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Abstract— We consider the problem of collaborative trans-
port of a payload using several quadrotor vehicles. The payload
is assumed to be a rigid body and is attached to the vehicles with
rigid rods. The model of the system is presented and is employed
to formulate a Model Predictive Controller. The centralized
MPC formulation differs from others in the literature in the
way the linearized model of the system is employed about a non-
equilibrium state-input pair. We then present a decentralized
formulation of MPC by distributing the computations among
the vehicles. Simulations of both versions of the controller are
carried out for a four-quadrotor system carrying out a transport
maneuver of a box payload, for a cost penalizing the deviations
of the vehicles from the desired trajectory and the attitude
perturbations of the payload. The results confirm that the
decentralized controller can yield a comparable performance to
the centralized MPC implementation, for the same computation
time of the two algorithms.

I. INTRODUCTION

A. Background and Motivation

Small UAVs have witnessed increasing usage due to shifts
in basic technologies contributing to making them cheaper,
more user-friendly and easier to operate. This has opened up
new opportunities for a number of UAV-based applications
that were once infeasible, such as their use for payload
transportation and delivery—a topic that has seen widespread
interest from industry, start-ups and academia. Particularly,
the potential uses of payload carrying UAVs for emergency
response assistance and consumer package delivery have
been the subject of numerous articles in the media, with
successful implementations already in common practice [1].

A relevant and challenging problem that has received
considerable attention from the research community is the
problem of a quadrotor vehicle with a slung payload. The
dynamics and control of a single-quadrotor slung-payload
system have been thoroughly analyzed, and several demon-
strations showcasing the transport of an object with such
a system have already been performed [2], [3]. However,
small UAVs, such as the majority of commercial quadrotor
platforms, are typically very limited in the weight and size of
payload they can carry. Moreover, they also have issues with
stabilizing slung payloads while traveling to a target location
[4], and can be cost-inefficient when used to transport less
than their payload capacity. With this perspective, several
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research groups have recently started to address the problem
of collaborative payload transport with multiple UAVs.

B. State of Art

In the context of collaborative transport of a slung payload
with multiple quadrotors, which is the focus of the present
work, several researchers have considered the dynamics,
control and planning of this system. A recent comparative
overview of research on ’multi-lift’ rotorcraft systems is
presented in [5] and includes research conducted with he-
licopters, quadrotors and hexacopter vehicles. The authors
of [5] highlight the dearth of experimental demonstrations
and the need for further research on the control of such
systems. With regard to dynamics, the modeling approaches
have progressed from modeling the payload as a disturbance
[6], [7], thus completely omitting the coupling between the
dynamics of the vehicles, to the more recent work where the
payload is modeled as a rigid body [8], [9]. The approach
to modeling is closely tied to the choice of control strategy
for the system. Disturbance based control strategies aim to
maintain UAV formation [6], [10], [11]. Point mass payload
models are used for control and planning of swing free
payload trajectories [12]–[14]. Full 6 DoF payload models
allow to generate attitude trajectories for the payload that
minimize twisting [9], [15].

Distributed model predictive control (DMPC) algorithms,
such as the one presented here, solve for the optimal control
inputs of multi-agent systems on different processors. The
computational load is thus shared between the different
agents, which communicate any required information across
the local controllers. These have been studied extensively,
with reviews of the subject presented in [16] and [17].

DMPC algorithms have already been explored in the
context of UAVs, with a focus on online planning and
obstacle avoidance. Previous work on the subject studies the
behaviour of such systems under various linear [18]–[20] and
nonlinear [21]–[23] MPC controllers, proposes approaches
to controlling systems with slung load dynamics similar
to those considered by this paper [13], and examines im-
plementations that function across different communication
network topologies [24]. DMPC-based methods have also
been used for trajectory generation for multi-agent UAV
systems as a means of reducing computational time [25].
Outside the scope of UAVs, DMPC has also been used for
the control of systems with coupled dynamics [26], [27],
an important distinction between the collaborative payload
transport algorithm proposed here and the bulk of prior UAV
DMPC literature.
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C. In this Paper

The key contribution of this paper is a novel distributed
MPC formulation which allows for the minimization of a
nonlinear cost function by coupled agents through state-
specific linearization. The controller also relies on sharing
predicted control inputs instead of state information to ac-
count for the coupled nature of the system. The paper is
organized as follows. In Section II, we define the mathe-
matical model for the kinematics and dynamics of the multi-
UAV cooperative transport problem based on the work in [9]
with some modifications. In Section III, a centralized MPC
formulation is presented, followed by the novel distributed
MPC algorithm in Section IV. Section V then provides
a comparison of the performance of the centralized and
distributed algorithms presented on an example maneuver.

II. MODELING

The dynamics model of the system presented here is
motivated by the model developed in [9] and adheres to the
same basic assumptions. In particular, we consider a system
of N quadrotor UAVs that are carrying a single payload, the
latter assumed to be a rigid body. The UAVs are connected
to the payload via massless, rigid links, each attached at its
ends to the quadrotor and payload via passive two-degree-
of-freedom rotational or spherical joints. These effectively
decouple the attitude motion of the vehicles from that of the
payload, allowing for easier control of the system. Differently
from the model developed in [9], we formulate the motion
equations for the payload, as well as the links, by resolving
them in the payload body-fixed frame (see Figure 1).

Fig. 1. Schematic of UAVs-Payload System

A. System Description

Throughout this paper, the variables related to the payload
are denoted by the subscript 0, and the variables for the i-th
quadrotor are denoted by the subscript i.

An inertial reference frame FI and body-fixed frames
FB j with basis vectors

{
b−→ j1

, b−→ j2
, b−→ j3

}
for 0≤ j ≤ N are

chosen. For the inertial frame, the third axis points downward
along the direction of gravity. The origin of the j-th body-
fixed frame is located at the center of mass of the payload for

j = 0 and at the center of mass of the quadrotor for 1≤ j≤N.
The third body-fixed axis b−→ j3

is normal to the plane defined
by the centers of the rotors, and it points downward.

As indicated in Figure 1, the location of the mass center of
the payload in the inertial frame is denoted by r0 ∈R3, and
its attitude is described by R0 ∈ SO(3), the rotation matrix
which transforms a vector expressed in the 0-th frame to the
inertial frame. Let ρρρ i ∈R3 be the point on the payload where
the i-th link is attached, expressed in the payload-fixed frame,
with the other end attached to the mass center of the i-th
quadrotor. The unit vector from the center of mass of the i-th
vehicle in the direction of the link, expressed in the payload
frame, is denoted by ei ∈ S2, where S2 =

{
e ∈ R3|‖e‖= 1

}
,

and the fixed length of the i-th link is denoted by li ∈ R.
Let ri ∈ R3 be the location of the mass center of the i-th

quadrotor with respect to the inertial frame. Then, since the
links are assumed to be rigid, the position kinematics follow
directly as

ri = r0 +R0 (ρρρ i− liei) . (1)

The attitude of the i-th quadrotor is defined by Ri ∈ SO(3). In
this payload-centric description of the system, the indepen-
dent generalized coordinates are the position and orientation
of the payload, the directions to the centers of mass of the
vehicles, as defined by the ei components in the payload
frame and the orientation of the vehicles themselves. The
configuration manifold of this system is therefore R3 ×
SO(3)×

(
S2×SO(3)

)N and the system has 6+5N degrees
of freedom.

The mass and the inertia matrix of the payload are denoted
by m0 ∈ R and J0 ∈ R3×3, respectively. The mass and the
inertia matrix of the i-th quadrotor are denoted by mi ∈ R
and Ji ∈R3×3, respectively. The i-th quadrotor can generate
a thrust fff i = fiRibi3 ∈ R3 expressed in its inertial frame,
where fi ∈ R is the total thrust generated by vehicle i and
bi3 = [0 0 1]T ∈R3. The propellers also generate a moment
τττ i ∈ R3 with respect to the vehicle’s body-fixed frame. The
control inputs of this system are thus { fi,τττ i} for 1≤ i≤ N.

B. Kinematics and Dynamics

The kinematics equations for the system are given by:

ṙ0 = R0v0 (2)

ėi = (ΩΩΩi−ωωω0)
× ei (3)

ṙi = ṙ0 +R0
(
ωωω
×
0 ρρρ i− liΩΩΩ×i ei

)
(4)

Ṙ0 = R0ωωω
×
0 (5)

Ṙi = Riωωω
×
i (6)

where v0 is the translational velocity of the payload ex-
pressed in FI , ωωω0 is the angular velocity of the payload
and ΩΩΩi is the angular velocity of the i-th link, satisfying
eT

i ·ΩΩΩi = 0. The aforementioned variables are expressed in
the payload frame, while the velocities of the i-th quadrotor
and the payload are expressed in the inertial frame; the ×

operator denotes the skew-symmetric matrix operator.
The equations of motion for the system are comprised of

the following 4 sets: translational equations of motion of
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the payload, rotational equations of motion of the payload,
rotational equations of motion of the links and rotational
equations of motion of the quadrotors. They can be derived
by applying the Newton-Euler formulation to the payload and
to the vehicles, or alternatively using Lagrange’s Equations
with quasi-coordinates, and take the form:

mT
(
v̇0 +ωωω

×
0 v0
)
+

N

∑
i=1

mi
(
−ρρρ
×
i ω̇ωω0 + lie×i Ω̇ΩΩi + lie×i ωωω

×
0 ΩΩΩi

)
+

N

∑
i=1

mi
(
ωωω
×
0
)2

ρρρ i +mili ‖ΩΩΩi‖2 ei = mT gRT
0 k+

N

∑
i=1

RT
0 fff i,

(7)

J0ω̇ωω0 +ωωω
×
0 J0ωωω0 +

N

∑
i=1

miρρρ
×
i (v̇0 +ωωω

×
0 v0 + lie×i Ω̇ΩΩi

+ lie×i ωωω
×
0 ΩΩΩi + li ‖ΩΩΩi‖2 ei) =

N

∑
i=1

ρρρ
×
i RT

0 ( fff i +migk) , (8)

mil2
i
(
Ω̇ΩΩi +ωωω

×
0 ΩΩΩi

)
−milie×i

(
v̇0 +ωωω

×
0 v0
)
+milie×i ρρρ

×
i ω̇ωω0

−milieee×i
(
ωωω
×
0
)2

ρρρ i =−lie×i RT
0 ( fff i +migk) , (9)

Jiω̇ωω i +ωωω
×
i Jiωωω i = τττ i, (10)

where mT = m0 +∑
N
i=1 mi, J0 = J0−∑

N
i=1 mi

(
ρρρ
×
i

)2 and k =
[0 0 1]T . This dynamics model of the system is similar
to that in [9], except for ei, ΩΩΩi and ωωω0 which have been
expressed in the payload frame, rather than in the inertial
one. This leads to the elimination of rotation matrices in
a number of terms, with additional terms appearing in the
equations of motion of the payload and the links. It is also
noted that the rotational dynamics of the quadrotors, shown
in Equation (10), are completely decoupled from the rest of
the system.

To rewrite the model in state-space form for use with the
controller formulation presented in Section III, we define the
state of the system to be

x = [rT
0 ,v

T
0 ,ΘΘΘ

T
0 ,ωωω

T
0 ,e

T
i ,ΩΩΩ

T
i ,ΘΘΘ

T
i ,ωωω

T
i ]

T , i = 1, . . . ,N

where ΘΘΘ0 and ΘΘΘi represent the 3-2-1 Euler angle parametriza-
tions of R0 and Ri, respectively. Equations (2) - (6) are
trivial to write in state-space form, as is (10). The coupling
dynamics pertaining to the kinetic states of the payload and
the links, x0q = [vT

0 ,ωωω
T
0 ,ΩΩΩ

T
i ]

T , given in (7)-(9) can be written
compactly as

ẋ0q = M−1
0q f0q(x,u), (11)

where

M0q =
mT 13 −∑

N
i=1 miρρρ

×
i m1l1e×1 . . . mN lNe×N

∑
N
i=1 miρρρ

×
i J0 m1l1ρρρ

×
1 e×1 . . . mN lNρρρ

×
N e×N

−m1l1e×1 m1l1e×1 ρρρ
×
1 m1l2

113 . . . 0
...

...
...

...
...

−mN lNe×N mN lNe×Nρρρ
×
N 0 . . . mN l2

N13

 ,

and

f0q(x,u) =

−mTωωω
×
0 v0−∑

N
i=1{mi

(
ωωω
×
0

)2
ρρρ i +mili ‖ΩΩΩi‖2 ei

+milie×i ωωω
×
0 ΩΩΩi}+mT gRT

0 k+∑
N
i=1 RT

0 fff i
−ωωω

×
0 J0ωωω0−∑

N
i=1 mi{ρρρ×i ωωω

×
0 v0 + liρρρ×i e×i ωωω

×
0 ΩΩΩi

+liρρρ×i ‖ΩΩΩi‖2 ei}+∑
N
i=1 ρρρ

×
i RT

0 ( fff i +migk)
m1l1

{
e×1
(
ωωω
×
0

)2
ρρρ1− l1ωωω

×
0 ΩΩΩ1 + e×1 ωωω

×
0 v0

}
−l1e×1 RT

0 ( fff 1 +m1gk)
...

mN lN
{

e×N
(
ωωω
×
0

)2
ρρρN− lNωωω

×
0 ΩΩΩN + e×Nωωω

×
0 v0

}
−lNe×N RT

0 ( fff N +mNgk)


.

C. Model Linearization

With the view to formulate a linear MPC in Section III, we
develop a linearized model of the full system. Thus, assume
the standard state and output equations

ẋ = f(x(t),u(t))
y = h(x(t),u(t))

(12)

where x ∈ Rn, u ∈ Rm and f(x(t),u(t)) are the state, inputs,
and dynamics model respectively, as defined in Sections II-A
and II-B. y ∈Rp is the desired system output and represents
the cost function to be minimized.

The model can be linearized about an arbitrary (non-
equilibrium) state, input pair (x0,u0) ∈ Rn ×Rm for use
with the controller presented in Section III. The system
is linearized by taking its first-order Taylor approximation
about (x0,u0) to obtain the relations

ẋ≈ f(x0,u0)+Acδx+Bcδu
y≈ h(x0,u0)+Cδx+Dδu.

(13)

where δx ∈ Rn and δu ∈ Rm are the respective deviations
of x, u from the linearization conditions, and Ac ∈ Rn×n,
Bc ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are the continuous-
time linear system matrices.

III. CENTRALIZED MPC FORMULATION

The MPC algorithm presented in this section solves a
linearly constrained quadratic program at each sampling
time (iteration) to determine the approximate optimal con-
trol input. The formulation is based on the work in [28],
extended to systems with nonlinear output equations and
constraints, linearized about non-equilibrium points. The
linearized model of the system in (13) is used to obtain ex-
pressions for the state and output as a function of the control
input over the next Np time steps. These are subsequently
substituted into a target cost function which is minimized to
obtain the optimal control over the prediction horizon. The
first set of generated inputs is then executed before the pro-
cess is repeated. Since the results of the optimization depend
on the linearization, the dynamics, output, and constraints are
relinearized and the cost is rebuilt at every iteration of the
MPC.
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A. Prediction Equations

For a given sampling interval Ts > 0, the discretized state
dynamics and output equation equivalent to the linear system
of (13) at time step k can be written as:

δxk+1 = f(x0,u0)Ts +Aδxk +Bδuk

yk = h(x0,u0)+Cδxk +Dδuk.
(14)

where δxk = xk− x0 is the difference between the state of
the system at k and the linearization state, and δuk = uk−u0
is the change in control input from the linearization input.

The state prediction after Np time steps is therefore

δxk+Np = ANpδxk +
Np

∑
j=1

A j−1[f(x0,u0)Ts +Bδuk+Np− j]

(15)

and the global prediction equations for the state and output
are

δXk = F+Gδxk +HδUk

Yk = L+ C̄δXk + D̄δUk,
(16)

where

δXk =


δxk

δxk+1
δxk+2

...
δxk+Np−1

 , δUk =


δuk

δuk+1
δuk+2

...
δuk+Np−1

 , G =


I
A
A2

...
ANp−1

 ,

Yk =


yk

yk+1
yk+2

...
yk+Np−1

 , F =


0

f(x0,u0)Ts

∑
2
j=1 A j−1f(x0,u0)Ts

...
∑

Np−1
j=1 A j−1f(x0,u0)Ts

 ,

L =


h(x0,u0)
h(x0,u0)
h(x0,u0)

...
h(x0,u0)

 , H =


0
B 0

AB B 0
...

...
. . . . . .

ANp−2B ANp−3B . . . B 0

 ,

C̄ = diag(C,C, . . . ,C), D̄ = diag(D,D, . . . ,D).

Here, the F and L matrices represent the main deviation
from the work of [28].

B. Cost Function

The cost function minimized by the MPC algorithm pe-
nalizes the cumulative difference between the output of the
system and the desired output yt

k with weighting matrix
Q ≥ 0 ∈ Rp×p, and the norm of the control input with
weighting matrix R > 0 ∈Rm×m. Q f ≥ 0 ∈Rp×p is the cost
weighting matrix on the terminal output. For the rest of this
paper, D is taken to be zero. The cost function is therefore

J(δXk,δUk) = [L+ C̄δXk−Yt
k]

T Q̄[L+ C̄δXk−Yt
k]

+ [h(x0,u0)+C(δxk+Np)−yt
k+Np

]T Q f

[h(x0,u0)+C(δxk+Np)−yt
k+Np

]

+ (U0 +δUk)
T R̄(U0 +δUk), (17)

where

Yt
k =

[
yt

k yt
k+1 yt

k+2 . . . yt
k+Np−1

]T
,

U0 =
[
u0 u0 u0 . . . u0

]T
,

Q̄ = diag(Q,Q, . . . ,Q), R̄ = diag(R,R, . . . ,R).

Equation (16) can then be substituted into (17) to obtain
a quadratic function in δUk which serves as the target for
the MPC.

C. Actuator Constraints

Consider the nonlinear input and state constraints

fu(Uk)≤ 0
gu(Uk) = 0,

(18)

fx(Xk)≤ 0
gx(Xk) = 0.

(19)

Expanding Xk in Equation (17) into X0 + δXk and sub-
stituting in (16) then allows the cost to be rewritten as a
quadratic function in δUk which serves as the target for the
MPC.

Expanding Xk in Equation (19) into X0 +δXk and substi-
tuting in (16) allows the state constraints to be reformulated
as a function of the control inputs, and the result can be
linearized about the vectors of repeated initial conditions
(X0,U0) to obtain the linear constraints

[
∇fu(U0)
∇f′x(U0)

]
δUk ≤

[
−fu(U0)
−fx(X0)

]
(20)

[
∇gu(U0)
∇g′x(U0)

]
δUk =

[
−gu(U0)
−gx(X0)

]
, (21)

where ∇fu(U0) is the gradient of fu evaluated at U0, f′x(Uk)=
fx(Xk), and

X0 =
[
x0 x0 x0 . . . x0

]T
.

IV. DISTRIBUTED MPC FORMULATION

The MPC problem described in Section III can be broken
down and solved approximately in a distributed manner
to decrease computational cost. Instead of solving for the
optimal control of the N UAVs centrally, each UAV can
compute its own optimal input based on an assumption of
the other UAVs’ behaviour.

In this section, u0,i, δuk,i, U0,i, and δUk,i will be used
to refer to the respective parts of u0, δuk, U0 and δUk that
correspond to the control inputs of UAV i. Additionally, δxk,i,
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yk,i, δXk,i, and Yk,i will denote the estimates of δxk, yk,
δXk, and Yk held by UAV i, and Bi will describe the matrix
consisting of the columns of B corresponding to control
inputs ui. Finally, the over-barred quantities, δ ūk,i and δ Ūk,i
will also be used to describe the control inputs generated by
the other UAVs, where

δ ūk,i =



δuk,1
...

δuk,i−1
δuk,i+1

...
δuk,N


, δ Ūk,i =


δ ūk,i

δ ūk+1,i
δ ūk+2,i

...
δ ūk+Np−1,i


A. Communication

The distributed MPC described in this paper assumes a
complete network graph, in which each UAV is capable of
transmitting the required information to every other UAV.
Each UAV is also assumed to have perfect information about
the behaviour of the payload.

At every MPC iteration at tk, each UAV receives the
control generated by the other UAVs at the previous time step
δ Ūk−1,i, and returns its own optimal control input sequence
δUk,i. This sharing of control input predictions instead of
state predictions distinguishes the algorithm presented from
the majority of DMPC formulations, allowing it to be used
for agents with coupled dynamics. State information is also
exchanged to maintain an accurate estimate of the state
across the different platforms, as shown in Figure 2.

Fig. 2. UAV Communication

Since the control input δ Ūk−1,i received by UAV i is
one time step behind the current state of the system, its
final control input is held constant to generate a new input
sequence δ Ū′k,i for use in the optimization, where

δ Ū′k,i =


δ ūk,i

δ ūk+1,i
...

δ ūk+Np−2,i
δ ūk+Np−2,i

 .
B. Input Optimization

The discretized state and output equations can be broken
down to isolate δuk,i

δxk+1,i = f(x0,u0)Ts +Aδxk,i +Biδuk,i + B̄iδ ūk,i

yk,i = h(x0,u0)+Cδxk,i,
(22)

and the prediction equations can be reformulated as

δxk+Np,i = ANpδxk,i +
Np

∑
j=1

A j−1[f(x0,u0)Ts

+Bδuk+Np− j,i + B̄δ ūk+Np− j,i], (23)

δXk,i = F+Gδxk +HiδUk,i + H̄iδ Ū′k,i
Yk,i = L+ C̄δxk,i,

(24)

where

B̄i =
[
B1 . . . Bi−1 Bi+1 . . . BN

]
,

Hi =


0
Bi 0

ABi Bi 0
...

...
. . . . . .

ANp−2Bi ANp−3Bi . . . Bi 0

 ,

H̄i =


0
B̄i 0

AB̄i B̄i 0
...

...
. . . . . .

ANp−2B̄i ANp−3B̄i . . . B̄i 0

 .
Each UAV then attempts to minimize the same cost

function as in the centralized case, but finds the optimal δUk,i
for a constant δ Ū′k−1,i. The cost is thus rewritten as

J(δXk,i,δUk,i) = [L+ C̄δXk,i−Yt
k]

T Q̄[L+ C̄δXk,i−Yt
k]

+ [h(x0,u0)+C(δxk+Np,i)−yt
k+Np

]T Q f

[h(x0,u0)+C(δxk+Np,i)−yt
k+Np

]

+ (U0,i +δUk,i)
T R̄(U0,i +δUk,i). (25)

The constraints of (20) and (21) are also reformulated in
terms of δUk,i to obtain[

∇fu,i(U0)
∇f′x,i(U0)

]
δUk,i ≤

[
−fu(U0)−∇f̄u,i(U0)δ Ū′k−1,i
−fx(X0)−∇f̄′x,i(U0)δ Ū′k−1,i

]
, (26)

[
∇gu,i(U0)
∇g′x,i(U0)

]
δUk,i =

[
−gu(U0)−∇ḡu,i(U0)δ Ū′k−1,i
−gx(X0)−∇ḡ′x,i(U0)δ Ū′k−1,i

]
, (27)

where ∇fu,i(U0) represents the columns of ∇fu(U0) corre-
sponding to control inputs δUk,i,

∇f̄u,i(U0) =



∇fu,1(U0)
...

∇fu,i−1(U0)
∇fu,i+1(U0)

...
∇fu,N(U0)



T

, (28)

and ∇f′x,i(U0), ∇f̄′x,i(U0), gu,i(U0), ∇ḡu,i(U0), ∇g′x,i(U0), and
∇ḡ′x,i(U0) are similarly defined.

11670



V. SIMULATION RESULTS

Results are presented for a MATLAB simulation of the
controllers, using the dynamics of the system defined in Sec-
tion II-B. The performance of the distributed MPC controller
is compared to that of the centralized controller under two
sets of conditions. First, the distributed controller is evaluated
at the same frequency as the centralized MPC. Then, the
frequency of the distributed MPC is scaled to require the
same computation time as the centralized controller.

A. System Definition and Maneuver

The system modeled to showcase the performance of the
distributed controller is that of four identical UAVs connected
to a single payload. UAVs begin in a square formation
centered at and above the payload, which lies 10 m above the
origin of the inertial reference frame. An Np of 20 is chosen
alongside a centralized Ts of 0.05 s based on experimentation.
The characteristics of the system used in simulation are
shown in Table I.

TABLE I
PARAMETERS OF UAVS AND PAYLOAD

m (kg) Jxx (kg.m2) Jyy (kg.m2) Jzz (kg.m2)

Payload 3 0.556 0.556 0.556
UAVs 1.5 0.029 0.029 0.055

ρρρ i (m) li (m)

UAV1 [0.25, 0.25, -0.125] 3.2
UAV2 [0.25, -0.25, -0.125] 3.2
UAV3 [-0.25, -0.25, -0.125] 3.2
UAV4 [-0.25, 0.25, -0.125] 3.2

The same maneuver is performed for the different con-
trollers, with the UAVs initially hovering before climbing 2.5
m, translating 2.5 m in the positive x direction, descending
2.5 m, and returning to hover. A time frame of 5 seconds is
allotted to each phase of the maneuver.

The cost function y is constructed to penalize the UAV
position deviation from the specified path as well as payload
attitude deviation from the target of zero yaw, pitch and roll.
A slight cost is also placed on nonzero UAV yaw rates so as
to ensure the strict convexity of the optimization problem. We
choose to specify targets for both the UAVs and payload to
demonstrate the algorithm’s ability to simultaneously handle
formation keeping and stabilization.

Maximum and minimum control input values are specified,
as well as control input rate limits. Collisions between UAVs
are prevented by adding a minimum position distance as a
state inequality constraint.

B. Centralized MPC Results

As can be seen from Figures 3 and 4, the centralized
controller successfully performs the maneuver prescribed.
Payload oscillations are limited to within amplitudes of 2.5
degrees and the cost never exceeds a maximum of 3 after
the formation stabilizes about the initial hover.

Fig. 3. Centralized Controller Performance

Fig. 4. Centralized Controller Trajectories

C. Distributed MPC Results

In the case of the distributed MPC controller, the results
shown in Figure 5 are first generated for the controller oper-
ating under the same conditions as the centralized one. The
trajectories for the UAVs and payload are nearly identical to
those shown in Figure 4 and are not included. As expected,
the controller performs slightly worse than the centralized
implementation with larger tracking error and oscillation
amplitudes, as well as a greater cost.

Fig. 5. Decentralized Controller Performance - Centralized Rate

The sampling time Ts is then scaled to achieve the same
run time for the centralized and distributed controllers. The
plots obtained are shown in Figure 6, with trajectories similar
to those shown in Figure 4. Increasing the rate significantly
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ameliorates the performance of the algorithm, improving cost
performance slightly compared to the centralized algorithm.

Fig. 6. Distributed Controller Performance - Scaled Rate

VI. CONCLUSIONS
A model for a system of quadrotor UAVs connected

to a payload was presented, and an MPC controller was
proposed based on the model’s linearization. The controller
was then generalized to run in a distributed manner, and
simulation results were presented for the various controllers.
Both the centralized and decentralized algorithms executed
the maneuver successfully. The decentralized controller per-
formed worse than the centralized one when run at the
same frequency, but outperformed it marginally when the
frequencies were scaled to require the same computation time
across both algorithms.
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