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Abstract— Place recognition is a critical component towards
addressing the key problem of Simultaneous Localization and
Mapping (SLAM). Most existing methods use visual images;
whereas, place recognition using 3D point clouds, especially
based on the voxel representations, has not been well addressed
yet. In this paper, we introduce the novel approach of voxel-
based representation learning (VBRL) that uses 3D point clouds
to recognize places with long-term environment variations.
VBRL splits a 3D point cloud input into voxels and uses
multi-modal features extracted from these voxels to perform
place recognition. Additionally, VBRL uses structured sparsity-
inducing norms to learn representative voxels and feature
modalities that are important to match places under long-
term changes. Both place recognition, and voxel and feature
learning are integrated into a unified regularized optimization
formulation. As the sparsity-inducing norms are non-smooth,
it is hard to solve the formulated optimization problem. Thus,
we design a new iterative optimization algorithm, which has
a theoretical convergence guarantee. Experimental results have
shown that VBRL performs place recognition well using 3D
point cloud data and is capable of learning the importance of
voxels and feature modalities.

I. INTRODUCTION

For several decades, one of the core robotics challenges
has been Simultaneous Localization and Mapping (SLAM).
A critical component of SLAM is place recognition (also
referred to as loop closure detection). Place recognition is
the capability of a robot to recognize a previously visited
location. It enables the robot to accurately localize itself
within a global map by correcting incremental pose drifts that
are accumulated during robot exploration in an environment.
Place recognition, along with SLAM, has been applied in
a wide variety of real-world applications, including assis-
tive robotics [1], [2], environment exploration [3], [4] and
autonomous driving [5], [6].

Most previous research utilizes images of surroundings,
obtained from a visual camera installed on a robot to
perform visual place recognition [7]. Long-term visual place
recognition has received extensive attention during the past
few years [8], [9]. It addresses the key challenge that robot
environments are dynamic and change over time. For ex-
ample, indoor places can experience environmental changes
in human activity, lighting, and arrangement on a daily
basis. Outdoor environments can look drastically different
in summer versus winter and in the morning versus night.
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Fig. 1. Illustration of the proposed VBRL approach for place recognition
on 3D point cloud data. VBRL divides each 3D point cloud into multiple
voxels in the 3D space and extracts multi-modal features from each voxel.
Then, VBRL performs joint learning of representative voxels and feature
modalities to represent places and integrates the representation for place
recognition in a unified regularized optimization formulation.

Given the recent advances in visual place recognition and
SLAM, the use of cameras in some environments is difficult
or inappropriate. For instance, in the low light or complete
darkness (e.g., in subterranean environments), utilizing visual
images for place recognition would necessitate bringing light
sources to illuminate the environment, which may not be
feasible. LiDAR sensors can offer a solution to perceive the
environment independent of lighting conditions. By actively
projecting laser light and measuring the reflected light,
LiDAR sensors measure the distance to a target and provide
a 3D point cloud representation of the environment, which
can be used by a robot operating in the dark.

Although visual place recognition was widely studied,
long-term place recognition based on 3D point clouds (e.g.,
obtained from LiDAR sensors) has received limited attention.
Many previous LiDAR-based place recognition methods di-
rectly matched a query scan with a database of previous tem-
plate scans to determine the best match of places [10]. Key-
point voting [11] and histogram-based matching (e.g., based
on normal distributions transform [12]). Recently, [13] used
deep learning to perform point cloud based place recognition.
However, apart from [13], these methods generally rely on
manually defined features without using learning and cannot
address place recognition during long-term environmental
changes. Also, while voxel-based 3D representations have
been commonly utilized in 3D SLAM and robot navigation
[14], [15], [16], 3D place recognition using voxel-based
representations has not been well addressed.

In this paper, we introduce a novel Voxel Based Represen-
tation Learning (VBRL) approach to address the problem of
place recognition using 3D point clouds acquired by LiDAR
sensors. The 3D data is obtained from a 360-degree field of
view by a LiDAR sensor, and our approach divides each 3D
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point cloud into multiple voxels in the 3D space. Multiple
feature types from each of the voxels are then extracted.
Given the multiple types (modalities) of features from all 3D
voxels, our proposed VBRL method automatically learns the
importance of voxels and feature modalities, and integrates
all features in a unified regularized optimization formulation
in order to best represent places. For learning the importance
of voxels, our approach is inspired by the insight that a
specific subset of voxels are typically more representative
to encode a place. For example, voxels closer to the LiDAR
sensor can be more useful, since it can include 3D points that
describe the environment with more details as objects are
closer to the sensor. Learning voxel importance is achieved
by VBRL through introducing structured sparsity-inducing
norms as regularizations into the optimization formulation.
Similarly, the VBRL approach is able to learn the importance
of the different feature modalities in the same regularized
optimization formulation.

There are two main contributions of this paper:
• We propose a novel formulation and the VBRL method

to perform simultaneous learning of representative vox-
els and feature modalities to represent places for place
recognition using 3D point cloud data.

• An optimization algorithm is implemented to solve the
regularized optimization problem that has a theoretical
guarantee to converge to the global optimal solution.

II. RELATED WORK

In this section, we first present the state-of-the-art in long-
term visual place recognition, followed by an overview of the
latest place recognition techniques utilizing 3D data.

A. Long-Term Visual Place Recognition

The state of the art visual place recognition techniques can
be broadly classified into methods based on local features,
global features, or learning based on representations.

Local features apply a detector to detect points of interest
(e.g., geometric shapes such as lines, corners, e.t.c.) in an
image and thus encode the local information around each of
the detected points of interest. The Scale-Invariant Feature
Transform (SIFT) local features were used in combination
with a bag-of-words (BoW) approach to detect previously
visited places in a 2D image [17]. In [18], binary BRIEF and
FAST features are applied to get a BoW representation and
perform loop closure detection. ORB features have also been
successfully used to perform place recognition [19]. Local
visual features usually differ for the same location based on
the different scenarios (e.g., daytime vs night, light flares, or
different seasons). Accordingly, these features change with
different scenarios and are not effective to encode all scene
scenarios for image matching in long-term place recognition.

Global features portray the holistic representation of the
scene. For example, Histogram of Gradients (HOG) features
group pixels in a grid and stores unsigned gradient changes
within each of the pixels in a histogram. GIST [20] features,
constructed steerable Gabor filters at different orientations
and scales to perform place recognition [21]. Local Binary

Pattern is used to represent the whole image using intensity
and gradient differences within the image to calculate a
binary string [22]. Given the recent advancement in deep
learning, Convolutional Neural Networks (CNNs) were also
utilized to extract deep representative features to match
image sequences to perform long-term place recognition
[23], [24], [25]. Many other approaches [26], [27] have also
used global features to successfully perform long-term place
recognition. These global features without using dictionary-
based quantization can encode the whole image information.
It has been observed that, while performing long-term place
recognition, global features outperform local features [7],
[27], [28].

The third category is based on representation learning.
Several techniques utilize convolutional neural networks in
order to learn representative features from visual images [29].
More recently, [8], [9] address the challenges of the Long-
term Appearance Change (LAC) problem by using a learning
method to learn which visual feature extraction modalities
are shared between different scene scenarios.

Although visual place recognition showed promising per-
formance in good lighting conditions, in harsh environments
with low lighting, high-quality images can be hard to obtain.
Place recognition approaches based on LiDAR data becomes
necessary in such conditions.

B. 3D Place Recognition

3D place recognition methods fall in four broad categories:
global scene descriptors, histogram feature binning, keypoint
voting, and learning approaches. Constructing a global scene
descriptor and comparing it to a database of previously seen
locations has been well studied. In [10] and [30], range image
similarity is calculated to recognize places. [31] constructs
a feature from sparse triangulated landmarks. Other tech-
niques utilize histograms of point cloud features to perform
place recognition. In [12], histograms of normal distribution
transform are constructed based on surface orientation and
smoothness. In [32], [33], histograms are constructed of
simple global features extracted from LiDAR scans. In
[11], [34], keypoints are 3D descriptors that are calculated
from a subset of 3D data. The keypoint downsampling
and extraction allows matching to be performed quickly.
Other approaches utilize local features called segments, and
implement a segment matching algorithm [35]. There has
also been research into extracting learned deep features from
point cloud data [36], [37], [38]. The PointNetVlad approach
extracts deep features from the point cloud and also uses a
separate deep network for place recognition [13]. CNNs have
also been successfully used to infer 3D structures [39], [40]
and generate local key-point descriptors for point clouds [38].

Previous methods for 3D place recognition are generally
based on manually defined features without representation
learning. Long-term variations have also not been explicitly
addressed by the methods using 3D point clouds. In addition,
while voxel-based 3D representations have been commonly
used for 3D SLAM, 3D place recognition using voxel-based
representations has not been well addressed.
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III. THE VBRL APPROACH

Notations: Given a matrix M = {mij} ∈ <u×v , we refer
to its i-th row and j-th column as mi and mj . Its Frobenius
norm is computed by ‖M‖F =

√
Σu

i=1Σv
j=1m

2
ij . Given a

vector m ∈ <v , its `2-norm is defined as ‖m‖2 =
√
m>m.

A. Problem Formulation

Given a set of point cloud instances acquired during long-
term LiDAR-based navigation over different scenarios, each
point cloud is divided into a set of voxels. Then, multiple
feature types are extracted from each of these voxels and we
defined a modality as the features computed from a specific
feature descriptor. The multi-modal features extracted from
all voxels are denoted as X = [x1, . . . ,xn] ∈ <d×n. xi ∈ <d

is the vector of features extracted from all the voxels of the
i-th 3D point cloud, which is a concatenation of features
from all m modalities, such that d = Σm

i=1Σv
j=1dij , where

dij is the dimensionality of the i-th feature modality in
the j-th voxel, and v is the total number of voxels. The
corresponding long-term scenarios (e.g., summer and winter)
are represented as Y = [y1, . . . ,yn] ∈ <n×c, where c
denotes the number of scenarios and yi is the scenario
indicating vector, with each element yij ∈ {0, 1} denoting
that the i-th 3D point cloud is collected from j-th scenario.

Then, we formulate place recognition based on 3D point
clouds as a regularized optimization problem:

min
W
L(X,Y;W) + λR(W) (1)

where L(.) is the loss function, R(.) is the sparsity-inducing
regularization term, and λ ≥ 0 is a trade-off hyperparameter
to balance the loss function and the regularization term. The
model parameter W is a weight matrix, which represents the
importance of the features in X to represent the scenarios Y
in general. By learning the weight matrix W in Eq. (1),
we learn features that are more important towards place
recognition. That is, the features that are more important
towards place recognition have higher weights and the less
important features have weights closer to zero. The loss
function is designed to encode the error of using the learned
model to represent the scenarios, which can be defined as
L(X,Y;W) = min

W
‖X>W −Y‖2F .

The solution to the optimization problem defined in Eq. (1)
is W = [w1, . . . ,wc] ∈ Rd×c, where wi ∈ <d denotes the
weights of features from all views and modalities to represent
the i-th scenario. Since wi contains the weights of features
from m-modalities in all voxels, it can be further denoted as
wi = [w1

i , . . . ,w
m
i ]>. In addition, since each wj

i includes
the weights of features (extracted from the j-th modality with
respect to the i-th scenario) from all voxels, it can be further
divided into v parts as wj

i = [wj1

i , . . . ,w
jv

i ] ∈ <dij , where
wjk

i denotes the weights of features extracted from the k-th
voxel and j-th modality with respect to the i-th scenario.

B. Learning Representative Voxels and Feature Modalities

When performing place recognition, we hypothesize that
some voxels within the 3D point cloud are more representa-

tive than others. To identify representative voxels for place
recognition, we introduce a regularization term called a voxel
norm. Formally, this norm is a sparsity-inducing norm that
can be mathematically defined as RV (W) = Σv

i=1‖Wi‖F .
This voxel norm RV is used as a regularization term in our
optimization formulation to enforce the grouping effect of
the multimodal features shared among different scenarios and
promote sparsity among different voxels.

Different feature modalities usually capture different char-
acteristics of a place. Some feature modalities can be more
representative to describe a place than others. Thus, it is also
beneficial to identify the importance of feature modalities to
improve long-term place recognition performance. Accord-
ingly, we also propose a regularization term to identify rep-
resentative feature modalities under the unified regularized
optimization framework, which is named modality norm. It
is mathematically defined as:

RM (W) =

m∑
i=1

‖Wi‖F +
d∑

i=1

‖wi‖2 (2)

which is a combination of two structured sparsity-inducing
norms. The first term applies the Frobenius norm within
each modality and then applies a group `1-norm across
different modalities. By enforcing sparsity among modalities,
this term allows the VBRL method to identify representative
modalities that have larger weights, and to make the weights
of non-representative features tend towards 0. The second
term in Eq. (2) denotes the `2,1-norm (i.e., a `2-norm for
each column and `1-norm across different columns) used
to enforce the sparsity of the columns of W and grouping
effect of the weights in each column. By enforcing sparsity of
individual features, this norm helps recognize representative
individual features and assign a zero value to the weights of
non-representative features (e.g., from noise).

Incorporating both of the regularization terms to identify
representative voxels and feature modalities, our final formu-
lation of learning voxel-based multimodal representations for
place recognition can be defined as the following regularized
optimization problem:

min
W
L(X,Y;W) + λ1RV (W) + λ2RM (W) (3)

where λ1 and λ2 denote trade-off hyperparameters to govern
the balance between the loss function and the structured
sparsity-inducing norms.

C. Voxel-Based Multimodal Place Recognition

Once the formulated regularized optimization problem in
Eq. (3) is solved based on Algorithm 1, the optimal weight
matrix W∗ is obtained. Given the feature vector x ∈ <d that
is extracted from all voxels and feature modalities in a query
3D point cloud, and a feature vector from a template 3D point
cloud x̃ ∈ <d, we compute a similarity score between this
query and template point clouds as follows:

s =

m∑
i=1

v∑
j=1

wM (i) ∗ wV (j) ∗ (|xij − x̃ij |) (4)
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Algorithm 1: The proposed iterative algorithm to
solve the formulated problem in Eq. (3)

Input : X = [x1, · · · ,xn] ∈ <d×n and
Y = [y1, · · · , yn]

> ∈ <n×c

1 Let t = 1. Initialize W(t) by solving
min
W
L(X,Y;W).

2 while not converge do
3 Calculate the block diagonal matrix D(t+ 1),

where the k-th diagonal block of D(t+ 1) is
Iv

2‖Wk‖F .
4 Calculate the block diagonal matrix D̃(t+ 1),

where each element of the matrix D̃(t+ 1), is
given as

(
Im

2‖Wi‖F + 1
2‖wi‖2

)
.

5 For each wi(1 ≤ i ≤ c),
wi(t+ 1) =

(
(XX)> + λ1D(t+ 1)

+ λ2D̃(t+ 1)
)−1

(Xyi).
6 t = t+ 1.

Output: W = W(t) ∈ <d×c

where xij denotes the vector features from the i-th modality
and the j-th voxel, wM (i) is sum of all weights of features
in the i-th feature modality, and wV (j) is sum of all weights
of features in the j-th voxel. When this score is above a user-
defined threshold, the query 3D point cloud is determined as
a match with the template 3D point cloud.

D. Optimization Algorithm
The objective function in Eq. (3) is composed of three non-

smooth regularization terms. Generally, this is challenging to
solve. Accordingly, we implement an iterative algorithm to
solve the formulated regularized optimization problem.

Taking the derivative of the objective function with respect
to the columns of W and setting it to zero gives us:

XX>wi −Xyi + λ1Dwi + λ2D̃wi = 0 (5)

where D is a diagonal matrix with the i-th diagonal element
defined as Iv

2‖Wi‖F , D̃ denotes a diagonal matrix with the
i-th diagonal element defined as Im

2‖Wi‖F + 1
2‖wi‖2 , and Iv

and Im are identity matrices with size v and m respectively.
Then, we obtain:

wi =
(
XX> + λ1D + λ2D̃

)−1
(Xyi) (6)

Since the matrices D and D̃ are dependent on the weight
matrix W, we implement an iterative algorithm to solve the
formulated regularized optimization problem, as described in
Algorithm 1, which holds a theoretical guarantee to converge
to the global optimal solution1.

Complexity. Since the optimization problem in Eq. (3) is
convex, Algorithm 1 converges to the global optimal solution
fast. In each of the iterations, computing Step 3 and Step 4
is trivial. Step 5 can be computed through solving a system
of linear equations with quadratic complexity.

1Proof is available at: http://hcr.mines.edu/publication/
VBRL_Supp.pdf

IV. EXPERIMENTAL RESULTS

In our implementation, each 3D point cloud scan from
LiDAR is divided into many voxels. From each voxel five
different feature descriptors are extracted including (1) co-
variance of points contained within the voxel, (2) Histogram
of Oriented Gradients (HOG) features of a snapshot of the
point cloud in the XY plane, (3) XZ plane, (4) YZ plane,
and (5) Subvoxel Occupancy.

The subvoxel occupancy feature is obtained simply by
dividing a voxel into 8 equal subvoxels. If the subvoxel is
occupied by any points, a 1 is written to the feature matrix.
Otherwise a 0 is written. As opposed to concatenating these
features together from each voxel, VBRL operates with the
intuition that learning a shared representation of the overall
scene from multiple data instances and weighting the feature
matrix accordingly will fuse the feature modalities more
effectively for loop closure detection.

Experiments are evaluated both qualitatively and quantita-
tively. To showcase that VBRL learns a better representation
of a LiDAR scan than feature extraction alone, we compare
VBRL (λ1 = 10 and λ2 = 0.1) to performing loop closure
detection with features concatenated together (λ1 = 0 and
λ2 = 0), voxel learning only (λ1 = 10 and λ2 = 0), and
modality learning only (λ1 = 0 and λ2 = 0.1).

A. Results on Autonomous Driving Simulation

At first, we evaluate the performance of our VBRL ap-
proach to perform 3D point cloud based long-term place
recognition by extensive experimenting on data obtained
from the AirSim simulator. AirSim [41] is an autonomous
driving simulator developed by Microsoft to facilitate the
development of self-driving vehicle methods in a virtual
environment. We collect the dataset in AirSim’s cityscape
environment with roads, skyscrapers, parks, and dynamically
moving cars and pedestrians. A virtual LiDAR sensor is
installed on top of a vehicle to record the point cloud data
from the virtual environment. The point cloud based LiDAR
scans are collected from 210 unique locations within the
environment. These scans are first collected in clear, sunny
weather. This set of point cloud scans constitute one scenario
of training our VBRL approach. Then, point cloud scans are
collected from these locations from the self-driving vehicle
during snow and fog conditions forming the second scenario.
All of the 210 locations were distinctive to one another
and there was no overlap. To perform the experiments on
simulated data and evaluate our approach, we used 160 point
cloud scans for training and a disjoint set of 50 point clouds
are designated for testing. It is to be noted that the training
and testing data doesn’t have any overlap to make sure that
our approach can learn a robust weight matrix W, that can
be used to perform place recognition in new and unseen
locations.

The main challenges associated with this dataset are the
dynamic cars and pedestrians. The LiDAR scans are robust
to changes in lighting conditions and are not affected by the
virtual snow. However, because fog, as well as snow, could
reflect lasers, certain LiDAR points may be represented as
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Fig. 2. Qualitative and quantitative experimental results over the AirSim simulations.

noise, affecting the representation of the scene adversely.
This is a key challenges in present-day place recognition
using point clouds because autonomous vehicles need to
operate in snow, fog, rainy seasons. However, this dataset
doesn’t provide data with variation in vegetation. Illustrated
in Figure 2 are the place recognition results based on our
VBRL approach and its comparison to baseline approaches.
The qualitative results on 3D point cloud scan matches are
illustrated in Figure 2(a). The template point clouds from
the snow scene that obtain the maximum matching score are
shown in the top row, while the query scenes from the clear
scene are shown in the bottom row. It is observed that our
VBRL approach can match point clouds, despite changes in
lighting conditions and weather, thus proving the capability
to perform long-term place recognition.

The classification problem is analyzed quantitatively using
the standard precision-recall curve. Figure 2(b) shows the
precision-recall performance of VBRL when compared with
features concatenated together, discriminative voxels alone,
and discriminative features alone. We observe that using
feature concatenation alone we achieve minimal performance
in point cloud-based place recognition. Using discriminative
features increases the performance, as the area under the
curve increases. Introducing the discriminative voxel learning
approach increase the performance even more. Finally, we
observe the performance of our VBRL approach, where it
obtains the maximum area under the curve when compared
with previous methods, indicating the best performance.
Therefore, by fusing multiple feature modalities together and
weighting them based on importance, the VBRL approach
yields the best results for loop closure detection.

The modality weights learned automatically for the AirSim
dataset are shown in Figure 4(a). The Subvoxel Occupancy
feature is the most important with a weight of 30% and
the covariance feature is the second most important with a
weight of 29%. The three HOG feature importances range
from 4% for HOG-XY to 28% for HOG-XZ.

The learned voxel weights are shown via a color map
above in Figure 1. Voxels occurring more towards the cen-

ter of the workspace are learned to be weighted as more
important in place recognition. This makes sense as the
center voxels are most likely to be occupied because they
are closest to the sensor origin and in a LiDAR scan point
clouds are more populated in the center. Apart from this, we
also analyze the relative importance of the different layers
of voxels (top, middle, and bottom) when performing place
recognition using point clouds in the AirSim dataset. It was
observed that the relative importance of bottom, middle and
top layer was 37.08%, 42.22%, and 20.72% respectively.
This indicated that the bottom and middle layer were critical
towards point cloud based place recognition

B. Results on the NCLT Dataset

The North Campus Long Term (NCLT) [42] dataset is
collected at the University of Michigan by a mobile robot
driven around the campus. There are 27 separate sessions
with varying robot routes in the dataset, which occur over
the course of 15 months and span multiple times of day and
seasons. The dataset contains long-term changes in lighting
conditions, vegetation, and weather. Two sessions are chosen:
one collected in June and the other in December. These
seasons are selected as they have overlapping routes and
seasonal changes. A Velodyne HDL-32E LiDAR sensor was
used to collect 3D point cloud data of the environment and
was mounted on the mobile robot. This dataset has dynamic
pedestrians and also has vegetation changes. Change is
vegetation is typically observed with seasonal changes and
is important to be addressed in the LAC problem, to perform
long term place recognition. The NCLT dataset includes 850
LiDAR scans from the month of June and a corresponding
850 LiDAR scans from the month of December. For this
set of experiments, we choose 700 instances of point clouds
for training and for testing a disjoint set of 150 point cloud
scans are taken. Again, it is to be noted that the training and
testing data doesn’t have any overlap in order to make sure
that our approach is robust.

The qualitative results of the performance of our VBRL
approach are provided in Figure 3(a) in which query scans
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Fig. 3. Experimental results over the NCLT dataset for long-term 3D point cloud based place recognition in different seasons.

(a) Modality importance for AirSim (b) Voxel weights for NCLT (c) Hyperparameter analysis

Fig. 4. Experimental results over the NCLT dataset in different seasons. Figure 4(a) shows the importance of feature modalities for the AirSim simulations.
Figure 4(b) shows the importance of voxels for long-term place recognition using the NCLT dataset, where the robot is located in the center of the point
cloud at position (0, 0). Figure 4(c) illustrates the performance variations of our VBRL approach given different hyperparameter values over NCLT.

from the data collected in June are shown on the bottom
row and resulting matches from December are shown in the
top row. Our VBRL approach is able to recognize scenes
from 3D point cloud data despite vegetational, seasonal and
structural changes (such as leaves falling off of trees).

Figure 3(b) shows the qualitative precision-recall analysis
of VBRL on the NCLT dataset. Once again, it is observed
that VBRL yields greater area under the precision-recall
curve than discriminative voxels, discriminative features,
or feature concatenation. Additionally, the learned modality
weights obtained are shown. The learned voxel weights are
also shown in Figure 4(b) and results obtained are similar to
the AirSim dataset in that the center voxels are learned to
be of more importance than the outer voxels.

The learned voxel weights are also shown in Figure 4(b).
An analysis of weights of the different voxel layers showed
that the bottom, middle and top layer have their relative
importance as 33.92%, 54.62%, and 11.46% respectively.
Quite contrasting to the results obtained in the AirSim
dataset, we see that the top layer has very little importance.
The bottom layer’s importance also decreases. However, the
middle layer plays a major role in place recognition. The
NCLT dataset was majorly collected when the robot traverses
over open areas and didn’t have any tall structures throughout

its route. Thus, the bottom and top layer’s importance is less,
whereas, the middle layer has the most importance as it has
the maximum number of important features that are critical
in place recognition as opposed to the AirSim point cloud
data which had point cloud scans of tall buildings nearby.

C. Discussion

Importance of Voxels and Feature Modalities: Our VBRL
approach can automatically estimate the importance of each
of the voxels and feature modalities while training. The
relative importance of voxels is illustrated in Figure 4(b).
Intuitively, points closer to us are more important towards
performing place recognition. It is analogous to the fact
that humans also use nearby points such as street signs and
buildings to recognize places rather than using mountains
in the distance. Accordingly, our approach indicates that
point clouds near the center are of more importance. On
the other hand, voxels far away from the center are of least
importance and thus their weights are close to zero. The
importance of feature modalities are illustrated in Figure
4(a). The pie chart here indicates the relative importance of
different feature modalities towards performing voxel-based
place recognition. It is observed that Subvoxel occupancy,
Covariance and HOG-XZ have an importance of 30%, 29%
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and 28% respectively and are equally important in general,
whereas, HOG-XY is of least importance.
Hyperparameter Selection: The hyperparameters λ1 and
λ2 in our formulation of the final objective function, Eq.
(3), are designed to control the strength of regularization
norms over learning descriptive voxels and feature modalities
respectively. Their optimal values can be determined using
cross-validation during training. From the result in Figure
4(c), we observe that when λ1 = 10 and λ2 = 0.1, VBRL
statistically obtains the best accuracy while performing 3D
point cloud based place recognition. In general, the range
λ1 ∈ {1, 100} and λ2 ∈ {0.01, 1} can result in satisfactory
results, which demonstrates that both of the regularization
terms are useful to improve performance.

V. CONCLUSION

In this paper, we study the key problem of long-term place
recognition using 3D point clouds, through proposing a novel
Voxel-Based Representation Learning (VBRL) method. Our
approach divides each 3D point cloud scan into multiple
voxels in the 3D space and extracts multiple modalities
of features from each of the voxels. Then, our VBRL
approach performs joint learning of representative voxels
and feature modalities to represent places and integrates the
representation for place recognition in a unified regularized
optimization formulation. Due to the presence of two non-
smooth sparsity-inducing norms, our formulated optimization
problem is hard to solve. Therefore, we design an iterative
solver that has a convergence guarantee. Experiment results
have validated that VBRL obtains promising performance on
long-term place recognition using 3D point clouds.
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