
Online gain setting method for path tracking using CMA-ES:
Application to off-road mobile robot control

Ashley Hill1, Jean Laneurit2, Roland Lenain2 and Eric Lucet1

Abstract— This paper proposes a new approach for online
control law gains adaptation, through the use of neural net-
works and the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) algorithm, in order to optimize the behavior
of the robot with respect to an objective function. The neural
network considered takes as input the current observed state
as well as its uncertainty, and provides as output the control
law gains. It is trained, using the CMA-ES algorithm, on a
simulator reproducing the vehicle dynamics. Then, it is tested
in real conditions on an agricultural mobile robot at different
speeds. The transferability of this method from simulation to
a real system is demonstrated, as well as its robustness to
environmental changes, such as GPS signal degradation or
ground variation. As a result, path following errors are reduced,
while ensuring tracking stability.

I. INTRODUCTION

In mobile robotics, accuracy and stability are usually
desired qualities of a controller, especially in the framework
of path tracking. They depend, however, on the correct tuning
of the controller gains, which are generally tuned empirically
by an expert or with the help of dedicated algorithms such
as the Ziegler–Nichols method.

Achieving this goal with a constant gain is not obvious,
as the optimal gain depends on multiple environmental
conditions, such as the quality of perception, ground sliding
conditions [Samson et al., 2016], and also the robot’s speed.
A constant gain for different configurations and contexts
of navigation is therefore not ideal. As such, an optimal
gain will need to be adaptive in order to maximize the
performance of the controller at any given time.

Methods for adaptive gains exists in the current state of
the art, such as fuzzy logic gain scheduling [Khesrani et al.,
2017], or LQR methods for gain tuning [Argentim et al.,
2013]. However fuzzy logic gain scheduling requires an
expert to tune a constant gain for each environmental case,
meanings the gains will be sub optimal for the edges of each
case. And using an LQR for gain tuning, implies finding the
optimal gains for said LQR, offsetting the problem.

Thus, the work presented in this paper is based on extend-
ing the previous state of the art on adaptive gains without the
use of an expert for gain tuning, with real experimentation
on an off-road mobile platform, with a complex and realistic
environment.

For this purpose, gain adapting will be defined as predict-
ing the quasi-optimal gain, from changes in the environment

1CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191,
France firstname.lastname@cea.fr

2Université Clermont Auvergne, Inrae, UR TSCF,
Centre de Clermont-Ferrand, F-63178 Aubière, France
firstname.lastname@inrae.fr

indicated in the environmental state, which are encoded in
the observed state. This involves determining an approximate
function, capable of mapping the observed state to the near-
optimal gain.

Several works on this have been proposed, specifically the
gain adaptation in real time using neural networks, such
as using a gradient based approach [Guo et al., 2009],
[Omatu and Yoshioka, 1997], [Chang et al., 2003] or with
an evolution based approach [Hill. et al., 2019], [Omatu and
Yoshioka, 1997].

However, these works are done with either: simple robot
dynamics, simple controllers, constant environments, or no
real experimentation. Furthermore, the performance of the
gradient methods is sub-optimal, as they require an exact
and noiseless model of the robotic system. As such, the
methods of this paper is based on an evolutionary approach,
specifically from [Hill. et al., 2019] as they have done similar
experimentation, with good results in simulation.

In this paper, the simulation that was used to train the
method take into account: a tire slip model, a steering
delay model, a dynamic model, noisy observations, and
controllers used in agricultural environment [Cariou et al.,
2008], [Lenain et al., 2007]. This was done in order to reach a
more realistic simulation of the real world experiments, with
controllers that are optimized for the task, so that the model
could work as is with the robot, and that a good baseline
comparison with a constant gain method could be obtained.

The details of the extensions to the simulation and the
robotic context are detailed in section II, with the proposed
method detailed in section III, followed by the training setup
and simulated results in section IV, with the experimental
setup detailed in section V, followed by real world exper-
imentation in section VI, ending with a discussion of the
results and some perspectives in section VII.

II. ROBOTIC MODEL & CONTEXT

The robotic task is path following of a known trajectory,
using a Extended Kalman filter due to it’s ubiquity. This task
will be considered in a agricultural context, due to the highly
dynamic environments, with lower speeds. The robot used is
a 500kg, 4 wheeled mobile robot, with front steering.

In the following subsections, the robotic model and the
control will be detailed.

A. Controller

In order to test the proposed method, the following con-
trollers were used. The first is called Classic which is defined
in the paper [Cariou et al., 2008], and is based on an extended

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7697

kinematic model, including the sideslip angles βF and βR,
which are estimated online using an observer, detailed in the
mentioned reference [Lenain et al., 2017]. The second is a
variant of the Classic controller, but with predictive control,
it is called the Predictive controller, and it is defined in the
paper [Lenain et al., 2007].

Both controllers are based on the same control equation,
which computes the steering angle values, it can be defined
as following:

δF = tan−1

{
tan(βR) +

L
cos(βR)

(
c(s) cos θ̃2

α + A cos3 θ̃2
α2

)}
+ βF

(1)
with: θ̃2 = θ̃ + βR

α = 1− c(s)y
A = −Kpy −Kdα tan θ̃2 + c(s)α tan2 θ̃2

These controllers take two gains as in order to tune them:
• Kp: which defines the distance to convergence with

respect to the lateral error.
• Kd: which defines the distance to convergence with

respect to the angular error.
And the variables used for its computation are defined as
follows and depicted on the Fig. 1: y The tracking error, θ̃
the angular deviation, c(s) the curvature at the curvilinear
abscissa s, βF and βR the front and rear sliding angle
respectively.

B. Simulation

In order to train the proposed method, a simulation must be
used for both time and safety reasons. For the robotic model,
a dynamic bicycle model is used (shown Fig. 1). With a

(D)

θ̃

δF

L

βR

βF

y

v

1
c(s)

Fig. 1. The mobile robot studied.

pure action delay of 0.5ms on the steering, as it is the worst
case steering action delay for the Adap2e platform [Deremetz
et al., 2019], that is used in the experimentation. The dynamic
simulation took into account the mass of the robot (500kg),
the vertical inertial (400kg.m2), and a Pacejka tire slip model
[Bakker et al., 1987] with gravel-like sliding conditions. The
model was also trained with a varying speed of 1.0ms−1,
1.5ms−1, and 2.0ms−1. The simulator was written in C++
and Python, for ease of use and high performance.

C. Objective functions

In order to train the method, a goal must be defined and
quantified in an equation; where the global minimum of this
equation is considered the ideal performance. For this, an
objective function ob1 is defined (equation 2). It has been
chosen in order to minimize the tracking error, decrease the

oscillation, while limiting important actions on the steering
angle. This objective function takes into account both the
path tracking errors and the steering energy.

ob1 =
1

T

N∑
n=0

[
|y(tn)|+ L|θ̃(tn)|+ 0.5L|δF (tn)|

]
dt [m] (2)

Where T is the total time taken to follow the path, N is the
number of measured timesteps, tn is the time at the timestep
n, y is the lateral error along the path, L is the wheelbase
length, θ̃ is the angular error along the path, δF is the front
steering angle, and dt is the time between each timestep. The
value of 0.5 has been set as the weighting coefficient for the
steering energy, this value was found empirically.

III. PROPOSED METHOD

The online controller gains optimization proposed is based
on the control scheme detailed on the Fig. 2. As it is depicted
on this figure, an adaptive control loop (in blue) is used to
achieve the path tracking task. The controller (detailed in the
section II-A) is tuned with two gains, defining the settling
distance, and the damping coefficient, classically defined as
constants. Such constant gains are defined in order to ensure
the stability of the path tracking with expected conditions
(speed, grip conditions, sensor noise...), and as such appears
to be non-optimal, when those conditions change over time.

Controller Robot

Observer

Tracking
errors

Errors Control input

MeasuresState

Optimizer

Gain model

Errors, state,
covariance,
curvature

Objective
function

Gains

Parameters

Fig. 2. Overview of the proposed method, with the contribution in the
dashed rectangle.

To overcome this drawback, a method dedicated to com-
puting online optimal gains is introduced, based on a gain
model (in purple on the Fig. 2). This gain model is fed
with the tracking variables (such as tracking error, angular
deviation, curvature, sensor noise, ...), and is designed to
minimize an objective function, using an optimizer (depicted
by the green block). The optimizer proposed here is Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
[Hansen, 2016], due to its performance in complex search
spaces such as neural networks [Hansen et al., 2010]. The
gain model being a neural network, due to its capability
to be a universal approximator [Hornik et al., 1990], with
hyperbolic tangent as its activation function and with hidden
layers of 40, 100 and 10. This was chosen in order to reach
a non linear transformation, while having a low number of
parameters so the CMA-ES method can perform optimally.

In order to achieve online computing of the optimal gains,
the neural network is trained off-line in a simulation, using
the CMA-ES optimizer guided by the objective function; as
exploring the gain space is time consuming, and can lead to
dangerous or unstable behavior in the real world conditions.

7698

This global scheme has been previously introduced in
[Hill. et al., 2019] for a single gain adaptation, showing
promising results in simulation, with a simple robotic model.
In this paper, a whole algorithm is proposed and tested
through full scale experiments.

Classically, machine learning methods train to minimize
a target metric (here the objective function), however mea-
suring the performance with the objective function must be
avoided, as the method might exploit the target metric, at the
detriment to other metrics (classically called reward shaping).
As such, to compare and interpret the quality of the trajectory
tracking performance, the following metric is used:

Aerror =

N∑
n=0

∣∣∣∣ṡ(tn)(y(tn) + ẏ(tn) dt

2

)∣∣∣∣ dt [m2] (3)

with: {
ṡ(t) = v(t)cos(θ̃(t))

ẏ(t) = v(t)sin(θ̃(t))

Where tn is the time at the timestep n, s is the curvilinear
abscissa of the trajectory, y is the lateral error along the
trajectory, dt is the sampling rate of the robot’s control (set
to 0.1s in this context), θ̃ is the angular error along the
trajectory, and ṡ, ẏ are the derivative of s, y respectively
over the time t.

The equation (3) is the approximate integration of the
surface error between the robot’s position and the target
trajectory using a Trapezoidal Riemann sum. This allows
comparison of performance between gain tuning methods,
independently of speed and time for the given trajectory.

IV. TRAINING SETUP

Two methods will be tested and compared in this paper:
• Expert constant gain: The expert tuned constant gain

for the robot defined for each experiment.
• NN ob1: the proposed method, trained with the ob1

objective function defined in equation (2).
The baseline method Expert constant gain is set to a

constant value, given by an expert who has tuned the gains
for the robotic platform and the controllers used.

The proposed method NN ob1 however, need to be trained
in order to explore the possible gain space, and determine
the optimal gains for the robot and controller.

The training is done in simulation, as the CMA-ES meth-
ods is too sample inefficient in order to be run in real world
condition in a reasonable time. It has be set with a population
size of 32, an initial sigma of 0.04, and 20000 maximum
evaluations as its time budget. The Classic controller is used
for the training. The coefficients of the Pacejka sliding curve,
were defined as to emulate poor sliding conditions. And
an action delay of 500ms was defined. The training was
done over each trajectory 5 times, at 3 speeds 1.0m.s−1,
1.5m.s−1, and 2.0m.s−1. It was trained with 2 trajectories
called sine, a sinusoidal curve and spline0, a sharp ”S” curve.
Midway in the trajectories, a GPS noise of 1m is applied to
simulate a loss of GPS signal. These trajectories were chosen
in order to simulate difficult paths for the Adap2e platform

and the controllers to follow accurately, with some simpler
sections in each trajectories so the proposed model does not
over-fit for complex trajectories.

A. Simulation results

The method having been trained in simulation, it suffers
from the simulation’s systematic error and inaccuracies with
reality, and as such the following simulated experiments will
show the ideal theoretical performance of the method.

The proposed control scheme has been applied for the
previously defined trajectories sine and spline0. And the
performance obtained can be observe in Fig. 3. Using the
Aerror metric defined in equation (3), the performance of the
proposed method is compared with the baseline method (i.e.
constant gain fixed by an expert for a speed of 2.0m.s−1),
in order to get a percentage and absolute improvement in
the surface of the lateral error. A substantial decrease in the

spline0 sine

Location on the trajectory

0

10

20

30

40

50

60

A
er

ro
r

[m
2
]

Constant Expert
NN ob1

1.0m.s−1

1.5m.s−1

2.0m.s−1

Fig. 3. The Aerror of the tested method and the expert constant gain. The
hash density show the changes in the speed.

surface error can be observed for the NN ob1 method (with
an average decrease of 20%). However, the performance gap
seems reduced at 2.0m.s−1, as this is the optimal speed for
the expert gain.

This implies that during the experimental results, that
the NN ob1 might out perform the baseline method. But
only if the method is robust enough to transfer from the
simulation to real world conditions, which is classically a
difficult problem for machine learning methods.

V. EXPERIMENTAL SETUP

Experiments were performed using the Adap2e plat-
form [Deremetz et al., 2019] that can be seen on Fig. 4. It
is a mobile robot dedicated to carrying tools for agricultural
operations, capable of adapting to the diversity of tasks and
parcels of land. Driven in a car-like configuration with only
the front wheels steered, it has a track width of 1.0m, and
a wheel base of 1.38m. Software developments are carried
out on the ROS middelware. The control and GPS update
rate are 0.1s. Tests were carried out on a warm, sunny day
with cloudless weather, meaning very dry soil and low GPS
perturbation.

The trajectory shown in Fig. 4 is first on a ground made up
of gravel and earth. Then, near the beginning of the turn and
until the end of the trajectory, the ground is grass. The terrain
also has an irregular topology. The robot starts with an initial
lateral error of approximately 1m, relative to a straight line
trajectory, in order to observe its convergence towards this
trajectory. Then, a half turn that is wide enough so as not

7699

Fig. 4. On the left: The Adap2e robot. On the right: The trajectory over
the ground.

to saturate the steering actuator must be followed. Finally,
a final straight line is followed after exiting the turn. This
trajectory is displayed in Fig. 5.

−10 0 10 20 30 40

x [m]

5

10

15

20

25

y
[m

]

Init

Straight

Corner

Reference trajectory

Fig. 5. The reference trajectory on an x,y scale.

This trajectory has been used to validate the proposed
method against overfitting, meaning a trajectory not previ-
ously used for the learning process in order to show the
genericity of the trained solution with regard to path shapes.
It is broken down into three parts of 20m each for the
analysis :

• Init: The start of the trajectory, the robot is launched
from approximately 1m from the side of the trajectory
as an initial error.

• Corner: The large corner of the trajectory, with a
constant curvature of 0.2m−1.

• Straight: The final straight line after the large corner, in
order to observe the stabilization from the corner.

Results are also compared over the entire 60m of the
trajectory (defined as Total), in order to get a general idea
of the expected improvements.

VI. RESULTS

The experiments of this section are divided into three
sets, the first using the classic controller, the second using
the predictive controller, and the third is used to observe
the reaction of the proposed method to changes in the
environmental state, by adding a Gaussian noise of 1m to
the GPS signal. This is done in order to investigate the
performances of the proposed algorithm in situations with
high uncertainty.

A. Experiment 1

The first experiment consists of using the classic controller
without any sliding observers (βF and βR are set to zero in
the control expression (1)), using the proposed method NN
ob1 and the baseline expert constant gain method. The expert
constant gain was set to Kd = 0.7, Kp = 0.1225, which is

tuned for the robot considering a constant speed of 2.0m.s−1.
The experiment was run with the target speeds of 1.0m.s−1,
1.5m.s−1, and 2.0m.s−1. Comparing the proposed method
NN ob1, with the baseline expert constant gain method, the
following analysis is obtained.

−10 0 10 20 30 40

x [m]

5

10

15

20

y
[m

]

trajectory of ”expert”
trajectory of ”NN ob1”

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

x [m]

3

4

5

6

7

8

9

y
[m

]

trajectory of ”expert”
trajectory of ”NN ob1”

Fig. 6. The estimated paths traces by each method is set at the solid line
for the rear axle, and in the dashed line the front axle. Above: the path over
the full trajectory. Below: the path over the Straight segment.

The paths traced on Fig 6, show the trajectories of the
robot for each method at 1.0m.s−1. From this, the proposed
method NN ob1 is able to more closely follow the trajectory
overall, and specifically near the end of the trajectory.

On Fig. 7, using the Aerror metric defined in equation (3),
the performance of the proposed method is compared with
the baseline method, in order to get a percentage and absolute
improvement in the surface of the lateral error. A substantial

Total Init Corner Straight

Location on the trajectory

0

5

10

15

20

A
er

ro
r

[m
2
]

Constant Expert
NN ob1

1.0m.s−1

1.5m.s−1

2.0m.s−1

Fig. 7. The Aerror of the tested method and the expert constant gain. The
hash density show the changes in the speed.

increase in the accuracy can observed between the proposed
method and the baseline method over a target speed of
1.0m.s−1 (44%) and 1.5m.s−1 (39%), with still minor
improvements to the performance at 2.0m.s−1 (5%). It is
important to note, the baseline method started with 0.2m
of initial error for the target speed of 1.0m.s−1 (visible on
Fig 6), hence the low improvement in the Init part of the
trajectory for that speed.

These are similar to the results obtained in simulation, with
a significant reduction in the overall error. They show that in
real world conditions, the modulation of the gain in real time,
can allow for higher gains in certain circumstances, which

7700

leads to a more optimal path tracking, without inducing
instabilities.

After an initial proof of concept with a sufficiently simple
classic controller, a predictive controller more suitable to
autonomous mobile robots is considered for experiment 2,
by using sliding observers defined in [Lenain et al., 2017].

B. Experiment 2
The second experiment consists of using the predictive

controller with sliding observers defined in [Lenain et al.,
2017], along with the proposed method NN ob1 and the
baseline expert constant gain method. The expert constant
gain was set to Kd = 0.7, Kp = 0.1225. The experiment
was run with the target speeds of 1.0m.s−1, 1.5m.s−1, and
2.0m.s−1. Comparing the proposed method NN ob1, with the
baseline expert constant gain method, the following analysis
is obtained.

−10 0 10 20 30 40

x [m]

5

10

15

20

y
[m

]

trajectory of ”expert”
trajectory of ”NN ob1”

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

x [m]

16

17

18

19

20

21

22

23

24

y
[m

]

trajectory of ”expert”
trajectory of ”NN ob1”

Fig. 8. The estimated paths traces by each method is set at the solid line
for the rear axle, and in the dashed line the front axle. Above: the path over
the full trajectory. Below: the path over the Init segment.

The paths traced on Fig 8, show the trajectories of the
robot for each method at 1.0m.s−1. From this, the adapt-
ability of the proposed method NN ob1 can be see, as it is
able to quickly correct the initial error without overshooting
with the robot’s rear axle.

On Fig. 9, using the Aerror metric defined in equation (3),
the performance of the proposed method is compared with
the baseline method, in order to get a percentage and absolute
improvement in the surface of the lateral error.

Total Init Corner Straight

Location on the trajectory

0

2

4

6

8

10

A
er

ro
r

[m
2
]

Constant Expert
NN ob1

1.0m.s−1

1.5m.s−1

2.0m.s−1

Fig. 9. The Aerror of the tested method and the expert constant gain. The
hash density show the changes in the speed.

Similarly to experiment 1, the proposed method is substan-
tially more accurate than the baseline method over a target
speed of 1.0m.s−1 (40%) and 1.5m.s−1 (42%). However
with minor degradation in the performance at 2.0m.s−1

(−7%), since the constant gain was tuned for a speed of
2.0m.s−1.

The loss of performance at 2.0m.s−1 is due to the pro-
posed method being trained in a simulation, and faces here
the side effects of the systematic error. Indeed as the speed
increases, the dynamic effects start influencing the robot’s
trajectory and velocity in a stronger manner. Furthermore,
the model was not given the dynamic parameters (such as
the sliding angles) as an input during the simulation, this
means it was not trained to handle the change in the gain
relative to varying sliding conditions.

So far the experiments have shown some of the benefits
and drawbacks of the proposed method in a semi-static
environment state. However, this method should adapt the
gain with respect to strong variations in the environment
state. As such, the experiment 3 consists of varying the
quality of the GPS perception.

C. Experiment 3
The third experiment consists of using the predictive

controller with sliding observers defined in [Lenain et al.,
2017], along with the proposed method NN ob1 and the
baseline expert constant gain method. The expert constant
gain was set to Kd = 1.0, Kp = 0.25, which is tuned
for the robot with the trajectory for a speed of 1.0m.s−1.
The GPS signal degradation starts midway in Corner part
of the trajectory, and stays to the end. In order to make the
results comparable, the Gaussian random number generator
was set with the same seed each time, this means the
noise was repeatable and consistent between each test of the
experiment. The experiment was run with the target speed of
1.0m.s−1. Comparing the proposed method NN ob1, with the
baseline expert constant gain method, the following analysis
is obtained.

−10 0 10 20 30 40

x [m]

5

10

15

20

y
[m

]

trajectory of ”expert”
trajectory of ”NN ob1”

Fig. 10. The estimated paths traces by each method is set at the solid
line for the rear axle, and in the dashed line the front axle over the full
trajectory.

The paths traced on Fig 10, show the trajectories of the
robot for each method at 1.0m.s−1. From this, the behavior
of the robot cannot be ascertained, due to the GPS noise
clouding the estimated paths. As such, only the quantitative
results can reflect any changes in behavior.

On Fig. 11, using the Aerror metric defined in equation (3),
the performance of the proposed method is compared with

7701

the baseline method, in order to get a percentage and absolute
improvement in the surface of the lateral error. For the

Total Init Corner Straight

Location on the trajectory

0

2

4

6

8

10

12

14

16

A
er

ro
r

[m
2
]

Constant Expert
NN ob1

1.0m.s−1

Fig. 11. The Aerror of the tested method and the expert constant gain.

surface error Aerror, the proposed method NN ob1 was able
to substantially reduce the error overall (25%) and in the
Straight part of the trajectory (20%), despite an important
loss of accuracy in the localization. From this, the proposed
method NN ob1 is increasing the dampening of the controller,
in order to avoid the controller reacting too strongly to the
input noise. This allows the proposed method and controller
to more accurately follow the trajectory, even in very noisy
conditions.

The results obtained in the experiments seem to con-
cord with the simulation results, but diverging slightly at
2.0m.s−1 due to the higher systematic error, causing the NN
ob1 model to experience a drop in performance when com-
pared to the simulated performance. This systematic error
might due to the poorly characterized dynamic parameters,
which are very difficult to accurately estimate for a given
robot.

VII. CONCLUSIONS AND DISCUSSION

An algorithm for online adjusting of gains was proposed,
based on neural networks trained from a simulated dynamic
model. This method was applied to the tuning of gains
of a steering angle controller, for the optimization of the
robot’s behavior in relation to lateral displacements. It takes
into account the target speed, path curvature, lateral and
angular tracking errors, and perception quality (state observer
covariance matrix), in order to predict near optimal sets of
gains that minimize an objective function. Therefore, the
robot settling distance, as well as the tracking error are
minimized, while avoiding instabilities.

The proposed method was tested in real conditions without
any transfer learning or adaptation. Indeed, the errors in
modeling the system dynamics are sufficiently small at the
speed of testing to limit deviations from reality.

Experimental tests were conducted at different speed val-
ues, and by considering GPS signal losses. Results show an
increase in the accuracy of trajectory tracking compared to
constant gain methods, in some cases up to 44%.

However, this method has some drawbacks. First, a long
training time in simulation is due to the nature of the CMA-
ES optimization algorithm that needs a large amount of
trajectory following simulations. Then, it becomes increas-
ingly sensitive to dynamic model errors at higher speeds.
Indeed, gain computation should be done with consideration

of this dynamics, in particular observed sideslip angles βF
and βR. Therefore, such information can be used as input to
the neural network in order to adapt the robot’s behavior
to grip conditions. Finally, longitudinal speed has also a
significant impact on the robot’s behavior. As a result, future
work is focused on the consideration of sideslip angles and
longitudinal speed for gain tuning.

Going further, the online optimization of the target longi-
tudinal speed, depending on the grip conditions and of the
shape of the desired trajectory, is an area of investigation.

VIII. ACKNOWLEDGMENTS

This publication was made possible by the use of Factory-
IA cluster, financially supported by the Ile-de-France Re-
gional Council.

REFERENCES

[Argentim et al., 2013] Argentim, L. M., Rezende, W. C., Santos, P. E.,
and Aguiar, R. A. (2013). Pid, lqr and lqr-pid on a quadcopter platform.
In 2013 International Conference on Informatics, Electronics and Vision
(ICIEV), pages 1–6. IEEE.

[Bakker et al., 1987] Bakker, E., Nyborg, L., and Pacejka, H. B. (1987).
Tyre modelling for use in vehicle dynamics studies. Technical report,
SAE Technical Paper.

[Cariou et al., 2008] Cariou, C., Lenain, R., Thuilot, B., and Martinet, P.
(2008). Adaptive control of four-wheel-steering off-road mobile robots:
Application to path tracking and heading control in presence of sliding.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1759–1764. IEEE.

[Chang et al., 2003] Chang, W.-D., Hwang, R.-C., and Hsieh, J.-G. (2003).
A multivariable on-line adaptive pid controller using auto-tuning neurons.
Engineering Applications of Artificial Intelligence, 16(1):57–63.

[Deremetz et al., 2019] Deremetz, M., Couvent, A., Lenain, R., Thuilot,
B., and Cariou, C. (2019). A generic control framework for mobile
robots edge following. In International Conference on Informatics in
Control, Automation and Robotics.

[Guo et al., 2009] Guo, B., Liu, H., Luo, Z., and Chen, W. (2009). Adap-
tive pid controller based on bp neural network. 2009 International Joint
Conference on Artificial Intelligence, pages 148–150.

[Hansen, 2016] Hansen, N. (2016). The CMA evolution strategy: A
tutorial. CoRR, abs/1604.00772.

[Hansen et al., 2010] Hansen, N., Auger, A., Ros, R., Finck, S., and Pošı́k,
P. (2010). Comparing results of 31 algorithms from the black-box
optimization benchmarking bbob-2009. In Proceedings of the 12th An-
nual Conference Companion on Genetic and Evolutionary Computation,
GECCO ’10, pages 1689–1696, New York, NY, USA. ACM.

[Hill. et al., 2019] Hill., A., Lucet., E., and Lenain., R. (2019). Neuroevo-
lution with cma-es for real-time gain tuning of a car-like robot controller.
In Proceedings of the 16th International Conference on Informatics in
Control, Automation and Robotics - Volume 1: ICINCO,, pages 311–319.
INSTICC, SciTePress.

[Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990).
Universal approximation of an unknown mapping and its derivatives
using multilayer feedforward networks. Neural Networks, 3(5):551 –
560.

[Khesrani et al., 2017] Khesrani, S., Hassam, A., Boubezoula, M., and
Srairi, F. (2017). Modeling and control of mobile platform using flatness-
fuzzy based approach with gains adjustment. In 2017 6th International
Conference on Systems and Control (ICSC), pages 173–177. IEEE.

[Lenain et al., 2017] Lenain, R., Deremetz, M., Braconnier, J.-B., Thuilot,
B., and Rousseau, V. (2017). Robust sideslip angles observer for accurate
off-road path tracking control. Advanced Robotics, 31(9):453–467.

[Lenain et al., 2007] Lenain, R., Thuilot, B., Cariou, C., and Martinet, P.
(2007). Adaptive and predictive path tracking control for off-road mobile
robots. European journal of control, 13(4):419–439.

[Omatu and Yoshioka, 1997] Omatu, S. and Yoshioka, M. (1997). Self-
tuning neuro-pid control and applications. In 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cyber-
netics and Simulation, volume 3, pages 1985–1989. IEEE.

[Samson et al., 2016] Samson, C., Morin, P., and Lenain, R. (2016). Mod-
eling and control of wheeled mobile robots. In Springer Handbook of
Robotics, pages 1235–1266. Springer.

7702

