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Abstract— In this paper, we propose a novel approach to
solve the 3D non-rigid registration problem from RGB images
using Convolutional Neural Networks (CNNs). Our objective
is to find a deformation field (typically used for transferring
knowledge between instances, e.g., grasping skills) that warps
a given 3D canonical model into a novel instance observed by
a single-view RGB image. This is done by training a CNN that
infers a deformation field for the visible parts of the canonical
model and by employing a learned shape (latent) space for
inferring the deformations of the occluded parts. As result of
the registration, the observed model is reconstructed. Because
our method does not need depth information, it can register
objects that are typically hard to perceive with RGB-D sensors,
e.g. with transparent or shiny surfaces. Even without depth
data, our approach outperforms the Coherent Point Drift (CPD)
registration method for the evaluated object categories.

I. INTRODUCTION

Registering 3D objects in a non-rigid way is essential
for many real world applications, including robot manip-
ulation [1], [2], human body analysis [3], [4] and grasp
planning [5], [6]. This registration plays a key role for trans-
ferring domain knowledge, such as the transfer of control
poses for approaching and grasping objects. This knowledge
transfer is inspired by the observation that objects with
similar shape and usage can be manipulated in an analogous
manner—adapting knowledge from previous successful ex-
periences to novel observed instances. Following this idea, in
this work, we register non-rigidly a canonical model towards
novel instances of the same object category.

The 3D non-rigid registration problem is often addressed
based on RGB-D images or 3D scans [7]–[9]. However,
several objects cannot be measured well by depth sensors,
e.g., transparent drinking bottles. By registering objects from
RGB images, we attempt to address this issue.

The registration from a single RGB image is a challenging
problem for several reasons. First, 3D deformations need
to be calculated without depth information, i.e., a mapping
between 2D colored pixels and 3D deformations has to
be established. Second, from a single-view RGB image
the object is not fully observable and occluded parts have
to be reconstructed. Third, this reconstruction problem is
ambiguous; several plausible shapes can explain a single
observation.
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Fig. 1. A canonical model of a category is deformed based on a single-
view RGB image. The model is reconstructed without any depth information
from partially observing the object. Models are shown at the same scale to
show the large deformation the canonical model has undergone.

In this paper, we propose a novel approach that is able to
infer 3D non-rigid deformations from single-view RGB-only
images of objects belonging to the same category1 (Fig. 1).
This is done by leveraging on realistic 3D object models. A
deep Convolutional Neural Network (CNN) is trained to infer
deformations in the x, y and z axes, given the observed image
of an object and a rendered image of the canonical model.
The training images are generated by rendering 3D realistic
models and calculating ground truth deformations using the
Coherent Point Drift (CPD) method. By using a learned
shape space that describes the typical geometrical variability
of the object category, our approach is able to reconstruct the
observed instances and provides deformations even for the
non-observable parts. Thus, the reconstructed object exhibits
a category-like shape. The resulting deformation field allows
to transfer category-level knowledge, e.g. grasping skills, to
novel instances without further training.

The core contribution of this paper is to introduce a novel
approach that registers non-rigidly a 3D model towards an
object observed by a single RGB image. In addition, we
develop a method to generate a dataset suitable for non-
rigid registration tasks. This method is able to synthetically
augment the number of instances of a category to overcome
the scarcity of high-quality 3D textured models.

II. RELATED WORK

A. Rendering for Deep Learning

The use of synthetic data to generate training samples has
been widely adopted in the deep learning community for
object detection, semantic segmentation and pose estimation
tasks [10]–[13]. One of the first successful attempts was
proposed by Tobin et al. [14], who trained an object detection

1 Video: www.ais.uni-bonn.de/videos/IROS 2020 Rodriguez
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network using only synthetic data and were able to transfer
the network to real-world applications. More recently, Trem-
blay et al. [15] achieved state-of-the-art performance on 6-
DoF pose estimation by using only synthetic data. Our work
is partially inspired by pose refinement approaches [16],
that demonstrated that the rigid registration problem can be
solved by the use of rendered images.

B. Non-Rigid Registration

Most of the approaches that address the 3D non-rigid
registration problem assume the availability of full volumet-
ric data. These approaches mainly differ by the constraints
imposed on how the points should move to match the obser-
vation including: thin splines [4], [7], conformal maps [17],
[18], and coherent motion [19]. However, these approaches
do not perform well with partially observed objects. In
our previous work [20], we incorporated a shape space of
similar instances to address this issue. Plausible geometries
are inferred and a deformation field is provided for the
non-observable parts, but depth information is required. In
contrast, the method presented in this paper registers a canon-
ical model to novel object instances in a non-rigid manner
without depth information—only a single-view RGB image
of the observed object is required. This is possible thanks to
category-level prior knowledge of the objects represented in
a CNN.

C. Shape Reconstruction

For 3D shape completion, several approaches have been
proposed, including radial basis functions [21], surface prim-
itives [22], and Laplacian mesh optimization [23]. Data-
driven approaches have been recently presented for 3D
completion tasks. Choy et al. [24] learn a mapping from
object images to 3D shapes from a large collection of
synthetic data by means of a Recurrent Neural Network
(RNN). In [25], a 3D model is completed given a single
depth image by transferring symmetries and surfaces from an
exemplary database. By integrating deep generative models
with adversarially learned shape priors, Wu et al. [26] are
able to complete and reconstruct 3D shapes from single view
images.

Similar to our work, the approaches proposed by Wu et
al. [26] and Choy et al. [24] also attempt to reconstruct a
3D model based on a RGB image. While both approaches
achieve good results when estimating shapes, they do not
provide any estimate of the deformations between instances
or any kind of registration. Our approach, on the other hand,
reconstructs the observed object and provides deformation
fields enabling knowledge transfer to novel instances directly
without the need for costly additional registrations posterior
to the reconstruction.

III. BACKGROUND

In our approach, we infer a deformation field that warps
a canonical model into an observed instance from a single-
view RGB image. We train a deep CNN in a supervised
manner to infer a deformation field from the observed input

image. This field is represented as three output feature maps
representing the deformations in the x, y and z axes of the
object. The target data for training is calculated using the
Coherent Point Drift [19] which is briefly introduced below.
To infer the deformation field of the non-observable parts,
a shape (latent) space of the object category is constructed
(Sec. III-B) [9], [20].

A. Coherent Point Drift

For two sets of D-dimensional points, X = (x1, ...,xN )T

and Y = (y1, ...,yM )T , CPD outputs a deformation field
mapping Y towards X. For this purpose, the points of Y
are considered as centroids of a Gaussian Mixture Model
(GMM) and the points of X are considered as samples drawn
from these GMMs. Equal isotropic covariances σ2 and equal
membership probabilities P (m) = 1

M are used for all GMM
components. CPD outputs a deformed point set T as result
of the maximization of the probability of the points from X
being drawn from the GMMs, by moving the centroids Y
in a coherent manner [27]. This optimization is formulated
as an Expectation Maximization (EM) problem.

For non-rigid registration, the deformed point set T is
described by the initial position of the points Y and a
displacement function v:

T (Y, v) = Y + v(Y). (1)

For any D-dimensional set of points Z ∈ RN×D, the
displacement function v is defined as:

v(Z) = G(Y,Z)W, (2)

where W ∈ RN×D is a weight matrix, which can be inter-
preted as a set of D-dimensional deformation vectors. This
matrix W is estimated in the M-step of the EM algorithm.
The coherent movement is controlled by the Gaussian kernel
matrix G(Y,Z) [19], defined element-wise as:

gij = G(yi, zj) = exp(− 1

2β2 ‖yi − zi‖
2
), (3)

where β is a parameter that controls the interaction between
points. For convenience in the notation, G(Y,Y) is denoted
as G. For an in-depth derivation of CPD, please refer to [19].

B. Shape Space

For a known object category, we construct a shape space
that describes typical geometrical variations of the category.
An object category is defined as a set of 3D object models
with similar extrinsic geometry. In order to ensure con-
sistency between the deformations, all the 3D models are
aligned to a common coordinate frame. Initially, a canonical
model C is chosen and each instance i is deformed against
this canonical model following:

Ti(C,Wi) = C + G(C,C)Wi. (4)

The shape space is defined as a low-dimensional space
spanned by the principal components of all deformation
fields Wi. This is possible based on the observation that the
G matrix only depends on the point set that is deformed,
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Fig. 2. A canonical model is rendered in the same pose as the observed instance. Then, a deep CNN infers the x, y, and z deformation components
for each pixel of the rendered image. The deformations of the occluded parts are inferred by a shape space of the object category. Thanks to the shape
space, the object is reconstructed (morphed object), which is shown from a non-observable viewpoint. For comparison, the ground truth object and the
unmorphed canonical model are shown at the rightmost.

i.e., the canonical model. In other words, the uniqueness of
an object deformation inside a category is fully captured by
its Wi matrix.

Note that the dimensionality of all Wi matrices is the
same. This allows us to define feature vectors wi ∈ R3n,
and perform the Principal Component Analysis Expectation
Maximization (PCA-EM) to find the latent space of the
category. As result, a matrix L ∈ Rl×3n containing l
principle components is determined. Any point x ∈ Rl in
the latent space can now be mapped into a feature vector
ŵ ∈ R3n by:

ŵ = Lx + w̄, (5)

where w̄ is the mean of all feature vectors. In this manner, the
canonical matrix C together with the principle components
L represent the deformation model for an object category.

IV. METHOD

In this section, we describe our approach that deforms
a canonical 3D model of an object category into a novel
instance observed by a single RGB image (Fig. 2). Our
approach is composed of three main components: a ren-
derer [10], a deep CNN, and a shape space. The renderer
is in charge of generating 2D images of realistic 3D models
which will be used to train the CNN. Given the images of
the canonical and observed models, the CNN infers a three-
channel image that represents deformation vectors for each
of the visible pixels of the image of the canonical model. The
final deformation field is estimated by searching in the shape
space for a feature vector whose deformation field matches
best the deformations inferred by the network. By means of
the shape space, an estimation of the deformation field of
the non-observable parts is inferred.

A. Deformation Representation

For a given object category, e.g., drill, a canonical model is
chosen. This model consists of a textured three-dimensional
mesh. Model point clouds can be generated by ray-casting
from several viewpoints on a tessellated sphere followed by
down-sampling, e.g., by a voxel grid filter. The matrix of the
point cloud of the canonical model is referred as C ∈ Rn×3,

while the mesh point matrix is denoted Cm ∈ Rm×3. The
point cloud matrix is used to define a deformation on the
mesh. The matrix of the deformed mesh C′m ∈ Rm×3 is
defined as:

C′m = Cm + G(Cm,C)W(C,O), (6)

where W(C,O) ∈ Rn×3 describes the offsets that should
be applied to the points of the canonical point cloud C to
deform it towards the point cloud of the observed instance
represented by O ∈ Rk×3. The offsets W(C,O) are
multiplied by G(Cm,C) ∈ Rm×n to map them into the
offsets of the mesh vertices. G(Cm,C) is calculated as
described in Eq. (3) and ensures coherent movement of the
vertices. Note that W(C,O) is the only part of Eq. (6) that
depends on the observed instance.

To generate target images for training the CNN, we define
the offset matrix δ(C,O) ∈ Rn×3:

δ(C,O) = G(C,C)W(C,O). (7)

and represent it as a three channel image, where each channel
describes the deformations in one of the coordinate axis: x,
y and z. The mapping from the 3D offset matrix δ to the
image space is described in Sec. V.

B. Zoom Operation

Inspired by [16], the amount of object details is increased
by zooming in the observed and rendered images before feed-
ing them into the network. Given the pose of the observed
object, the canonical model is rendered placing the object
at the same place as the observed one with respect to the
camera. Then, a bounding box that contains both objects and
has the same aspect ratio as the input images of the network
is defined. Following this bounding box, both images are
cropped and upsampled bilinearly to the fixed size of the
network input (256×192 in our experiments). An example
of the zoom operation is shown in Figure 3.

C. Convolutional Neural Network

The backbone of our network is the FlowNet2 archi-
tecture [28] because we assume a connection between the
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Fig. 3. Zoom operation. The canonical model is rendered at the same pose
as the observed one. Both images are cropped according to a bounding box
that contains both objects and has the aspect ratio of the network input.
Finally, the cropped images are bilinear upsampled.

optical flow among two objects and the point offsets that
should be applied for a matching deformation. We modify
FlowNet2 such that it receives two RGB and two mask
images as input, and it returns a three channel image repre-
senting the deformation for each pixel. The mask image of
the canonical model is directly given by the renderer and
serves as a regularizer to distinguish the foreground and
background pixels while the mask of the observed image
is a bounding box containing the object. The mask images
can be interpreted as a fourth channel additional to the RGB
channels of the two input images. Thus, we use the terms
observed and canonical images in the remaining sections of
this paper to refer to the network input.

D. Deformation Inference of Occluded Parts

Given a single RGB image, an object cannot be fully
observed. Thus, we first find deformations on the visible
object pixels and use these deformations to infer the missing
ones of the occluded parts. Estimating deformations on the
observable parts is handled by the network (Sec.IV-C). For
inferring deformations of the occluded parts, a shape space
is constructed as explained in Sec. III-B. Then, we search for
a feature vector ŵ in the shape (latent) space that matches
best the deformations of the observable points.

The CNN outputs a three channel image containing a
deformation vector per pixel. Now, a mapping from the
image space to the vector space of C needs to be established.
Thus, we find the closest point on C to the position of each
pixel in the position tensor given by the renderer. In general,
the number of pixels is larger than the number of points of
C, and multiple pixels are assigned to the same point of
C. Consequently, the deformation of the closest points of
C is defined as the mean of the assigned deformations. This
results in a matrix that describes how the closest points of the
canonical model have to be moved to match the shape of the
visible parts of the observed object. For the occluded points,
we assume an initial offset of zero and build a sparse matrix
δvis ∈ Rn×3 with the deformation of the closest points.

Obtaining a deformation vector for all points of C can be
formulated as the task of searching for a feature vector x in
the shape space that matches the inferred deformations of the
visible points. This feature vector x defines a deformation
matrix:

δ̂ = G̃(C,C)(Lx + w̄), (8)

Search in 
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Fig. 4. The network output defines a deformation field for a 3D point
set generated by a normalized closest point interpolation. This point set
represents the visible points of the canonical model. Deformation vectors
for all points of C are inferred by means of the shape space of the category.

where G̃(C,C) ∈ R3n×3n is a rearranged form of
G(C,C) ∈ Rn×n with additional zeros to match the
dimensionality of Lx+ w̄ ∈ R3n×1. Our objective is then to
minimize the loss on the visible points between δvis and δ̂:

L(δvis, δ̂) =
∑

v∈ivis

∥∥∥δvis(v, .)− δ̂(v, .)
∥∥∥2 , (9)

where ivis describes the set of indices belonging to visible
points and δ(v, .) describes the v-th row of matrix δ. This
minimization problem can be expressed as a least squares
problem. Let nv denote the number of visible points and
let define δvis ∈ R3nv as δvis after removing every row
containing zeros (occluded points) and rearranging it as a row
vector. We introduce a matrix D ∈ Rnv×n which removes
exactly the same rows from δ̂ as the ones removed from
δvis. In this manner, minimizing Eq. (9) results in:

L(δvis,x) =
∥∥∥δvis −D(G̃(C,C)(Lx + w̄))

∥∥∥2 . (10)

Defining:
A := (DG̃(C,C)L), (11)

and
B := (δvis −DG̃(C,C)w̄), (12)

the feature vector x∗ that represents the deformation of all
points in C is found by:

x∗ = arg min
x

L(δvis,x) = arg min
x

‖Ax−B‖2. (13)

Eq. (13) can now be solved by an off-the-shelf linear solver.
By using Eq. (5) with x∗ and the corresponding rearrange-
ment, the final deformation field Ŵ∗ is obtained. Moreover,
by using Eq. (6), the observed model is reconstructed. A
schematic overview of the deformation inference of occluded
parts can be seen in Figure 4.

Instance 1 Instance 2Deformed 
instance 1

Deformed 
instance 2

Interpolated models

Fig. 5. Registration of two observed instances against each other. The
resulting deformed models are interpolated for visualization.
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Fig. 6. Samples of 3D models of the spray bottle, camera and drill, and bottles categories used in our experiments. The canonical models are leftmost.

Note that two observed instances can be registered against
each other by simply finding their respective deformation
fields towards the canonical model, since the dimensionality
of the deformed objects is defined only by the shared
canonical model (Fig. 5).

V. DATASET

To the best of our knowledge, there does not exist an
available dataset that contains intra-class object deformations
suitable for training CNNs. In this section, we explain how
the dataset is generated. Our dataset is composed of a set of
3D textured meshes that produce a set of rendered images
and ground truth deformations for each object category.

To build the dataset, we collected realistic textured 3D
meshes of different objects from the same object cate-
gory. The models were taken from online databases2 and
from [29]. A canonical model is selected and separated from
the other k models. This canonical model and the collection
of 3D data is also used for building the latent space for
inferring deformations of the occluded parts (Sec. IV-D).
Ground truth deformations from the canonical model towards
all the other models are calculated using CPD (Sec. III-
A). The objects are observed from different viewpoints to
generate the rendered images.

Since good quality 3D textured models are scarce, spe-
cially graspable objects, we interpolate models that are in
between the canonical and the observed models (Fig. 7).
To achieve this, T (C,Wi) is calculated for all the testing
models, as described in Eq. (4). Note that simply using
Eq. (6) to interpolate from the canonical and to the observed
models will generate instances with the same texture as
the canonical mesh, reducing the generalization capabilities

2https://sketchfab.com

of the network. Therefore, an inverse deformation (from
observed to canonical) is defined based on the point cloud
of the observed training instance Ti and the deformations
fields Wi:

T −1(Ti,Wi) = Ti + G(Ti,C)(−Wi). (14)

Similarly to Eq. (6), the vertices Tm,i of the observed
training instances are morphed following:

T′m,i = Tm,i + G(Tm,i,C)(−Wi). (15)

Finally, by adding an interpolation factor ρ we obtain:

T′m,i(ρ) = Tm,i + G(Tm,i,C)(−ρWi). (16)

Eq. (16) allows us to interpolate between every observed
model and the canonical model without incurring in expen-
sive computations of CPD for each interpolation model.

For a given observed model i and a given interpolation
constant ρ, we morph the model according to Eq. (16). This
morphed model and the canonical model are rendered from
different viewpoints. We generate a bounding box for the
image of the observed model and a mask for the rendered
canonical image. This four images are then zoomed in as
explained in Sec. IV-B.

Apart from the RGB image, the renderer also provides a
three channel position image. This image contains in each

Canonical 
Model

Training 
Model

Fig. 7. Interpolation process from the observed instance on the right
towards the canonical instance on the left.
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Fig. 8. Generated training images. The networks receive four images: an observed RGB image with its bounding box mask image, and a rendered image
of the canonical model with its mask image. The target is a three channel image containing the x, y and z component of the deformations which are
represented using heatmaps. For clarity in the visualization, the background of the target images are painted white.

pixel the information about the x, y, and z coordinates of
the visible parts of the rendered model. The position image
is cropped and upsampled in the same way as the other
four images. The resulting position tensor defines a 3D point
set P. Given the canonical point set and the corresponding
deformation vector for each point, we perform a radial
basis function interpolation with a linear kernel to find the
deformation vector for each point of P. The results of the
interpolation are then expressed as a three channel image,
each channel containing the x, y and z deformations for
each pixel. The ground truth target data for the network is
generated as explained in Sec. IV-A. However, because of
the interpolated models, Eq. 7 is expanded as:

δ(C,Ti) = G(C,C)(1− ρ)Wi. (17)

VI. EVALUATION

A. Experimental Setup

We tested our approach on four categories: spray bottles,
cameras, bottles, and drills containing 12, 15, 14 and 16
instances, respectively. Figure 6 shows 3D model samples of
the categories used in the experiments. For the dataset gen-
eration, we used four ρ ∈ {0.0, 0.25, 0.5, 0.75} interpolation
values and 74 viewpoints on a tessellated sphere. Pulling
apart one instance as the canonical model and two instances
for testing results in 2664, 3552, 3256 and 3848 training
images, respectively. To obtain ground truth deformations
we used CPD with λ = 2.0 and β = 2.0 across all object
instances. All the shape spaces have l = 5 latent dimensions.
The testing instances (T1 and T2 for each category) are
not used—neither for training the network nor for building
the shape spaces. In this manner, the testing instances are
completely novel when presented to our approach for eval-
uation. Samples of the generated training images are shown
in Figure 8. Ground truth object poses are used in order to
evaluate only the performance of the non-rigid registration.
The robustness of our method is however evaluated against
noise on the object pose. Note that object poses can be
estimated using approaches such as [30] or [12].

The training images are split up randomly. 90% are used
for actual training and 10% are used for validation. For
training, the ground truth deformation are scaled by a factor
of 1000, to make a clear boundary between foreground and
background. The L2 loss is used for training the network. We
trained on two graphic cards with a batch size of 24 each
(effective batch size of 48). The learning rate is decreased
stepwise, starting from 3× 10−5 it is divided by two every
600 epochs, until reaching a final learning rate of 1× 10−6.
The training is done for 2000 epochs.

B. Experimental Results

To evaluate the quality of the registration, the following
error function between two point clouds C ∈ Rn×3 and
T ∈ Rm×3 is defined:

E(T,C) =
1

m

m−1∑
i=0

min
j
‖T(i, .)−C(j, .)‖2 . (18)

It computes the mean distance between the points of the ob-
served model to the respective closest point of the deformed
canonical point cloud.
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Fig. 9. Estimated deformations (in meters) of novel instances presented
to the network. For comparison, the ground truth (GT) is also shown. For
clarity in the visualization, background pixels are painted white.
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TABLE I. Comparison with other approaches.
Mean and (standard deviation) error values expressed in µm.

Instance Ground CLS [20] CPD [19] Ours
Truth (3D data) (3D data) (RGB)

Camera T1 34.61 51.93 407.04 102.17
(1.97) (10.45) (491.89) (47.89)

Camera T2 16.45 19.87 167.18 18.80
(1.61) (4.59) (358.16) (5.11)

Bottle T1 23.25 25.92 140.51 45.21
(2.34) (5.18) (312.13) (9.75)

Bottle T2 90.42 72.33 357.98 88.35
(28.54) (11.35) (536.81) (18.39)

Sp. Bottle T1 29.84 30.78 298.53 47.87
(1.42) (1.89) (409.14) (12.99)

Sp. Bottle T2 111.94 121.19 376.09 154.97
(14.29) (19.16) (720.73) (82.34.39)

Drill T1 21.18 28.86 232.88 52.71
(0.949) (1.42) (1319) (23.54)

Drill T2 63.95 58.50 216.35 119.88
(5.23) (21.51) (566.18) (107.43)

We compare our results against the Categorical Latent
Space (CLS) approach [20] and CPD [19]. Note, however,
that those approaches require 3D data in contrast to our
method. The latent space approach [20] and the CPD method
are parameterized using the same values as for generating
the training images. This encourages a fair evaluation, be-
cause a bad parametrization of CPD will affect the quality
of our training images and shape space. The latent space
dimensionality of CLS is also set to five. To generate testing
images, we rendered the testing instances from 74 points of
view on a tessellated sphere and produced a point cloud to
represent the observed parts of the instances. In addition, the
deformation that results from the ground truth target images
is calculated. This establishes a bound for the results of our
approach and allows us to evaluate the network performance.
Figure 9 shows the ground truth target deformations and the
network output for two instances of the spray and camera
categories. The mean and standard deviations of the error
values of all four categories are presented in Table I. The
CLS approach [20] performs best overall, since it also incor-
porates a shape space and had in contrast to our approach
access to 3D data. Our approach outperforms CPD by a large
margin even without access to 3D data for the evaluated
categories. Compared to CPD, the lower error mean indicates

Observed
images

Misaligned
canonical

Observed
images

Misaligned
canonical

Fig. 10. Network input images after noise on the object pose is applied.

TABLE II. Evaluation against noise on the object pose.
Mean and (standard deviation) error values expressed in µm.

Category CPD [19] (3D data) Ours (RGB)

Camera T1 168.54 (357.8) 105.26 (64.21)
Camera T2 406.45 (492.03) 306.96 (127.89)

Bottle T1 297.79 (579.49) 227.90 (146.0)
Bottle T2 852.40 (1818) 289.36 (147.68)

Spray Bottle T1 1035 (406.69) 146.89 (117.57)
Spray Bottle T2 1488 (554.33) 255.69 (167.32)

Drill T1 232.35 (1325) 92.96 (58.23)
Drill T2 215.54 (565.48) 262.31 (228.40)

that our approach reconstructs the objects better while the
lower standard deviation demonstrates that out method is
more robust to different object viewpoints.

We further evaluated our approach against noise on the
given object pose. A three-dimensional vector is uniformly
sampled from [−0.05, 0.05] for each coordinate axis and
added to the canonical object pose. Resulting rendered
images are shown in Figure 10. We compare our performance
against CPD; the results are presented in Table II. As
expected, the performance of our approach is affected by this
large misalignment, because no pose refinement is explicitly
modeled. However, we achieved lower registration errors
compared to CPD.

We finally evaluated the performance of our approach with
real object images. Figure 11 shows the input to the network
and the resulting deformed models. The applicability of our

Rendered
images

Reconstructed
object

Observed
image

Rendered
images

Reconstructed
object

Observed
image

Fig. 11. Non-rigid registration on real pictures. The ground truth of two
objects was available and is presented next to the reconstructed object. Hard
objects to perceive as transparent bottles are successfully registered.
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TABLE III. Evaluation with real images.
Mean and (standard deviation) error values expressed in µm.

Category CPD [19] (3D data) Ours (RGB)

Real Spray B. (pink) 451.78 (329.7) 67.34 (41.18)
Real Spray B. (white) 436.38 (409.25) 398.03 (229.05)

method on real images is demonstrated based on the plausible
registration results. The reconstruction of the white spray
bottle does not match well with the ground truth possibly
because none of the training instances exhibits such large
dimensions. The ground truth 3D models were available for
two real spray bottles. We computed the registration error for
12 different object poses by turning these two real objects
around their vertical axis from their standing position every
30◦. The results are presented in Table III.

VII. CONCLUSION

We presented a novel approach for category-level non-
rigid registration based on single-view RGB images. We
demonstrated that a neural network is able to infer deforma-
tions on the visible parts of the observed object. In addition,
we showed how objects are reconstructed by incorporating
a learned shape space for each category. We evaluated our
approach on synthetic and real images outperforming CPD
even without depth information and with noise on the object
pose. Furthermore, we demonstrated that objects which are
hard-to-measure by depth sensors (e.g., transparent bottles)
can be successfully registered with our method.

In the future, we plan to extend our neural network in
order to infer pixel-wise object categories to better match the
masks used for training. Furthermore, we will incorporate an
object pose refinement module on the network and the shape
space to increase robustness against misalignments.
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