : 9, :) =

(
O3

[
R(q̂) Ggē3

]
× −D̄L − [ω]× −ē3ēT3 −

[
Bv̂
]
× O3×6

)
Two measurement models are considered for the DF-VINS
model; the first one is the inertial measurement model that
contains the accelerometer measurements along x and y
directions,

ha = Υ(−D̄L
Bv + ba + na) (7)

where Υ =
[
ēT1 ; ēT2

]
is a 2× 3 matrix used to extract the

first two rows, and ē1 =
[
1 0 0

]T
and ē2 =

[
0 1 0

]T
are the first and second standard basis vectors. The linearized
residual measurement model is defined by, δyi = Hiδx +
Giδni, where Hi and Gi are the measurement and noise
Jacobian matrices of the inertial measurement model given
in (7), and ni is the accelerometer measurement noise vector
along x-axis and y-axis and defined as, ni =

(
nax nay

)T
.

The filtering matrices Hi and Gi are defined as,

Hi =

(
O1×6 −k1x ēT1 ēT1 O1×9
O1×6 −k1y ēT2 ēT2 O1×9

)
, Gi = I2

The second measurement model of the DF-VINS is same
as the visual measurement model of C-VINS given in (5).

D. Error state Kalman filtering

In this work, the filter propagation and update follow an
error state filtering formulation as presented in Algorithm

Fig. 2: Structure of IMM algorithm for 2 filters.

1- The general continuous-discrete EKF of [16]. The DF-
VINS filter has, (1) inertial measurement update at IMU
rate, e.g., 200 Hz for the EuRoC dataset, and (2) visual
measurement update that triggers at image acquisition rate,
e.g., 20 Hz for the EuRoC dataset. The C-VINS filter only
uses the visual measurement update. The visual update is
only executed at each new keyframe registered when there
is sufficient feature disparity between two images. Use of
keyframes avoids inconsistent corrections of the filter when
the MAV is stationary because when the camera is stationary,
the residual ỹv is a very small value for any given essential
matrix Ê. As a result, visual measurements do not contain
any useful information about the estimated state vector x̂.
Therefore, turning the visual update off minimizes the risk
of inconsistent updates leading to divergence. The feature
disparity fd between two corresponding sets of features is
calculated as given in (8), where nf is the number of matched
features between the two images. After the measurement cor-
rection step is implemented, the state vector and covariance
matrix are augmented to update the previous pose informa-
tion similar to standard state augmentation procedure used
in VINS filters [15]. VINS filters have a four-dimensional
unobservable space spanning the position state and rotations
about the gravity axis. Observability consistency rules are
enforced for both filters following the approach in [17]
in order to preserve the unobservable space during filter
execution.

fd =
1

nf

nf∑
i=1

‖pi − ṕi‖ (8)

E. Interacting Multiple Model VINS (IMM-VINS)

An IMM algorithm is proposed to combine estimated state
x̂1 from C-VINS (filter 1) and state x̂2 from DF-VINS (filter
2) to find a combined estimate x̂ corresponding to the two
models. The structure of the IMM algorithm is shown in Fig.
2, where x̂01 and x̂02 are the mixed states, P̂01 and P̂02 are
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the mixed covariances which are calculated following a state
interaction step. The mixed estimates x̂01 and x̂02 are used in
filtering algorithms C-VINS and DF-VINS, respectively. The
state interaction step makes use of the model probabilities µ̂
and probability for switching from one model to another µ̃i|j

which is calculated using likelihoods of the two filter models
Λ1 and Λ2 at each iteration. The state estimates of the two
filters are combined to find the combined estimates for state
vector x̂ and covariance P̂ .

Algorithm 1. Error state IMM algorithm

1: Initialize estimated state vector x̂i, covariance matrix
Pi, and initial probabilities µ̂i for each filter.
2: Compute the mixed estimated states x̂0j and covari-
ance P0j as,

x̂0j =

N∑
i=1

x̂iµ̃i|j

P0j =
∑N
i=1 µ̃

i|j [Pi + (x̂i 	 x̂0j)(x̂i 	 x̂0j)T
]

µ̃i|j =
1

ψ̄j
ρij µ̂i , ψ̄j =

N∑
i=1

ρij µ̂i

3: Propagate and update estimated states and covariance
for each filter model.
4: Compute the likelihood Λj and estimated probability
for each filter using the innovations ỹj and the innova-
tions covariance matrix Sj ,

Λj =
1√
|2πSj |

e[−0.5(ỹ
j)T (Sj)−1(ỹj)]

ỹj = y 	 ŷj , Sj = HjPoj(Hj)T + R

µ̂i =
1

c
Λiψ̄i , c =

N∑
i=1

Λiψ̄i

5: Combine both estimated states and covariances based
on estimated probabilities,

x̂ = arg min
x̂∈M

N∑
i=1

ϑ(x̂i, µ̂i)

P =
∑N
i=1 µ̂

i
[
Pi + (x̂i 	 x̂)(x̂i 	 x̂)T

]
The IMM algorithm is summarized in Algorithm 1, where

N is the number of filter models, ρij is the ij element
of the Markov transition probability matrix and represents
the switching from model i to model j, the matrix ele-
ments are assigned such that

∑N
j ρ

ij = 1, and ψ̄i is a
normalization vector used to normalize the model probability.
Compared with the generic IMM algorithm [1, 18], the
one proposed in the paper has several key modifications.
Error state and measurement residual definitions are used
in the state interaction, model probability update, and state
combination steps. This makes the algorithm applicable for
the error state Kalman filter VINS formulations presented
in this work. Furthermore, a generalized state averaging is
performed in the state estimation combination step, where
ϑ is the averaging function. Function ϑ corresponds to the

usual vector averaging in case of position, velocity, and
biases states, while optimal quaternion averaging [19] is
used for averaging the quaternion states as given in (9). The
averaging function effectively minimizes the weighted sum
of the squared lengths of the error quaternions q̃.

q̂ = ±
[(
µ̂1 − µ̂2 + z

)
q̂1 + 2µ̂2

(
q̂T1 q̂2

)
q̂2

]∥∥(µ̂1 − µ̂2 + z) q̂1 + 2µ̂2
(
q̂T1 q̂2

)
q̂2

∥∥ (9)

where, z ,
√

(µ̂1 − µ̂2)
2

+ 4µ̂1µ̂2
(
q̂T1 q̂2

)2
III. RESULTS

A. Numerical validation

A MATLAB simulator is implemented, and compared its
performance with the stand-alone estimators (C-VINS and
DF-VINS). The simulated arena included 495 feature points
uniformly distributed on a cylinder with a radius of 6m
and a height of 2m, as shown in Fig. 3. The MAV was
simulated using the kinematic model given in (3) with the
inputs of the platform [Ba,B ω]. The inputs were designed
such that the MAV follows a circular trajectory of radius
4m completing two laps with additional excitation along the
z-axis to result in a wavelike trajectory as shown in Fig.
3. The input acceleration and angular speeds were designed
to adhere to differential flatness constraints related to the
drag force model [7]. This implicitly enforces the dynamic
constraints related to model (6) during the simulation as long
as there is no external disturbance acting on the system. In
order to verify the switching capability of the proposed IMM
estimator in the presence of external disturbance, 1.76m/s
wind has been added in the second lap for a short duration,
as shown in Fig. 3. The wind disturbance was incorporated
into the velocity differential equation in the MAV model as
an external force acting on the MAV. The IMU and camera
measurements of the MAV were simulated at rates of 100Hz
and 10Hz. The noise covariance Q for C-VINS is set as
Diag(1.1e − 3 I3; 1.3e − 2 I3; 1.8e − 2 I3; 1.7e − 4 I3)
and for DF-VINS is set as Diag(1.1e − 3 I3; 1.8e −
4 I3; 1.8e − 2 I3; 1.7e − 4 I3). The standard deviation of
camera measurement is set as 1 pixel. The IMM algorithm
was implemented with the transition probability matrix and
initial model probability vector selected as follows,

ρ =

[
0.96 0.04
0.04 0.96

]
, µ̂i =

[
0.5
0.5

]
(10)

Fig. 3 illustrates the actual and IMM-estimated trajectories
of the MAV. Fig. 4 illustrates the position and orientation
estimation accuracy of the stand-alone filters and the IMM-
VINS. As seen in Fig. 4, DF-VINS filter exhibits improved
performance than the C-VINS when there is no external wind
disturbance acting on the system; on the other hand, the
C-VINS filter is not significantly affected in the presence
of the wind disturbance as it relies on a more robust
kinematic system model. The IMM estimator dynamically
approximates the model probability, as shown in Fig. 5 and
generates a combined estimate of the state, which is more
accurate than the standalone filters. Moreover, it can also
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Fig. 3: 3D view of the simulator arena

Fig. 4: RMSE of the position and orientation of the IMM
and the two stand-alone filters in the presence of wind

handle the high drift of the DF-VINS during the external
disturbance period by switching to the correct model based
on model probability calculations.

The performance of the C-VINS, DF-VINS, and IMM-
VINS filters for three different trajectories are given in
Table I. Trajectory 1 does not include any wind disturbance
denoted by vector Vw, while trajectory 2 and 3 include wind
disturbances of Vw =

[
0.83 −0.83 0

]T
m/s and Vw =[

1.76 −1.76 0
]T
m/s, respectively. The improvements of

the IMM over C-VINS and DF-VINS are given in Table II
for the three trajectories. The IMM filter has 26% less drift
of its pose when compared with the DF-VINS filter.

B. Experimental validation

Experimental validation is performed using the EuRoC
Vicon dataset. The helicopter used to collect the data was
equipped with a Visual-Inertial sensor unit, having (a)
MEMS IMU operating at 200 Hz (b) two monocular cameras
operating at 20 Hz. Only cam0 measurement is used in this
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Time (s)
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0.5

1

M
o
d
e
l 
p
ro

b
a
b
ili

ty

DF-VINS

C-VINS

Fig. 5: Models probability of IMM filters

TABLE I: Estimation accuracy (RMSE) of position (m) and
orientation (deg) in the simulation results

C-VINS DF-VINS [4] IMM
Pos. Orien. Pos. Orien. Pos. Orien.

Traj. 1 0.126 1.42 0.087 0.32 0.064 0.31
Traj. 2 0.128 1.46 0.279 0.48 0.065 0.39
Traj. 3 0.124 1.43 1.05 0.54 0.062 0.36

TABLE II: Performance comparison percentage (%) of the
improvement in RMSE in the simulation results

DF-VINS / C-VINS IMM / C-VINS IMM / DF-VINS
Pos. Orien. Pos. Orien. Pos. Orien.

Traj. 1 30.95 77.46 49.21 78.17 26.44 3.13
Traj. 2 -117.97 67.12 49.22 73.29 76.70 18.75
Traj. 3 -746.77 62.24 50 74.83 94.1 33.33

paper with feature tracker front-end data imported to MAT-
LAB from the VINS mono ROS package [20]. The Vicon
room 2 datasets are used for this experimental validation
of the IMM filter. V1_01 easy has a trajectory length of
58.6 m and duration of 144 s. The average linear and angular
velocity are 0.41 m/s and 0.28 rad/s, respectively. V1_02
medium has a trajectory length of 75.9 m and duration of
83.5 s. The average linear and angular velocity are 0.91
m/s and 0.56 rad/s, respectively. A nonlinear least-squared
optimization was used to estimate the drag parameters D̄L

using the ground truth data and the IMU measurements of the
V1_02 dataset. The optimal values were found as, k1x = 0.2,
k1y = 0.2, and k1z = 0.0.

Since the IMU frame {I} of EuRoC dataset is not co-
incident with the Center Of Gravity (COG) located at the
body frame {B} of the MAV, all applied forces including
thrust force and drag force is transformed to the body frame
{B} in order for the drag-force model to work properly. The
accelerometer bias of the DF-VINS is updated to include
the thrust force and is expressed in {B}. The accelerometer
bias of the C-VINS filter is also expressed in {B}. As a
consequence of these changes, the accelerometer biases of
the two filters are dissimilar however, both are expressed
in the same frame. This issue is addressed following the
unbiased approach for dissimilar state IMM proposed in
[21]. In addition, an improved IMM algorithm proposed in
[22] is used to adaptively updated the transition probability
matrix, which enables fast switching between the filters to
accommodate the changing flight conditions of the datasets.

ρ =

[
0.9999997 0.0000003

0.0001 0.9999

]
, µ̂i =

[
0.99999997001
0.00000002999

]
The performance of the DF-VINS, C-VINS, and IMM

filters are illustrated in Fig. 6 and Table III. The IMM
has improved performance with minimum position RMSE
while the IMM exhibits intuitive dynamic selection of the
valid model suitable for the flight condition. The IMM filter
might have slightly different performance than the stand-
alone filters at some regions because the two filters in the
IMM filtering bank exhibit different performance than the
stand-alone filters due to the state interaction (mixing) given
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TABLE III: Estimation accuracy in experimental validation

C-VINS DF-VINS [4] IMM
Pos. Orien. Pos. Orien. Pos. Orien.

V1_01 0.44 2.35 0.59 2.73 0.40 2.36
V1_02 0.27 0.35 0.26 0.35 0.24 0.35

in Algorithm 1, where both filters are mixed prior to state
update at the beginning of each iteration. Then the updated
states are combined to provide the IMM estimated states after
state update based on the model probability of each filter.
Therefore, the two filters in the IMM bank will be having
slightly different performance, but with similar behavior.
Fig. 7 depicts the model probability of IMM filters and
shows how the IMM switched to the C-VINS filter while
the MAV is stationary in the beginning. At slow speeds, the
C-VINS model is used by the IMM as seen in the V1_01
dataset, while it switched to the DF-VINS in most of the
trajectory in the V1_02 dataset due to the validity of the
drag force model during fast and aggressive maneuvering.
The multimedia attachment demonstrates these effects along
with the estimation performance of the proposed approach.

IV. CONCLUSIONS
This work proposes the IMM-VINS filter to address the

drawbacks of the stand-alone drag force VINS filters used
for MAV state estimation. In the proposed design, the stand-
alone filters in the IMM bank are meant to serve different
navigation capabilities (accuracy, stability, robustness) and
different flight conditions (aggressive, hover, landing). The
IMM allows synergistic combination of these capabilities of
the filters during flights to generate improved performance
over the stand-alone versions, as shown in this work.
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