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Abstract— Humans exhibit outstanding learning, planning
and adaptation capabilities while performing different types
of industrial tasks. Given some knowledge about the task
requirements, humans are able to plan their limbs motion in
anticipation of the execution of specific skills. For example,
when an operator needs to drill a hole on a surface, the posture
of her limbs varies to guarantee a stable configuration that is
compatible with the drilling task specifications, e.g. exerting a
force orthogonal to the surface. Therefore, we are interested
in analyzing the human arms motion patterns in industrial
activities. To do so, we build our analysis on the so-called
manipulability ellipsoid, which captures a posture-dependent
ability to perform motion and exert forces along different
task directions. Through thorough analysis of the human
movement manipulability, we found that the ellipsoid shape is
task dependent and often provides more information about the
human motion than classical manipulability indices. Moreover,
we show how manipulability patterns can be transferred to
robots by learning a probabilistic model and employing a
manipulability tracking controller that acts on the task planning
and execution according to predefined control hierarchies.

I. INTRODUCTION

When performing manipulation tasks, we naturally put our
limbs in a posture that best allows us to carry out the task
at hand given specific workspace constraints. This posture
adaptation alters the motion and strength characteristics of
our arms so that they are compatible with specific task
requirements. For example, the arm kinematics seems to
play a central role when we plan point-to-point reaching
movements, where joint trajectory patterns arise as a function
of visual targets [1], indicating that task requirements lead
to arm posture variations. This insight was also observed in
more complex scenarios, where both kinematic and biome-
chanical factors affect task planning [2]. For instance, Sabes
and Jordan [3] observed that our central nervous system plans
arm movements considering its directional sensitivity, which
is directly related to the arm posture. This allows humans to
be mechanically resistant to potential perturbations. Interest-
ingly, directional preferences of human arm movements tend
to exploit interaction torques for movement production at the
shoulder or elbow, indicating that the preferred directions are
largely determined by biomechanical factors [4].

Roboticists have also investigated the impact of robot
posture on manipulation tasks that involve pushing, pulling
and reaching. It is well known that by varying the posture
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of a robot, we can change the optimal directions for motion
generation or force exertion. This has direct implications in
hybrid control, since the controller capability can be fully
realized when the optimal directions for controlling velocity
and force coincide with those dictated by the task [5]. In
this context, the so-called manipulability ellipsoid [6] serves
as a geometric descriptor that, given a joint configuration,
indicates the capability to arbitrarily perform motion and
exert a force along the different task directions.

Manipulability ellipsoids have been used to analyze the
coordination of the human arm during reaching-to-grasp
tasks for designing ergonomic environments [7], and to study
the swing phase of human walking motion [8]. However,
analyses of the human arm manipulability remain limited to
few simple movements. Moreover, most of the conducted
studies focus on the evolution of the manipulability volume
and isotropy. In contrast, considering the direction of the
major axis of manipulability ellipsoids has been proved
useful in several human movement analysis works, notably
in exoskeletons design and control. Goljat et al. [9] used
the shape of the muscular manipulability of the human arm
for controlling arm exoskeletons. They computed a varying
support based on the main direction of the user’s force
manipulability. Inspired by human walking studies, Kim et
al. [10] proposed an energy-efficient gait pattern for leg
exoskeletons which aligns the direction of motion with the
major axis of the dynamic manipulability ellipsoid. While
the major axis of the ellipsoid provides some information
about the arm movement, the importance of the ellipsoid
shape should not be neglected, as a low dexterity in motion
along a specific axis is closely related to a high flexibility in
force along the very same direction [11].

In this paper we analyze single and dual-arm manipulabil-
ity of human movements during the execution of industry-
like activities from a geometry-aware perspective. To do
so, we use kinematic data records of several participants
performing various activities such as screwing and load car-
rying [12]. Moreover, we consider an important characteristic
of manipulability ellipsoids that was often overlooked in the
literature, namely, the fact that they lie on the manifold
of symmetric positive definite (SPD) matrices. We exploit
differential geometry to statistically study the manipulability
profile of human movements (see Section II for a short back-
ground). The mean and variance of the ellipsoids provide
more information about human motion than the classical
manipulability indices related to the ellipsoids volume and
isotropy, as explained in Section III. Finally, we show that the
observed task-dependent patterns can be transferred to robots
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as manipulability requirements when executing similar tasks,
bypassing the complexity of kinematic mapping approaches
(see Section IV).

The contributions of this paper are twofold: (i) we provide
a thorough statistical analysis of single and dual-arm ma-
nipulability of human movements in industry-like activities;
(ii) we demonstrate that the analyzed posture-dependent task
requirements can be transferred from a human to robotic
agents via a manipulability transfer framework. A video
accompanying the paper is available at https://youtu.
be/q0GZwvwW9Ag.

II. BACKGROUND

A. Manipulability ellipsoids

Velocity and force manipulability ellipsoids introduced
in [6] are kinetostatic performance measures of robotic
platforms. They indicate the preferred directions in which
force or velocity control commands may be performed at a
given joint configuration. More specifically, the velocity ma-
nipulability ellipsoid describes the characteristics of feasible
Cartesian motion corresponding to all the unit norm joint
velocities. The velocity manipulability of an n-DoF robot can
be computed from the relationship between task velocities ẋ
and joint velocities q̇, namely ẋ = J(q)q̇, where q ∈ Rn

and J ∈ R6×n are the joint position and Jacobian of the
robot, respectively. To do so, we consider a unit hypersphere
‖q̇‖2 =1 in the joint velocity space, which is mapped into
the Cartesian velocity space R6 with1

‖q̇‖2 = q̇Tq̇ = ẋT(JJT)−1ẋ, (1)

by using the least-squares inverse kinematics solution
q̇=J†ẋ=JT(JJT)−1ẋ. Equation (1) represents the robot
manipulability in terms of motion, indicating the flexibility
of the manipulator in generating velocities in Cartesian
space. The major axis of the velocity manipulability ellipsoid
M ẋ = JJT, aligned to the eigenvector associated with
the maximum eigenvalue λM

ẋ

max, indicates the direction in
which the greater velocity can be generated. That is in turn
the direction along which the robot is more sensitive to
perturbations. This occurs due to the principal axes of the
force manipulability MF = (JJT)−1 being aligned with
those of the velocity manipulability, with reciprocal lengths
(eigenvalues) due to the velocity-force duality (see [5], [6]
for details).

Other forms of manipulability ellipsoids exist, such as the
dynamic manipulability [13], which gives a measure of the
ability of performing end-effector accelerations in the task
space for a given set of joint torques. As another example, the
muscular manipulability [9] indicates the end-effector forces
that can be generated in function of the muscle forces.

As mentioned previously, any manipulability ellipsoid M
belongs to the set of SPD matrices SD++ which describe the
interior of a convex cone. Consequently, we must consider
this particular aspect to properly analyze manipulability

1Scaling of the joint velocities may be used to reflect actuator properties.

profiles. The corresponding Riemannian manifold and the
computation of manipulability statistics are introduced next.

B. Riemannian manifold of SPD matrices

The set of D×D SPD matrices SD++ is not a vector
space since it is not closed under addition and scalar prod-
uct, but instead forms a Riemannian manifold [14]. A d-
dimensional manifold M is a topological space which is
locally Euclidean, which means that each point in M has
a neighborhood which is homeomorphic to an open subset
of the d-dimensional Euclidean space Rd. A Riemannian
manifold M is a differentiable manifold equipped with a
Riemannian metric.

For each point Σ∈M, there exists a tangent space TΣM
which is formed by the tangent vectors to all 1-dimensional
curves on M passing through Σ. The origin of the tangent
space coincides with Σ. In the case of the SPD manifold,
the tangent space at any point Σ ∈ SD++ corresponds to the
space of symmetric matrices SymD (see Fig. 1-left). The
Riemannian metric is a smoothly-varying positive-definite
inner product 〈·, ·〉Σ : TΣM×TΣM→M acting on TΣM.

The Riemannian metric allows us to define the Riemannian
distance between two points Σ,Λ ∈M, which corresponds
to the minimum length over all possible smooth curves on
the manifold between Σ and Λ. The corresponding curve is
called a geodesic. Geodesics are the generalization of straight
lines to Riemannian manifolds, as they are locally length-
minimizing curves with constant speed in M.

As a Riemannian manifold is not a vector space, the use of
classical Euclidean space methods for treating and analyzing
data lying on this manifold is inadequate. However, due
to their Euclidean geometry, linear algebra operations can
be performed on the elements of each tangent space of a
manifold. To utilize these Euclidean tangent spaces, we need
mappings back and forth between TΣM and M, which are
known as exponential and logarithmic maps. The exponential
map ExpΣ : TΣM → M maps a point L in the tangent
space of Σ to a point Λ on the manifold, so that it is reached
at time 1 by the geodesic starting at Σ in the direction L,
i.e., dM(Σ,Λ) = ‖L‖Σ. The inverse operation is called
the logarithmic map LogΣ : M → TΣM. Specifically,
the exponential and logarithmic maps on the SPD manifold
corresponding to the affine-invariant distance

dSD
++

(Λ,Σ) = ‖ log(Σ− 1
2 ΛΣ−

1
2 )‖F, (2)

are computed as (see [14] for details)

Λ = ExpΣ(L) = Σ
1
2 exp(Σ−

1
2LΣ−

1
2 )Σ

1
2 , (3)

L = LogΣ(Λ) = Σ
1
2 log(Σ−

1
2 ΛΣ−

1
2 )Σ

1
2 , (4)

where exp(·) and log(·) are matrix functions. These opera-
tions are illustrated in Fig. 1-left.

In this paper, we first exploit the Riemannian manifold
framework to compute statistics, such as the mean and
covariance, of manipulability ellipsoids profiles. A Rieman-
nian treatment is necessary to ensure that the mean of
manipulability ellipsoids is valid and unique, meaning that it
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Fig. 1: SPD manifold S2++ embedded in its tangent space
Sym2. One point represents a matrix

(
T11 T12

T12 T22

)
∈ Sym2.

Points inside the cone, such as Σ and Λ, belong to S2++.
Left: L lies on the tangent space of Σ such that L =
LogΣ(Λ). The shortest path between Σ and Λ is the
geodesic depicted as a red curve, which differs from the
Euclidean path shown in yellow. Right: The Karcher mean Ξ
and covariance tensor S for the 4 points on the manifold are
displayed as red point and ellipsoid, respectively. The mean
Ξ differs from the Euclidean mean ΞE shown in yellow.

belongs to the space of SPD matrices. The Fréchet mean [15]
of a set of N datapoints Σn ∈ SD++ corresponds to the matrix
Ξ ∈ SD++ that minimizes the sum of the squared affine-
invariant distances

∑N
n=1 dSD

++
(Ξ,Σn), as detailed in [14].

This optimization problem can be solved iteratively with a
Gauss-Newton algorithm. At each iteration, the datapoints
are first projected into the tangent space of the current
estimate of the mean Ξ using the logarithmic map. Then, the
Euclidean mean of these points is computed and projected to
the manifold using the exponential map, which corresponds
to the updated estimate of the mean, i.e.,

Ξ← ExpΞ

(
1

N

N∑
n=1

LogΞ(Σn)

)
. (5)

The covariance tensor S ∈ RD×D×D×D is then computed
in the tangent space of the mean as

S =
1

N − 1

N∑
n=1

LogΞ(Σn)⊗ LogΞ(Σn), (6)

where ⊗ represents the tensor product. The tensor
product of two matrices X ∈ RI1×I2 , Y ∈
RJ1×J2 is X ⊗ Y ∈ RI1×I2×J1×J2 with elements
(X ⊗ Y )i1,i2,j1,j2 = xi1,i2 yj1,j2 . The concepts of mean
and covariance on the SPD manifold S2++ are illustrated in
Fig. 1-right.

The Riemannian manifold framework is also exploited for
human-robot manipulability transfer in Section IV. As shown
in [16], a geometry-aware approach proves to be crucial for
transferring manipulability requirements to robots in terms
of accuracy, stability and convergence, beyond providing an
appropriate mathematical treatment of the problem.

III. MANIPULABILITY ANALYSIS

Analyzing the manipulability of the human arms during
various tasks may be relevant to define desired manipulability
ellipsoids of robots. The manipulability profile of a user
while performing a task may provide relevant information

about task planning and motion generation. For example,
the main axis of the ellipsoid may indicate future directions
of motion, while a small manipulability may reveal a lack
of velocity or force control of an operator along specific
directions. These aspects may notably be exploited to better
design and control exoskeletons and ergonomic devices. In
this section, we propose a detailed analysis of human arm(s)
manipulability in industry-like activities by exploiting the
mathematical concepts presented in Section II.

A. Data description

For our analysis, we use the industry-oriented dataset pre-
sented in [12], which contains the whole-body posture data of
13 participants executing various industry-related activities.
Each participant executed the tasks in 5 consecutive trials for
3 predefined sequences. In this paper, we consider 3 screwing
motions and 2 carrying tasks provided in the database. A
screwing task consists of taking a screw and a bolt from a
75 cm-high table, walking to a shelf and screwing (with bare
hands) at a specific height. The screwing movements realized
at heights of 60 cm, 115 cm and 175 cm are denoted by SL,
SM and SH for screw-low, -middle and -high, respectively.
A carrying task involves taking a load from a 55 cm-high
table, walking to a shelf and put the load on it. Loads of
5 kg and 10 kg are placed in shelves of 20 cm and 110 cm
high, respectively. The corresponding tasks are denoted by
C5 and C10. The participants freely adapt their posture for
each activity, as no explicit instructions were given for task
execution. Therefore, we expect the arms manipulability to
reflect the features of the natural motion of the participants.

The labels of the motions in all the trials are provided
along with the dataset, including the general and detailed
posture, as well as the current action labeled by 3 in-
dependent annotators. In this paper, we study the human
arm(s) manipulability according to the current action for
the aforementioned carrying and screwing tasks. For each
trial, we first identify the frames corresponding to each
activity based on the labels and the order of activities
defined in the corresponding sequence. Then, we select the
frames corresponding to a subset of actions for each activity.
The idea is to consider the motions corresponding to the
relevant activities that are reproduced by all the participants.
Therefore, we do not examine particular cases, e.g. when
a screw falls on the ground and the participant needs to
pick it up. The subset of actions considered for a screwing
motion is composed of reaching (Re), picking (Pi), carrying
(Ca), placing (Pl), fine manipulation (Fm), screwing (Sc)
and releasing (Rl) the screw and the bolt. Concerning the
carrying motion, we analyze the subset of actions composed
of picking (Pi), carrying (Ca) and placing (Pl) the load.

The single- and dual-arm manipulability ellipsoids are
computed for each time step of the different actions of the
screwing and carrying tasks for 15 trials of 13 participants.
The computation of the manipulability ellipsoids from the
whole-body position and orientation data is described next.
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Fig. 2: Human arm triangle model of 5 parameters. The
triangle vertex are located at the center of the shoulder, elbow
and wrist joints.

B. Human manipulability computation

As the manipulability is a function of the Jacobian, we
need a kinematic model of the human arm to compute its
manipulability ellipsoid. In this paper we use the identifica-
tion method for anthropomorphic arm kinematics proposed
in [17], [18]. The typical anthropomorphic arm model, where
the arm is regarded as a 7-DoF manipulator, is exploited
here along with the concept of human arm triangle, the latter
used for joint-to-task space mapping. Thus, the joint angles
and the corresponding Jacobian can be computed from the
position and orientation of the wrist in task space, which in
our case is given in the database.

Specifically, the human arm triangle model, shown in
Fig. 2, is defined by 5 parameters: the unit direction vector
of the upper arm r, the unit normal vector of the human arm
triangle space l, the angle between the upper and lower arm
α, the unit normal vector of the plane of the palm (pointing
outward the palm) p, and the unit direction vector of the
fingers f . The parameters {r, l, α} can be inferred from the
wrist position in task space (see [17] for details), while the
parameters {p,f} directly represent the wrist orientation.
Moreover, it has been shown that the space spanned by the
set of parameters {r, l, α,p,f} has a one-to-one relation
with the joint space spanned by the seven joints {q1 . . . q7}
of the anthropomorphic arm model. The formulas for the
mappings {r, l, α} → {q1 . . . q4} and {p,f} → {q5 . . . q7}
are given in [17] and [18], respectively.

This model allows us to compute the human arm Jacobian
J . The arm velocity manipulability ellipsoid is then com-
puted as M ẋ = JJT. For dual-arm manipulation tasks, such
as carrying, we are interested in the manipulability ellipsoid
of the dual-arm system. In this case, the set of joint velocities
of constant unit norm ‖q̇d‖ = ‖(q̇T

l , q̇
T
r )

T‖ = 1 is mapped
to the Cartesian velocity space ẋd = (ẋT

l , ẋ
T
r )

T through

‖q̇d‖2 = q̇T
d q̇d = ẋT

d (G
†T
d JdJ

T
d G
†
d)
−1ẋd, (7)

with Jacobian Jd = diag(Jl,Jr), grasp matrix Gd =
(Gl,Gr) and indices l and r denoting the left and right arm,
respectively. Therefore, the dual-arm velocity manipulability
is given by M ẋ

d = G†Td JdJ
T
d G
†
d [19]. Note that we

assume two independent kinematic chains for the arms in the
computation of Jd. Moreover, the system is modeled under

(a) SL (b) SM (c) SH

Fig. 3: Posture of the participant 541 during the screwing
actions at 3 different heights. The top row shows the Xsens
avatar view, while the middle and bottom rows display
the skeleton model and right-arm velocity manipulability
ellipsoid from 2 different viewpoints, along with the right
shoulder reference frame. The manipulability ellipsoids are
scaled by a factor 3 for visualization purposes.

the assumption that the arms are holding a rigid object with a
tight grasp. The force manipulability ellipsoid is the inverse
of the velocity manipulability, i.e. MF = (M ẋ)−1.

C. Analysis

For screwing motions, we study the single-arm velocity
manipulability ellipsoids. Figure 3 shows the posture of a
participant while executing this task at different heights,
along with the corresponding right-arm velocity manipula-
bility ellipsoid. We observe that the shape of the ellipsoids
is similar for the three screwing motions, regardless of the
specified height. Namely, the ellipsoids shrink along the hand
axis and isotropically elongate along the other directions.
This indicates a high precision along the hand axis coupled
with a high capability of motion on the orthogonal plane,
where the hand is moving to execute the rotative screwing
motion. This shows that the human arm manipulability is
being adapted to the task requirements.

To study the evolution of the manipulability during the
screwing task, a subset of manipulability ellipsoids equally
spaced in time is first selected by subsampling the manip-
ulability sequence of each action of the task. This results
in a dataset containing the same number of manipulability
ellipsoids for each action across all trials. The evolution
of the right-arm velocity manipulability ellipsoid during
the different screwing tasks is studied in Fig. 4. All the
graphs show inter-participants statistics and the ellipsoids
are represented w.r.t. the shoulder reference frame. The three
top graphs of each column display the mean of the velocity

11134



(a) Screw low SL (b) Screw middle SM (c) Screw high SH

Fig. 4: Temporal evolution of the single-arm velocity manipulability ellipsoid for the screwing tasks. The inter-participants
statistics are displayed with ellipsoids represented w.r.t the shoulder reference frame. The three first rows depict 2D-projections
of the ellipsoids mean, along with 3 standard deviations of the vertical axis of the ellipsoid for the specific graph. The two
bottom rows display the mean and standard deviation of the determinant and condition number of the ellipsoid, respectively.

manipulability ellipsoid profile for the corresponding task
computed by (5). In each graph, the standard deviation of
the ellipsoid along the vertical axis, equal to the square
root of the corresponding diagonal element of the covariance
tensor (6), is represented with error bars. For completeness,
the two bottom graphs of each column show the mean and
standard deviation of two classical manipulability indices,
namely det(M) and cond(M), denoting the determinant
and condition number of M , respectively. The former ap-
proximates the manipulability ellipsoid volume, while the
latter relates to the ellipsoid isotropy.

Interestingly, we observe that the evolution of the manipu-
lability mean during the task is consistent across the screwing
motions. The beginning and end of the task, namely Re and
Rl actions, are characterized by narrow ellipsoids along the
y axis (i.e. the vertical direction), due to the fact that the
arm rests along the body. These also correspond to actions
displaying the highest variance. As in Fig. 3, the velocity
manipulability mainly narrows along z and elongates along
x and y during Fm and Sc actions for the three screwing
heights. Therefore, the manipulability of the participants is
generally adapted to the task. Moreover, we notice that the
ellipsoid shape along x and y is generally similar from
Ca to Sc actions. However, the manipulability ellipsoid is
more isotropic for carrying actions Ca. This is due to the
fact that the participants usually prepare for screwing after
having picked the screw and the bolt, i.e., they do not put
back their arms at a neutral resting position but instead keep
them in front of their torso. Therefore, these manipulability
ellipsoids indicate an arm posture adaptation that anticipates
the next action (i.e. planning phase), whose manipulability

requirements are more specific.
Another relevant observation is that the classical manipula-

bility indices, namely the determinant and condition number
of the ellipsoids, tend to remain nearly constant during the
whole movement, except in the reaching (Re) and releasing
(Rl) phases. In contrast, as emphasized previously, the shape
of the velocity manipulability ellipsoid varies consistently
during the different actions of the screwing task. Then, the
determinant and condition number are uninformative mea-
sures that prohibit a proper human manipulability analysis.

Note that a similar analysis may be conducted for the
velocity manipulability ellipsoids of the left arm for the
screwing tasks. The left arm manipulability evolves similarly
as the one of the right arm along the different actions. This is
expected due to the presence of strong symmetries between
the arms in this particular task.

Regarding the carrying task, we analyze the dual-arm force
manipulability. Figures 5a and 5d show the posture of a
participant executing the C5 and C10 tasks, respectively.
Similarly to the results reported in Fig. 4 for the screwing
task, Fig. 5b and 5c depict the evolution of the dual-arm force
manipulability ellipsoid during the two carrying tasks. The
inter-participant statistics are displayed and the ellipsoids are
represented w.r.t. the neck reference frame.

We observe that the main axis of the force manipulability
ellipsoids are clearly aligned with the vertical axis during the
Ca action. Therefore, the posture adopted by the participants
favor high force exertion along the vertical axis, which is
necessary for carrying heavy loads. However, we do not
distinguish consistent differences in the magnitude of the
manipulability between the 5 kg and 10 kg loads. Further-
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more, the manipulability ellipsoids are almost isotropic at
both the beginning of the Pi action and during the Pl actions.
This especially accentuates during Pl actions of the C5 task.
This may be attributed to the fact that the shelf where the
load is placed is close to the ground, which may require
a different posture for this specific action. Overall, higher
variations are observed during the carrying tasks compared to
those of the screwing tasks. This may be associated with less-
strict constraints in the carrying task when contrasted with
the screwing motions. Also, the perception of the load may
differ across participants, influencing the adopted postures.

IV. MANIPULABILITY TRANSFER

In general, the posture of the robot may have an impact
on its performance while executing a given task. Typically,
tracking a manipulability profile adapted to the task may
allow the robot to avoid singularity, handle perturbations dur-
ing task execution, anticipate potential collisions, optimize
the execution time or minimize the energy consumption.
Here, we illustrate how the manipulability analysis of human
movements can be exploited to transfer manipulability-based
posture variation to robots executing similar tasks without the
need of complex kinematic mappings. Namely, we propose
to transfer the manipulability requirements of screwing and
carrying tasks (SM and C5) from a human to a Centauro
robot [20]. To do so, we exploit the manipulability transfer
framework introduced in [21], [16], that allows robots to
learn and reproduce manipulability ellipsoids from human
demonstrations. For both tasks, the demonstrations consist
of the 15 recorded trials of the participant 541, previously
used for the manipulability analysis. A subset of actions is
considered for each task. The simulated experiments were
performed using Pyrobolearn [22].

Previously, we showed that a manipulability ellipsoid
profile of the transition actions, such as the carrying action
Ca for the screwing task, can be seen as part of a plan-
ning process for the next action of interest (i.e. screwing
Sc). We exploit this idea for the manipulability transfer of
the screwing task. We propose to learn and reproduce the
manipulability profile of the actions preceding Sc, namely
Ca, Pl and Fm, aiming at reaching an appropriate posture to
efficiently execute the main task. To do so, a desired time-
driven manipulability profile M̂t is first learned from the
demonstrations with a Gaussian mixture model (GMM) on
the SPD manifold as in [21]. The robot is then required
to track the desired manipulability profile while keeping
balance and positioning its end-effector at a specific location,
whose height is equal to the one of the SM motion. We
assume a task hierarchy that prioritizes the position control
of the center of mass (CoM) over the support polygon and
zero velocity at all contact points with the floor, while
both the end-effector position and manipulability tracking
are considered secondary tasks. The corresponding full joint
velocity controller for legged robots is defined as (see [23]
for details)

q̇ =

[
In×n
06×n

]T (
J†b ẋb +Nbq̇Nb

)
, (8)

where the first term accounts for the virtual joints of a
floating-base robot, n is the number of DoF of the robot,
ẋb =

(
0T, ẋT

CoM

)T
with ẋCoM the velocity at the robot CoM,

Jb =
(
JT

feet,J
T
CoM,xy

)T
is the Jacobian of the balancing task,

Nb is the corresponding nullspace projection matrix and q̇Nb

is the joint velocities of the secondary tasks. In the first
part of the motion, corresponding to the carrying action Ca,
the manipulability tracking is prioritized over the position
tracking in order to allow the robot to reach a good initial
posture for executing the task. Therefore, we defined the joint
velocities of the secondary task as

q̇Nb
=(J †(3))

T KM vec
(
LogM (M̂)

)
+
(
I − (J †(3))

TJ T
(3)

)
J†Kx (x̂− x), (9)

where x̂ and x are the desired and current end-effector
positions, M̂ and M are the desired and current end-
effector manipulability, J is the end-effector Jacobian and
J (3) is the end-effector manipulability Jacobian in matrix
form. The matrices KM and Kx are proportional gains
for manipulability and position tracking control, respectively.
Then, for the remaining part of the motion, the position
tracking is prioritized so that the robot can reach the screwing
location with a posture adapted to the task requirements.
Thus, the corresponding joint velocities are given by

q̇Nb
= J†Kx (x̂− x)

+ (I − J†J) (J †(3))
T KM vec

(
LogM (M̂)

)
. (10)

The controllers details can be found in [16].
Figure 6a shows the evolution of the posture and the

manipulability of Centauro during the reproduction of the
pre-screwing motion with its right arm. The manipulability
tracking has priority over the position control by (9) from
t = 0 to t = 1s, and the priority order is reversed for
the remaining time using (10). Therefore, during the first
part of the motion, we can observe that the robot mainly
adapts its posture to fulfill the manipulability requirements.
This naturally results in the robot orienting its end-effector
outwards w.r.t. its torso. In this phase, the position error
slightly increases, while the manipulability error decreases.
The robot starts the second part of the task by moving its
right arm to decrease the position error. Interestingly, despite
the desired position could be reached solely by extending the
arm, the robot instead uses its torso to rotate the arm in order
to reach the desired end-effector position while still tracking
the desired manipulability accurately. Note that tracking the
desired manipulability for this task naturally favors arm pos-
tures where the end-effector is oriented outwards, matching
a screwing motion whose main direction is orthogonal to
a vertical plane in the robot workspace. This corresponds
to the recorded screwing motion of the participant 541.
However, considering a precise orientation remains necessary
for successfully executing a complete screwing task, which
can be straightforwardly included in our control formulation.
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(a) 5kg (C5) (b) 5kg (C5) (c) 10kg (C10) (d) 10kg (C10)

Fig. 5: Temporal evolution of the dual-arm force manipulability ellipsoid for carrying tasks. (a) and (d) depict the posture
of the participant 541 during the Pi, Ca and Pl actions (from top to bottom). The dual-arm force manipulability ellipsoids
(scaled by a factor 0.03) are depicted along with the neck reference frame. The three first rows of (b) and (c) show 2D
projections of the ellipsoids mean, along with 1 standard deviation of the vertical axis of the ellipsoid for the specific graph.
The two bottom rows of (b) and (c) display the mean and standard deviation of the determinant and condition number of the
ellipsoid, respectively. The inter-participant statistics are displayed with ellipsoids represented in the neck reference frame.

For the transfer of the C5 task, we consider the part of
the motion where the human picks up the load to carry it,
i.e. Pi and Ca actions. After having learned the desired dual-
arm manipulability profile from demonstrations, we employ
the main controller (8) with the nullspace controller (10)
for the whole task while keeping the end-effectors position
fixed. Note that we consider all the DoFs of the robot for
computing the dual-arm manipulability ellipsoid, so that the
dual-arm Jacobian is defined as Jd = (JT

l ,J
T
r )

T. Figure 6b
shows the evolution of the posture and the manipulability of
Centauro during the reproduction of the dual-arm carrying
motion. We observe that the robot adapts the posture of its
arms to fulfill the manipulability requirements of the task.
However, constraining the end-effectors to fixed positions
significantly reduces the DoF redundancy that the robot can
exploit to track accurately the desired manipulability. This
issue may be alleviated by allowing the robot to vary the
positions of its end-effector while maintaining a constant
distance between them after picking up the load.

V. CONCLUSIONS

This paper presented a detailed analysis of single and dual-
arm manipulability ellipsoids for human movements during

industry-like activities. Statistical analyses considering the
intrinsic geometry of the manipulability ellipsoids were con-
ducted on the kinematics data records of participants execut-
ing screwing and load carrying tasks. Our work showed that
the evolution of the manipulability ellipsoid shape provides
more information about human motion than the classical
manipulability indices classically used in the literature. We
illustrated the application of our analysis in two human-
robot manipulability transfer experiments. We also showed
that manipulability transfer can be utilized from a motion
planning point of view, where the robot adapts its posture in
anticipation to the next action before executing it.

Future work includes a data-driven automatic prioritization
of the manipulability and position requirements following the
approach in [24], as well as experiments on real platforms.
Moreover, we will investigate how to adapt the desired
manipulability to better exploit the robot capabilities. This
may typically be useful to take into account the actuator
constraints of the robot, as they are not considered in the
human demonstrations. To do so, we may, for example, use
geometry-aware Bayesian optimization [25].
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(a) SM (b) C5

Fig. 6: Partial reproduction of industry-like tasks using human-robot manipulability transfer. Snapshots of the robot executing
the tasks are shown on the left part of the figures. The top-right graphs shows the 2D projections of the time-varying desired
manipulability profile, learned by demonstrations, and the reproduced manipulability depicted by (a) blue, (b) green and
purple ellipsoids, respectively. The bottom-right graph shows the distance between the current and desired manipulability
(and end-effector position) over time (given in seconds). The change of controller during the pre-screwing motion is indicated
by a vertical line.
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