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Abstract— This paper develops a coverage-centric adaptive
path planner to visually survey a planar environment. This is
achieved by modifying an existing path planning architecture to
use a novel coverage estimation approach called convolved cov-
erage estimation (CCE). The planner maximizes the probability
of terrain coverage and exploits terrain features for loop closure
to keep path uncertainty in check. The developed algorithm
considers multi-dimensional uncertainty, operates in real-time,
and does not require external correction methods like GPS.
These characteristics are validated in high-fidelity simulation
and flight tests on an unmanned aerial vehicle (UAV).

I. INTRODUCTION

A. Motivation

This work is motivated by the need to conduct complete
visual surveys of the sea floor for oceanographic science.
Conceptually, the goal of the developed planner is to guar-
antee a minimum probability of coverage over the entire map
with as few measurements as possible. The intent is to reduce
the risk of missed coverage by developing a path planner that
is coverage-conscious.

Ensuring a high-quality visual survey requires path plan-
ning that accounts for uncertainties in vehicle navigation,
maintains sufficient sensor overlap to avoid missed coverage,
and effectively uses terrain information for loop closure.

Current approaches to benthic surveying typically involve
flying predetermined lawnmower paths with a high overlap
between adjacent swaths [1], [2]. This low crosstrack spacing
serves to minimize the risk of missed coverage by increasing
image overlap. Many navigation methods exploit repeated
observations of terrain by using visual-inertial simultaneous
localization and mapping (SLAM) to adhere to the nominal
trajectory. In many cases, such systems utilize expensive
inertial sensors and prior knowledge of terrain information
to maintain a trajectory estimate with low uncertainty.

As seen in the literature, complete coverage can be
successfully achieved when operating with low navigation
uncertainty, or in feature-rich terrain. However, in many
situations high quality navigation estimates are difficult and
an additional aid is needed.

B. Path Planner

The adaptive path planner described in this paper aims to
automate the survey process and reduce the probability of
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missed coverage. This is done by estimating the probability
of coverage online and directly using this estimate to plan
the vehicle trajectory.

The developed planner has similarities to next best view
(NBV) algorithms used in literature whereby the next optimal
waypoint is chosen from a list of candidates. Optimality is
based on several criteria including gaps in coverage, distance
traveled, and whether a detour to informative terrain for loop
closure would serve to improve the coverage estimate. More
details are given in Section III.

II. BACKGROUND

Coverage estimation and coverage path planning (CPP)
are widely studied problems in the literature [3]. Missions
focused on CPP have many underwater applications such
as inspection of vessels [4]–[6], terrain surface reconstruc-
tion [7], and mine hunting [8], [9]. The underwater environ-
ment presents engineers with the added challenge of state
estimation in the absence of GPS. This has led to the long and
rich history of using vision aided underwater SLAM [10].

Research in underwater CPP has focused on improving
navigation performance and minimizing localization uncer-
tainty. Path planners have exploited visual information to
induce loop closure and adhere to nominal boustrophe-
don [11] trajectories with great success. Kim [12] develops
such a planner that minimizes uncertainty along a nominal
path without explicitly tracking coverage. The result is a
vehicle trajectory that closely follows the nominal path with
deviations designed to improve navigation performance.

Others have improved CPP navigation performance by
using a prior saliency map [13], following walls [14] or
contours [7], or using a fleet of multiple robots [15]. Other
works have exploited the ability to revisit informative terrain
features [16] or intermittently surface to acquire GPS sig-
nals [9] to reduce uncertainty. The common thread for much
of this research has been to improve coverage indirectly by
attaining accurate navigation performance while following a
path planned ahead of time.

A few works have performed CPP by addressing proba-
bilistic coverage directly, which is a measure of coverage
when the vehicle pose is non-deterministic. This idea is
examined by Das et al. [17] where the authors note that in
the presence of uncertainty, the path followed by a robot can
deviate from the plan and result in an inaccurate coverage
estimate. They show that performance can be improved by
using an algorithm that accounts for path uncertainty and
produces a feedback policy accordingly.
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Probabilistic coverage is also addressed in more recent
work [8], [9] where a side-scan sonar is used to calculate
mine detection performance on each cell in a map. This is
achieved by applying a transformation for continuous random
variables [18]. The authors leverage the nature of the sensor
(modeled by a closed form, differentiable, and one-to-one
invertible function) to derive a probability density function
(PDF) for mine detection. Due to the nature of the sensor,
the PDF is calculated perpendicular to the vehicle trajectory
only.

The approach presented in this paper is to directly address
probability of coverage much like [8], [9], but in a fashion
that allows real-time coverage estimates incorporating mul-
tidimensional uncertainty. However, the algorithm developed
here calculates an expectation of coverage probability at each
point on the map [19], not a complete PDF.

The adaptive path planner in this paper is structurally
similar to the work by Kim [12] in that deviations to exploit
loop closure on informative terrain are considered if this
minimizes the cost function. This work is different in that the
cost function directly incorporates an estimate of coverage
probability. The change in cost function also dictates a
change to the planner output. This adaptive planner outputs
the location of the next optimal waypoint in addition to any
intermediate deviations for loop closure. It does not strictly
adhere to a nominal path (e.g. a lawnmower).

III. TECHNICAL DETAILS

A. Adaptive Path Planner

The adaptive planner assumes that a history of vehicle
poses and associated uncertainties is available. This infor-
mation can be provided by several SLAM algorithms. The
planner also depends on the ability to estimate coverage
given vehicle poses and uncertainties. The coverage esti-
mation process is based on convolved coverage estimation
(CCE) [19] and is explained in Section III-B. The planner
executes after every measurement and terminates when the
estimated coverage is considered complete. The pseudocode
for the adaptive planner is presented in Algorithm 1.

Conceptually, the adaptive planner chooses a target way-
point location from a list of candidates to maximize coverage.
The candidate pool is generated based on the current estimate
of vehicle position. Intermediate waypoints are placed based
on observed terrain features if this increases the probability
of coverage at the target. These choices are made to maxi-
mize the score Si given in (1).

Si = (ci − ε di) (1− 1(gi(yi, δ))) (1)

where:
i : candidate waypoint at location (xi, yi).
ci : area of new cells covered. See Section III-B for details.
ε : small positive value.
di : distance traveled to reach (xi, yi), inclusive of inter-

mediate waypoints.
δ : distance parameter for tuning the size of gaps that are

to be ignored.

gi : size of coverage gap; area of cells not covered between
yi and yi − δ.

Maximizing the score results in the following emergent
behavior:

• The distance traveled is only considered if multiple
candidates give equal coverage. This allows the vehicle
to deviate form the nominal trajectory to close a gap
or close a loop at a terrain feature with little regard to
distance traveled. The coverage/distance balance can be
adjusted by varying the value of ε.

• The gi function prevents the vehicle from deviating to
cover a gap that is farther than δ. The gap will eventually
be covered, but the algorithm determines this to be a
lower priority.

• Ignoring small gaps in the short term has the added
effect of giving gaps the opportunity to implicitly close
in the event of a loop closure.

• If the terrain information is abundant and well dis-
tributed, the resulting trajectory is similar to a traditional
lawnmower.

Algorithm 1: Adaptive path planner
Data: Alongtrack increment: ∆x; map boundary;

GraphSLAM output: ~µ, Σ
Result: Next waypoint: (xi, y

∗
i ); intermediate waypoint:

(xint, yint)
1 coverage←− CCE(~µ, Σ)
2 if coverage is complete then
3 return ∅
4 end
5 xi ←− xi−1 + ∆x, increment alongtrack coordinate

(decrement if xi outside map boundary)
6 Generate list of N candidates y(1:N)

i in map boundary
7 for Each candidate n
8 Simulate direct travel to (xi, y

(n)
i )

9 Calculate vehicle uncertainty, Σ
(n)
i

10 if tr(Σ
(n)
i ) > threshold then

11 for Each terrain feature, j
12 Simulate travel to (xi, y

(n)
i ) via (xj , yj)

13 Calculate vehicle uncertainty, Σ
(n)
j

14 end
15 j∗ ←− argminj tr(Σ

(n)
j )

16 (xint, yint)←− (xj∗ , yj∗)

17 Σ
(n)
i ←− Σ

(n)
j∗

18 else
19 (xint, yint)←− ∅
20 end
21 Get CCE from visiting (xi, y

(n)
i ) via (xint, yint)

22 Calculate score, S(n)
i ;

23 end
24 n∗ ←− argmaxn S

(n)
i

25 y∗i ←− y
(n∗)
i

26 return (xi, y
∗
i ); (xint, yint)
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As seen on Lines 6-7 of Algorithm 1, the adaptive path
planner chooses one from a list of N generated candidate
waypoints after every measurement. To keep processing time
to a minimum, the candidates 1 : N all have have the
same along-track coordinate xi, but vary in terms of their
crosstrack coordinate yi. An example of this approach is
presented in Figure 1. This illustrates a sample of candidate
waypoints (A, B, and C) in red, located at various crosstrack
coordinates on the map.

The planner simulates travel to each candidate and prop-
agates vehicle position uncertainty with EKF–SLAM. If
position uncertainty (measured as the trace of the covariance)
can be reduced by traveling via a previously observed terrain
feature, an intermediate waypoint is placed at the terrain
feature.

The trace of the covariance is used as a scalar measure
of uncertainty as it preserves more of the overall size [20].
The determinant of the covariance is more common but this
measure collapses to zero even if a single eigenvalue of the
matrix goes to zero. The trace does not suffer from this
drawback.

Once the vehicle uncertainty at each candidate is de-
termined, the probability of coverage from traveling to
each candidate is calculated using CCE on Line 21. The
sensor footprints (shown in Figure 1 as dashed boxes) are
determined by truncating this probability with a user-defined
threshold explained in Section III-B. This is used to calculate
the score on Line 22.

The optimal waypoint is chosen to maximize the score,
and the planner outputs that waypoint’s location. For the
illustrated example, waypoint B is chosen. This is because
C doesn’t result in any new coverage and A results in too
large of a coverage gap in the −y direction.

A

B

C

Not Covered

Covered

Vehicle
Path

Observed
Feature

Expected 
Coverage

Candidate
Waypoint

Fig. 1: The adaptive path planner evaluates candidate way-
points based on: expected coverage, vehicle pose uncertainty,
distance traveled, and gaps in coverage.

Overall, the adaptive planner greedily maximizes coverage
but adapts to vehicle uncertainty in real-time. When vehicle
uncertainty is low, overlap is reduced and more new terrain
is covered. When uncertainty is high, overlap is increased,
either by eroding the expected coverage using CCE (see
Section III-B) or by revisiting informative terrain.

B. Coverage Estimation

A key step in the planning process is estimating the proba-
bility of coverage. This estimate is calculated by convolving
the state estimate with the sensor footprint. CCE has the
effect of eroding the sensor footprint in proportion to the
direction of vehicle pose uncertainty. The extent of erosion is
controlled by a user defined threshold that represents a trade-
off between false positive and false negative coverage. This
work is presented in [19]. Overall, CCE results in fewer false
positives when compared to only using the best estimate of
the vehicle pose, particularly at instances of high uncertainty.

The probabilistic estimate from CCE is thresholded with
a user-defined value. The area of cells that exceeds this
threshold is ci.

IV. RESULTS

This section shows the results of a coverage mission with
a UAV in a high-fidelity simulated environment as well as
flight tests. For simulated missions, the adaptive path planner
was implemented on a simulated UAV flying over flat terrain.
The UAV model was a generic quadrotor available in the
open-source Gazebo environment (see Figure 2a).

Flight experiments were conducted in the Boeing Flight
& Autonomy Laboratory at Stanford University. This facil-
ity is equipped with an OptiTrack motion capture system,
capable of determining vehicle position and orientation to
sub-millimeter accuracy. Data from OptiTrack was used as
ground truth for evaluating results. The UAV chosen for
these tests was an Intel® Aero RTF Drone, equipped with
a downward facing camera. Figure 2b shows a sample flight
test in progress. Similar to Gazebo, fiducial tags (with no
prior location knowledge) were used as analogs for terrain
information.

In both environments, the vehicle was initialized in a
corner and commanded to achieve a minimum 90% prob-
ability of coverage. Artificial noise was added to all three
position states as well as heading to simulate error due to
dead-reckoning. This included a constant, unknown drift rate
for the x and y position states. Pose estimation was done
using graph-based simultaneous localization and mapping
(GraphSLAM) [21]. This algorithm generates motion con-
straints between odometry and terrain features to solve the
full SLAM problem. AprilTags [22] fiducial markers were
placed on the ground plane to serve as terrain information.
Fiducial tags were used for convenience to enable feature
correspondence that is outside the scope of this work.

A. Simulated Mission - Predetermined Lawnmower

The extent of the artificially added noise is illustrated
in Figure 3 where the vehicle was commanded to fly a
predetermined lawnmower path, followed by a diagonal pass
to induce loop closure. This figure shows the path that was
estimated and the path that was flown. The vehicle trajectory
exhibits significant overlap, but not over informative regions.
This results in incomplete coverage.
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(a) Screenshot of UAV simulation in Gazebo (b) Image of UAV during flight

Fig. 2: Results were obtained using a UAV in simulation as well as flight experiments
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Fig. 3: UAV trajectory when following a predetermined path
with artificially corrupted inertial measurements. The red
estimated path follows a lawnmower that is expected to
cover the map. The true trajectory, shown in blue, exhibits
significant drift and fails to adequately cover the workspace.

B. Simulated Mission - Adaptive Path Planner

The simulated mission was carried out with the aim of
covering a square area measuring 16 meters on a side. The
UAV was first commanded to image one edge of the map,
then the adaptive planner was activated to complete the
survey autonomously.

For this mission, the UAV proceeded to cover the map
using the adaptive planner for optimizing waypoint location
and CCE for coverage estimation. The UAV made a few
visits to informative terrain (see Figure 4a) and those were
spread between the features in the middle of the map (moder-
ately certain) to those in the lower left corner (highly certain).
Repeatedly visited areas can also be seen in Figure 4b, where

the bright yellow region in the center indicates more frequent
revisits to informative terrain. Note that there is no red
(false positive coverage) in this figure, indicating complete
coverage.

In another experiment, the simulated UAV was flown over
highly informative terrain (see Figure 5). The resulting sur-
vey was a lawnmower-like path with very little overlap. No
specific areas were visited with more frequency as the terrain
features were evenly distributed throughout the workspace.
Complete coverage was achieved in this case as well.

C. Flight Test - Adaptive Path Planner

The flight test was carried out in a smaller area (measuring
7 m × 5 m) due to space constraints. The approach taken to
conduct this mission was identical to that for the simulated
terrain.

The path flown has similarities to the simulated mission.
It can be seen in Figure 6a that the UAV makes several trips
to the feature-rich region in the center of the map. Note that
true terrain feature locations were unavailable so the feature
locations estimated using GraphSLAM are plotted instead.

The coverage resulting from this mission was 99.9%
complete with only 0.12% of the area falsely identified as
being covered. This slight gap in coverage is visible in
Figure 6b and this highlights the fact that CCE does not
guarantee complete coverage. The results of these tests are
displayed in Table I.

V. CONCLUSION

This paper develops a coverage-centric algorithm that
directly addresses probability of coverage when conducting
visual surveys. CCE ties uncertainties in the vehicle path
estimate to uncertainty in the coverage estimate and the
adaptive path planner maximizes coverage by optimizing the
location of the next waypoint. This process takes aspects
such as vehicle pose uncertainty, distance traveled, and gaps
in coverage into consideration.

Although this approach does not provide completeness
guarantees, the algorithm maximizes the probability of cov-
erage by revisiting informative terrain only when necessary.
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(a) UAV trajectory from adaptive path planning. The
estimated trajectory (red) is very close to the true trajectory
(blue). Yellow crosses represent true locations of terrain
information.

(b) Heatmap indicating revisited areas for adaptive path plan-
ning in simulation. The absence of red areas indicates complete
coverage.

Fig. 4: Simulation results from surveying an area with a UAV
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(a) UAV trajectory from adaptive path planning on feature-
rich terrain. The ubiquity of terrain information makes
revisits to specific areas unnecessary and the trajectory
looks more like a typical lawnmower in this case.

(b) Heatmap indicating revisited areas for feature-rich terrain.
The adaptive planner minimizes overlap in order to maximize
coverage when surveying terrain with many features that are
evenly distributed.

Fig. 5: Simulation results from surveying a feature-rich area with a UAV

TABLE I: Summary of results: visual surveys conducted using adaptive path planner in simulation and UAV flight test.

Environment Terrain Condition Mission Time (s) Coverage (%) Path Length (m)
True False Pos.

Simulation Poor features, localized in clusters 877 100 0 292
Simulation Feature-rich, randomly & uniformly distributed 582 100 0 173
Flight test Poor features, localized in clusters 312 99.9 0.12 72.7
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(a) UAV flight trajectory from adaptive path planning.
The estimated trajectory (red) is very close to the true
trajectory (blue) at times of high certainty (lower part of
the survey). Yellow crosses represent estimated locations
of terrain information.

(b) Heatmap indicating revisited areas for adaptive path plan-
ning in flight experiments. The red area on the upper edge
indicates missed coverage.

Fig. 6: Flight experiment results from surveying an area with a UAV

This is shown in experiments carried out in high-fidelity
simulated environments and flight tests.

Overall, the developed algorithm allows the vehicle to
revisit missed areas and exploit terrain information to avoid
redeployment. This reduces the cost of the mission and the
burden on operators.
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