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Abstract— In this paper, nonlinear control techniques are ex-
ploited to balance an unmanned bicycle with enlarged stability
domain. We consider two cases. For the first case when the au-
tonomous bicycle is balanced by the flywheel, the steering angle
is set to zero, and the torque of the flywheel is used as the control
input. The controller is designed based on the Interconnection
and Damping Assignment Passivity Based Control (IDA-PBC)
method. For the second case when the bicycle is balanced by
the handlebar, the bicycle’s velocity is high, and the flywheel is
turned off. The angular velocity of the handlebar is used as the
control input and the balance controller is designed based on
feedback linearization. In these cases, the global stability of the
closed-loop unmanned bicycle is theoretically proved based on
Lyapunov theory. The experiments are conducted to validate
the efficacy of the proposed nonlinear balance controllers.

I. INTRODUCTION

Compared with other ground vehicles, bicycles are envi-
ronmentally friendly, cheap and versatile. Therefore, they are
one of the most popular transportation means over the last
two centuries. During the 20th century, most efforts were
concentrated on making them easier to ride. Moving into
the 21st century, the rapid development of computing and
sensing technologies makes autonomous riding a popular
and significant research topic. The huge market for bicycles
creates tremendous opportunities for unmanned bicycles.
Because there are only two contact points between the
bicycle and the support road, as an inverted pendulum,
bicycles are unstable systems. Therefore, balance control is
fundamentally important, yet challenging, for autonomous
riding of bicycles, and many researchers have made some
progresses on this topic.

The dynamic modeling and balance control of bicycles
are reviewed in [1]–[4]. As stated in [1], it is difficult to
balance a low speed bicycle via steering handlebar. In this
case, the steering angle is set to zero, and other auxiliary
balance equipment, such as flywheels, are required to balance
the autonomous bicycle. However, when the autonomous
bicycle is moving forward at a sufficiently high speed, the
bicycle can be balanced by steering the handlebar [5], [6].
In this case, the steering angular velocity is the control
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Fig. 1. The unmanned bicycle.

input. Therefore, the balance problem can be divided into
two cases.

When the autonomous bicycle is balanced by other aux-
iliary balance equipment, in [7]–[12], gyroscopic balance
is applied. Yetkin et al. [7] design a controller to regulate
the gimbal angle based on sliding mode control. In [8], the
dynamic model is linearized and discretized. Then a model
predictive controller is designed to balance the bicycle. In
[9], based on the linear dynamic model of bicycles with
a gyroscope, a mixed H2/H∞ controller is designed, and
the particle swarm optimization algorithm is applied to
determine the coefficients in the controller. In [10], the root
locus method is applied to design a balance controller. In
[11], the dynamic model is also linearized and the pole-
zero placement method is applied to design the balance
controller. In [12], a nonlinear controller is also designed.
However, it also cannot guarantee the global stability of the
closed-loop autonomous bicycle. Among the aforementioned
references, all the designed controllers can only give local
stability results. Besides, two flywheels, spinning in opposite
direction, are needed to cancel the reactive torques on the
yaw dynamics of the bicycle [8]. For each flywheel, two
actuators are required to regulate the angular velocities
around two orthogonal axes. These properties would increase
the complexity of the balance equipment. In this paper, to
overcome the first aforementioned problem, we propose a
nonlinear controller based on IDA-PBC method, which is
detailed in [13] and [14]. In order to simplify the auxiliary
balance equipment, only one flywheel is used, and the
reactive torque, the direction of which is opposite to the
active torque of the flywheel, is applied to balance the
bicycle.
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Fig. 2. Sketch of the bicycle.

When the autonomous bicycle is balanced by steering
the handlebar, controllers are designed in [15]–[19]. In
[15], based on a linearized bicycle model, the controller
is designed via gain-scheduling techniques. Defoort et al.
[16] apply second-order sliding mode control and disturbance
observer to balance the bicycle. In [17], a PD controller is
designed to track a straight line. In [18], a fuzzy controller
is designed based on a linearized bicycle model. In [19], a
linear controller combined with disturbance rejection term
is designed. Among the aforementioned papers, most of
them employ linear controllers, which can only give local
results for stability and performance analysis. Although [16]
designs a nonlinear controller, the effect of acceleration
on the balance of the bicycle is not considered. In this
paper, to address the aforementioned limitations, based on
both bicycle’s roll and acceleration dynamics, a nonlinear
controller is designed via feedback linearization, which can
guarantee the global stability. Here the global stability means
that the bicycle can be balanced when the initial roll angle
is within the range from −π/2 to π/2 radian.

The structure of the following contents is as follows. In
Section II, the problem is formulated and the dynamic model
of the bicycle is derived. When the autonomous bicycle is
balanced by a flywheel, a nonlinear controller is designed
based on IDA-PBC in Section III. The global stability of the
closed-loop autonomous bicycle is also proved theoretically.
In Section IV, when the autonomous bicycle is balanced by
steering the handlebar, a nonlinear controller is designed,
which can also guarantee the global stability. In Section V,
experiments are conducted to show the performance of the
proposed controllers. Some concluding remarks are made in
Section VI.

II. PROBLEM FORMULATION AND DYNAMIC
MODELING

As shown in Fig. 1, component 1 is a motor which can
regulate the angular velocity of the handlebar. Component 2
is a flywheel, the torque of which can be controlled by motor
3. Component 4 is a motor which can control the angular
velocity or torque of the rear wheel. In Fig. 2, O− XY Z

denotes the base frame. P1− xyz is the frame, where P1 is
the contact point between the rear wheel and the ground,
P1x is the direction of the bicycle, and P1z is vertical and
upward. θ denotes the roll angle, φ denotes the rotation
angle of the flywheel, δ denotes the steering angle and δ f is
the effective steering angle. Vx and Vy are longitudinal and
lateral velocities respectively. V is the forward velocity of
the bicycle. Let m1 and m2 denote the mass of the bicycle
and the flywheel separately, and m = m1 + m2. I1 and I2
are moment of inertia of the bicycle and the flywheel. g
denotes the gravity acceleration. Let uδ = δ̇ denote angular
velocity of the steering angle, uφ denote the torque applied to
the flywheel, and uv denote the propulsive force applied to
the bicycle. Given the dynamic parameters of the bicycle,
the nonlinear balance controllers will be designed in the
following cases.

Case 1 (Balancing by the Flywheel): When δ = 0, design
a nonlinear controller to balance the roll angle of the bicycle
to zero via regulating the torque applied to the flywheel uφ .

Case 2 (Balancing by the Handlebar): When V > 0, design
a nonlinear controller to balance the roll angle of the bicycle
to θeq and regulate the velocity V to a desired value Vd by
means of the angular velocity of the steering angle uδ and
the propulsive force uv.

A. Dynamic Modeling

When δ is constant, the path of the bicycle is a circle. Let
σ denote the curvature of this circle, which can be expressed
as

σ = tan(δ f )/L. (1)

The relationship between δ and δ f is

tan(δ f )cos(θ) = tan(δ )sin(α). (2)

Combining (1) and (2), one can obtain the following expres-
sion

σ =
tan(δ )sin(α)

cos(θ)L
. (3)

Define uσ as follows

uσ = σ̇

=
sin(α)

L

(
sec2(δ )uδ cos(θ)+ tan(δ )sin(θ)θ̇

cos2(θ)

)
.

(4)

Then we establish the dynamic model of the bicycle by
means of Euler-Lagrange equation

L = T −U, (5a)
d
dt
(

∂L

∂ q̇i
)− ∂L

∂qi
= τi. (5b)

In (5), T denotes the kinetic energy, U denotes the poten-
tial energy and τi denotes the external forces, which are
described below.

The motion of a rigid body can be split into two parts:
translational and rotational. For translational motion , the ve-
locities of the bicycle’s centroid and the flywheel’s centroid
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are

Vxi =V, (6a)

Vyi =−V σb−Liθ̇ cos(θ), (6b)

Vzi =−Liθ̇ sin(θ) (i = 1,2). (6c)

The rotational velocities of the bicycle and the flywheel are

ω1 = θ̇ , (7a)

ω2 = θ̇ + φ̇ . (7b)

Therefore, with (6) and (7), the kinetic energy can be
expressed as

T =
1
2

m1(V 2
x1 +V 2

y1 +V 2
z1)+

1
2

m2(V 2
x2 +V 2

y2 +V 2
z2)

+
1
2

I1ω
2
1 +

1
2

I2ω
2
2 .

(8)

Further, the potential energy can be expressed as

U = (m1L1 +m2L2)g(cos(θ)+1), (9)

and the external force τ can be expressed as

τθ =−(m1L1 +m2L2)cos(θ)σV 2 +
mgb∆sin(α)

L
cos(θ)δ f ,

(10a)
τφ = uφ , (10b)
τv = uv, (10c)

where the first term of (10a) denotes the centrifugal force
and the last term of (10a) denotes the torque produced by
the effect of trail ∆ [20].

Define the last term in (10a) as τ∆(θ ,δ f ). Substituting
(8), (9) and (10) into (5), one can get the following dynamic
model

(m1L2
1 +m2L2

2 + I1 + I2)θ̈ + I2φ̈ +(m1L1 +m2L2)bσ cos(θ)V̇

= (m1L1 +m2L2)gsin(θ)− (m1L1 +m2L2)cos(θ)σV 2

+ τ∆(θ ,δ f )− (m1L1 +m2L2)bV cos(θ)uσ ,
(11a)

I2θ̈ + I2φ̈ = uφ , (11b)

(m1L1 +m2L2)bσ cos(θ)θ̈ +(m+mb2
σ

2)V̇ =

− (2mb2V σ +(m1L1 +m2L2)bcos(θ)θ̇)uσ

+(m1L1 +m2L2)bσ sin(θ)θ̇ 2 +uv.

(11c)

In the next two sections, the nonlinear balance controllers
are designed in the following two cases: balancing by the
flywheel and balancing by the handlebar.

III. BALANCING BY THE FLYWHEEL

When the bicycle is balanced by the flywheel, the steering
angle δ is set to zero, which means σ = 0. In this case, the
dynamic model (11) can be simplified into the following
equation

(m1L2
1 +m2L2

2 + I1 + I2)θ̈ + I2φ̈ = (m1L1 +m2L2)gsin(θ), (12a)

I2θ̈ + I2φ̈ = uφ . (12b)

Define Iθ = m1L2
1 +m2L2

2 + I1, Iφ = I2, λ = (m1L1 +m2L2)g,
M = diag(Iθ , Iφ ), q = [θ ,θ +φ ]T, G = [−1,1]T and p = Mq̇.
Then the Hamiltonian form of (12) is

H =
1
2

pTM−1 p+λ (cos(q1)+1), (13a)[
q̇
ṗ

]
=

[
0 I2×2
−I2×2 0

][ ∂H
∂q
∂H
∂ p

]
+

[
02×1

G

]
uφ . (13b)

In (13b), H is the total mechanical energy of the bicycle with
the flywheel. I2×2 denotes the identity matrix of dimension
2.

We will employ the IDA-PBC control method of [13].
The IDA-PBC controller design method can be partitioned
into two parts: energy shaping and damping injection [13],
which means uφ = uφ ,s+uφ ,i. For energy shaping, the goal is
to design uφ ,s, such that the Hamiltonian form of the closed-
loop system is as follows

Hd =
1
2

pTM−1
d p+Ud(q), (14a)[

q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 0

][ ∂Hd
∂q

∂Hd
∂ p

]
+

[
02×1

G

]
uφ ,i. (14b)

In (14b), Md =

[
α1 α2
α2 α3

]
,α1 > 0,α1α3−α2

2 > 0. Comparing

(13) with (14), one can find that the following conditions
hold

Guφ ,s =
∂H
∂q
−MdM−1 ∂Ud(q)

∂q
, (15a)

G⊥(
∂H
∂q
−MdM−1 ∂Ud(q)

∂q
) = 0. (15b)

In (15b), G⊥ is a vector that is orthogonal to G, i.e. G⊥G= 0.
From (15b), one can get the following partial differential
equation equation for Ud(q)

α1 +α2

Iθ

∂Ud(q)
∂q1

+
α2 +α3

Iφ

∂Ud(q)
∂q2

=−λ sin(q1). (16)

The solution to (16) is

Ud(q) =
λ Iθ

α1 +α2
(cos(q1)−1). (17)

In (17), in order to guarantee that q1 = 0 is the minimum of
Ud(q), α1 +α2 < 0. According to (15a) and (17), uφ ,s can
be expressed as

uφ ,s =
λα2

(α1 +α2)
sin(q1). (18)

For damping injection, the aim is to design uφ ,i, such that
Ḣd ≤ 0. According to (14), after designing uφ ,s as (18) the
expression of Ḣd is

Ḣd =

(
∂Hd

∂ p

)T

Guφ ,i. (19)

Therefore, uφ ,i is designed as

uφ ,i =−kvGT
(

∂Hd

∂ p

)
=−kvGTM−1

d p (20)
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Theorem 1: For the system (12) with the controller (18)
and (20), we have the following convergence properties

lim
t→+∞

θ(t) = 0, lim
t→+∞

φ̇(t) = 0. (21)
Proof: Let Hd in (14) denote the candidate Lyapunov

function. According to (19) and (20), Ḣd can be expressed
as

Ḣd =−kv
(
GTM−1

d p
)2 ≤ 0. (22)

When Ḣd = 0, q1 = 0, p1 = 0 and p2 = 0 can be inferred.
According to LaSalle’s invariance principle [21], (21) can
be proved.

IV. BALANCING BY THE HANDLEBAR

When the autonomous bicycle is balanced by the handle-
bar, V > 0 and the flywheel is turned off. Ignore the effect
of trail τ∆(θ ,δ f ). Define the following matrices and vectors

Ml =

[
(m1L2

1 +m2L2
2 + I1 + I2) (m1L1 +m2L2)bσ cos(θ)

(m1L1 +m2L2)bσ cos(θ) (m+mb2σ2)

]
,

G =

[
(m1L1 +m2L2)gsin(θ)− (m1L1 +m2L2)cos(θ)σV 2

(m1L1 +m2L2)bσ sin(θ)θ̇ 2

]
,

B =

[
−(m1L1 +m2L2)bV cos(θ) 0

−(2mb2V σ +(m1L1 +m2L2)bcos(θ)θ̇) 1

]
.

In the case, according to (11), the dynamic model can be
simplified as

Ml

[
θ̈

V̇

]
= G+B

[
uσ

uv

]
. (24)

It is obvious that when V > 0, the matrix B is invertible.
In order to control the roll angle θ and the velocity V to
the desired value θd and Vd , where Vd is positive and θd ∈
(−π/2,π/2), the following controller is designed[

uσ

uv

]
= B−1

(
−G+Ml

[
v1
v2

])
, (25a)

v1 =−kd1θ̇ − kp(θ −θd), (25b)
v2 =−kd2(V −Vd). (25c)

In (25), kp, kd1, and kd2 are positive. Combining (24) and
(25), the dynamics of the closed-loop system is

θ̈ =−kd1θ̇ − kp(θ −θd), (26a)
V̇ =−kd2(V −Vd) (26b)

Theorem 2: For the system (24), with the controller (25),
we have the following convergence properties

lim
t→+∞

V (t) =Vd , lim
t→+∞

θ(t) = θd ,

lim
t→+∞

uσ (t) = 0, lim
t→+∞

uv(t) = 0.
(27)

Proof: Define the candidate Lyapunov function as

Ly =
kp

2
(θ −θd)

2 +
1
2

θ̇
2 +

1
2
(V −Vd)

2. (28)

According to (26), the time derivative of (28) is

L̇y =−kd1θ̇
2− kd2(V −Vd)

2 ≤ 0. (29)

Feedforward 

Controller

Feedback 

Controller
Bicycle

, , ,V  
eq d

, vu u

,  , , ,V  

Fig. 3. Control scheme when the bicycle is balanced by the handlebar.

When L̇y = 0, V = Vd , θ = θd , σ̇ = 0 and uv = 0 can
be inferred. According to the generalization of LaSalle’s
invariance principle [22], the theorem can be proved.
From (4) and (25), we can get the expression of uδ as

uδ =
cos2(δ )

cos(θ)

(
Lcos2(θ)

sin(α)
uσ − tan(δ )sin(θ)θ̇

)
. (30)

Remark 1: In some cases, if the effect of τ∆(θ ,δ f ) cannot
be ignored, the feedforward controller can be applied to
eliminate the steady-state error, which can be expressed as

θd =
−τ∆(θeq,δ f )+ kp(m1L2

1 +m2L2
2 + I1 + I2)θeq

kp(m1L2
1 +m2L2

2 + I1 + I2)
. (31)

The control scheme is described in Fig.3.

V. EXPERIMENTS

In this section, several experiments are conducted to show
the performance of the proposed nonlinear controllers when
the autonomous bicycle is balanced by the flywheel and by
the handlebar respectively. For clarity, the controller designed
in Section III is named FC and the controller designed in
Section IV is named HC.

As shown in Fig.1, the handlebar is driven by a steering
motor, and the steering angular velocity can be regulated.
The flywheel is driven by a servo motor, the torque of which
can be regulated. The rear wheel is also driven by a servo
motor, both the velocity and the torque of which can be
regulated. The roll angle of the bicycle is measured by the
installed IMU. The embedded chip STM32H7 is applied
as a calculator. The reference signal is sent by a infrared
remote controller. In order to move along a clockwise circle,
θeq should be positive, and vice versa. Parameters of the
bicycle are listed as follows: m1 = 11kg,m2 = 3.5kg, I1 =
0.12418kg · m2, I2 = 0.007882kg · m2,L1 = 0.2316m,L2 =
0.15m,L = 0.7485m,b = 0.3642m,α = 75◦,∆ = 4.6cm.

A. Experiments for Balancing by the Flywheel

In order to validate the efficacy of the proposed FC, the
following two experiments are conducted. Firstly, when the
autonomous bicycle keeps stationary, the FC is applied. Fig.
4, (a) and (b) show that two opposite external disturbances
are exerted to the bicycle. The results of this experiment
are shown in Fig. 5. From Fig. 5 (b), one can find two
disturbances at 20s and 40s. In Fig. 5 (d), in order to
balance the bicycle, two torques are exerted to the flywheel
simultaneously. Then the reactive torques are produced to
balance the bicycle. From Fig. 5 (e), one can find that the
angular velocity of the flywheel eventually converges to zero.
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(a) (b)

Fig. 4. Experiment for the stationary bicycle. (a) External disturbance to-
wards one direction. (b) External disturbance towards the opposite direction.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The results of the experiment for the stationary scenario

Secondly, the autonomous bicycle accelerates and brakes
along a straight line, and the FC is applied. The velocity
of the rear wheel is controlled by the velocity command of
the servo motor. As shown in Fig. 6, the bicycle accelerates
and brakes from the initial position to the final position.
From Fig. 7 (b) and (f), when the bicycle is accelerating
and braking, there are some disturbances moving the bicycle
away from the equilibrium point. From Fig. 7 (d), when the
bicycle is away from the equilibrium point, the torque of the
flywheel changes correspondingly, balancing the bicycle to
the equilibrium point. From Fig. 7 (d), one can find that the
angular speed of the flywheel converges to zero finally.

From the aforementioned two experiments, one can con-
clude that when there are some external disturbances or the
bicycle is accelerating and braking, the proposed nonlinear
controller can balance the autonomous bicycle.

B. Experiments for Balancing by the Handlebar

For the FC, the desired roll angle can only be zero. For
the HC, it can balance the bicycle to a non-zero desired
roll angle, but the velocity of the bicycle must satisfy that
V >Vc, where Vc is a positive velocity threshold. The higher

(a)

(b)

Fig. 6. Experiment for accelerating and braking. (a) The initial position
(b) The final position.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. The results of the experiment for accelerating and braking.

the forward velocity, the more effective the proposed HC.
Therefore, if the desired roll angle θeq = 0, the FC is applied.
If θeq 6= 0 and V >Vc, the HC is applied. According to this
control logic, we design the following accelerating-circle-
braking experiment to test the performance of the proposed
HC.

Firstly, the bicycle accelerates from standstill, and the
FC is applied. Then a positive desired roll angle is sent to
the bicycle, during which the HC is applied. Finally, the
desired roll angle is reset to zero, the bicycle brakes and
the FC is applied. Fig. 8 shows different moments when the
bicycle is accelerating, moving along a circle and braking.
The results of this experiment are shown in Fig. 9. As shown
in 9 (a), (b) and (c), when a positive desired roll angle is
sent to the bicycle, with the HC, the steering angle turns
to the positive direction, and the roll angle is balanced to
the desired position. As shown in Fig. 9 (d) and (e), during
this time, the flywheel is turned off. Therefore, it shows that
the autonomous bicycle can be balanced by the proposed
nonlinear controller via steering the handlebar.
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(a) (b)

(c) (d)

Fig. 8. Experiment for the accelerating-circle-braking. (a) Accelerating (b)
Moving along a circle. (c) Moving along a circle. (d) Braking

(a) (b)

(c) (d)

(e) (f)

Fig. 9. The results of the experiment for accelerating-circle-braking.

VI. CONCLUSIONS
In this paper, two nonlinear controllers are presented

to balance an unmanned bicycle with non-local stability
guarantee. When the steering angle of the bicycle is zero,
the flywheel is applied and the corresponding nonlinear
controller is designed to balance the bicycle based on IDA-
PBC. When the bicycle is moving forward, the nonlinear
controller is designed based on the feedback linearization.
The stability of the closed-loop bicycle system is also
guaranteed by Lyapunov’s direct method. The efficacy of
the proposed nonlinear controllers has been validated by
experiments. Our future work will be directed at generalizing
the presented results to formation control of a group of
unmanned bicycles using techniques in distributed nonlinear
control [23]. Besides, the continuous-time robust dynamic
programming [24] can be applied to handle the uncertain
disturbances in the dynamics of the bicycle.
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