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Abstract— In recent years, human pose estimation has seen
great improvements by the use of neural networks. However,
these approaches are unsuitable for safety-critical applications
such as human-robot interaction (HRI), as no guarantees are
given whether a produced detection is correct or not and
false detections with high confidence scores are produced on
a regular basis.

In this work, we propose a method to identify and elimi-
nate false detections by comparing keypoint detections from
different neural networks and assigning a ’Don’t know’ label
in the case of a mismatch. Our approach is driven by the
principle of software diversity, a technique recommended by
the safety standard IEC 61508-7 [1] for dealing with software
implementation faults. We evaluate our general concept on the
MPII human pose dataset [2] using available ground truth data
to calculate a suitable threshold for our keypoint comparison,
reducing the number of false detections by approx. 61%. For the
application at runtime, where no ground truth data is available,
we introduce a method to calculate the needed threshold
directly from keypoint detections. In further experiments, it was
possible to reduce the number of false detections by approx.
75%. Eliminating keypoints by comparison also lowers the
correct detection rate, which we maintained above 75% in all
experiments. As this effect is limited and non-critical regarding
safety we believe that the proposed approach can lead the way
to a safe use of neural networks for human pose estimation in
the future.

I. INTRODUCTION

Being able to recognize human body poses in the wild
as illustrated in Fig. 1 opens up for a variety of practical
applications, including collision avoidance in human-robot
interaction (HRI) [3]. These applications need human poses
of sufficient quality and reliability, with safety-critical appli-
cations like HRI being especially demanding. In recent years,
neural networks have shown great potential for supplying
high-quality human body poses. The advancements become
clear when looking at the large-scale MPII human pose
dataset [2] for human pose estimation. According to the
official MPII website [4], the last listed approach without
a neural network by Pishchulin et al. [5] detected 44.1%
of the test samples correctly, while the first listed neural
network approach by Tompson et al. [6] improved that
number to 79.6%. At the end of 2019, the most successful
listed approach by Su et al. [7] pushed the result to 93.9%.

For safety-critical applications, the reliability of the results
is crucial. Thus, even Su et al. [7] seem not to be sufficient, as
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Fig. 1: Illustration of human pose estimation. In an input
image (left, [2]) the position of certain human body keypoints
like shoulders or ankles (right) is detected.

undiscovered false human keypoint detections are produced
in 6.1% of the cases. However, wrong or missing results are
not necessarily a problem in safety-critical applications, as
long as the application is aware that something is wrong
or missing and appropriate countermeasures are applied,
e.g. falling back to more conservative safety measures or
bringing the system into a safe state. The problem with
recent neural networks is their unawareness of their faults -
false keypoint detections are produced with high confidence
scores on a regular basis. These faults are not limited to
small displacement errors: even large displacements errors
occur on a regular basis as observed by Ruggero et al.
[8] (7.1% and 7.8% of all keypoint detections in two of
their experiment were large displacement errors). In addition,
Hein et al. [9] have proved that faults with high confidence
scores can not be completely avoided while using the ReLU
activation function, which is part of most neural networks
nowadays.

In this paper, we focus on reducing the number of un-
detected false human keypoint detections in human pose
estimation. Therefore, we transfer the principle of software
diversity [1], an established method for dealing with faults
in safety-critical software, to neural networks. We employ an
approach that uses the keypoints of human poses produced
by two or more different neural networks from the same
input image and compares them with each other. For the
comparison, we employ a distance-based metric based on the
PCKh score [2], with the difference that it can be calculated
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without ground truth from the detected poses alone. For
mismatches, a ’Don’t know’ output is introduced to allow
the neural networks to express that they don’t know. We
use the MPII human pose dataset [2] for single person pose
estimation to show that our diversity-driven approach with
different neural networks and our own comparison metric is
capable of reducing the remaining undetected false keypoint
detections significantly while keeping the negative impact
on correct detections reasonable. Furthermore, we investigate
the impact of different neural network architectures on the
effectiveness of the diversity-driven approach. We show that
very different architectures are most effective, though even
very similar architectures lead to noteworthy improvements.

II. RELATED WORK

Human Pose Estimation The field of human pose esti-
mation has been well researched during the last decade. At
the beginning of the decade, traditional approaches relying
on techniques other than neural networks were dominant, for
example approaches based on modifications of the pictorial
structure model [5], [10], [11]. As early deep neural network
approaches [6], [12] already outperformed the traditional
approaches, research shifted into that direction. Today, a
broad range of deep neural network approaches is available
for human pose estimation, primarily being different in their
architecture and detection approach:

For the detection approaches, there exists work that tries
to infer the human keypoint locations directly [12], while
most of the recent approaches work on so-called heatmaps
[7], [13], [14], [15], [16], which indicate for each pixel
location how likely it is to be a certain keypoint. These
detections can be further refined, e.g. by using a spatial
model [6], a separate neural network for fine-localization
[13] or using intermediate results from the network in a
multi-stage approach and/or for the final output [7], [15].

Having a look at the actual architecture, the use of convo-
lutional neural networks is most common. Some approaches
use them in a simple feed forward architecture [6], [12], [13],
while others utilize an iterative architecture [17] to further
refine detections with each pass. Among recent approaches,
the employment of encoder-decoder schemes has become
very popular [7], [14], [16], with the hourglass module
proposed by Newell et al. [14] being especially noteworthy.

In our work we are going to utilize the neural networks of
Tompson et al. [13], Newell et al. [14] and Zhang et al. [16].
Tompson et al. use a convolutional neural network approach
that first calculates coarse keypoint locations and then uses a
second convolutional neural network to refine these locations.
Therefore it is different to Newell et al. and Zhang et al., who
both employ an encoder-decoder scheme using hourglass
modules. Zhang et al. can be seen as a lightweight version
of Newell et al., as it uses the same general architecture,
just with fewer and smaller layers. In addition, Zhang et al.
perform a knowledge transfer from Newell et al., as they are
using their model as a teacher model.

Comparison Metrics In human pose estimation, com-
parison metrics are ususally used for evaluating a detected

pose with respect to an annotated ground truth pose. Among
commonly used metrics are the PCP [18], PCKh [2] (used
on the MPII human pose dataset [2]) and OKS [19] (used
on the COCO dataset [20]). The PCP metric [18] works
on body segments and calculates the deviation between the
detected and the annotated endpoints of each segment. If this
distance is in both cases below 50% of the segment length,
then the detected body part is considered to be correct.
The PCKh metric aims to have the same threshold for all
keypoints of the same person by using the diagonal of the
head’s bounding box. The OKS metric considers the distance
between a detected and an annotated keypoint with respect
to the scale of the whole object, but also takes a keypoint-
specific factor that indicates the deviation during a redundant
annotation process into account, thus punishing deviations on
keypoints less that are not completely clear for humans.

Neural Network Errors Errors produced by state of
the art neural networks for human pose estimation were
investigated by Ruggero et al. [8]. He identified three kinds
of possible errors that apply to single persons: small dis-
placement errors (’Jitter’), large displacement errors (’Miss’)
and errors confusing left and right (’Inversion’), e.g. for
shoulders. All these errors occurred frequently.

The research area of adversarial attacks deals with mis-
leading neural networks to produce incorrect results. Apart
from designing such an attack, Moosavi-Dezfooli et al. [21]
evaluated the errors produced by a classification network un-
der their attack, showing that the errors were very systematic,
with only a few output classes being produced from inputs
of a large variety of classes.

Hein et al. [9] investigated problems with the usage of
ReLU activation fucntions. They developed a method to
reduce the occurrence of false results with high confidence
when using ReLU activation functions, but also proved that
they can not be fully avoided. This leads to the conclusion
that the confidence score - at least when it comes down to
safety-critical applications - should not be trusted.

The principle of having a ’Don’t know’ output to indicate
that the result of a neural network is not reliable has been
successfully employed in safety-critical applications like
nuclear power plant monitoring [22] [23], showing that the
principle is useful to avoid false results.

Diversity/Redundancy and Neural Networks The stan-
dard IEC 61508-7 [1] presents software diversity as a way
to deal with safety-critical failures. It is a special form of
redundancy, where the same functionality is implemented in
different ways. For the same inputs, the produced outputs
are compared to make a statement about their validity. It is
crucial that the redundantly used software modules do not
produce the same false output for the same input.

Redundancy/Diversity is also already used to a certain
degree in different neural networks, but usually not to
identify false detections but to boost their performance. For
example, two-stream networks introduced by Simonyan et
al. [24] use two structurally identical neural networks trained
and operating on different input types for producing the same
kind of output before fusing them by either averaging or
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Fig. 2: Proposed diversity-based approach for detecting and eliminating faults in human pose estiamtion. Two different neural
networks are used to estimate a pose from the same input image (input image from [2]). Afterwards the poses are fed into
a comparison module to compare them, transforming mismatching keypoint detections to the new ’Don’t know’ output.

applying a linear SVM. For human pose estiamtion, Kawana
et al. [25] use an ensemble of CNNs consisting of ten
structurally identical networks, which were fine-tuned on
separate clusters of training data. The final result is produced
by an additional neural network processing the outputs of the
ensemble.

To the best of our knowledge, there is no approach for
human pose estimation that compares outputs of different
neural networks to identify false detections.

III. PROPOSED APPROACH

Based upon the related work in section II we come to
the following conclusion: Neural networks are producing
faults that are potentially dangerous (e.g. large displacements
errors) and the confidence score is not suitable to eliminate
them. A potential solution to the problem would be to
transfer the diversity-approach suggested by IEC 61508-7 [1]
to a setup of different neural networks by comparing their
outputs. It is crucial for that approach that the methods for
calculation of the output are functionally diverse enough to
not produce the same errors on the same input. We are confi-
dent that such an approach might work using different neural
networks, as many different architectures and approaches
exist, errors of neural networks are quite specific (at least
under adversarial attacks) and using more than one neural
network has already proven to be useful for boosting final
scores. For now, we will assume that using different neural
networks together in a diversity-based approach is suitable
for eliminating a number of false detections - an assumption
we are going to validate empirically later.

Based on this assumption we come to our proposed
method for reducing false keypoint detections for human
pose estimation, visualized in Fig. 2. An input image for

which pose estimation shall be performed is used as input
for two (or potentially more) neural networks, allowing the
user to use his favorite neural network for pose estimation
and only having to find a second one (or potentially more).
Both neural networks estimate a human pose from the
image. These two human poses are used as input into a
comparison module, which performs a distance-based com-
parison between the single keypoints of both poses and
produces the final output. To account for mismatches, we
introduce a ’Don’t know’ output for keypoints produced by
the comparison module, indicating that the composition of
neural networks knows nothing about the specific keypoint.
Let kp1,i and kp2,i denote the detections for keypoint i
from the first and the second neural network. Furthermore,
let thresholdmatching denote a person- and image-specific
distance threshold and kpi the final output for keypoint i
produced by the comparison module. To calculate kpi we
will use the following mathematical formulation:

kpi =


kp1,i+kp2,i

2 , if kp1,i, kp2,i exists &
‖kp1,i − kp2,i‖2 ≤
thresholdmatching

’Don’t know’, otherwise

(1)

In simple words, if both neural networks detected the spe-
cific keypoint (did not report it as missing) and the euclidean
distance of both keypoints is below thresholdmatching , the
average of both keypoint locations is provided as final output.
In any other case, we will put out a ’Don’t know’ label for
the keypoint. Therefore, missing keypoints in one or both
neural networks will lead to a ’Don’t know’ output just as
mismatching detections do. Missing keypoints can have two
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Fig. 3: Illustration of the matching process. Keypoint positions from two estimated poses are compared, with matching
keypoints (green circle) being averaged and mismatching keypoints (red circle) producing the new ’Don’t know’ output.

reasons: 1) The keypoint location is outside of the image
or 2) The keypoint location is inside the image and the
neural network(s) failed to detect it. As case 2) is dangerous
in safety-critical applications and we see no downside in
treating missing keypoints as ’Don’t know’, we decided to
handle them this way. To further facilitate understanding of
the matching process, Fig. 3 illustrates it visually.

Throughout the following sections of the paper, we are
going to show that the proposed approach is useful for
eliminating false detections and how a suitable threshold can
be calculated from data available at runtime.

IV. PROOF OF CONCEPT
In this section, we are going to show the capability of

our diversity-based approach to eliminate a certain amount
of false detections. To show that the general approach of
comparing poses produced by different neural networks is a
useful idea, we are going to simplify the overall problem.
Instead of calculating the necessary thresholds for matching
the poses by ourselves, we are going to use threshold values
annotated in the ground truth data. This way we omit a
potential additional error source. The calculation of suitable
thresholds from data being available at runtime will be
subject to section V.

To evaluate our approach we are going to take advantage
of the MPII human pose dataset [2] by using the samples
and annotations for single person detection provided by it.
MPII has the upside of being a challenging dataset with
more than 40.000 annotated persons in approximately 25.000
images. Images are taken from 410 different activities in the
wild, thus delivering a broad and representative collection of
human poses. On the downside, the test set of MPII is kept
private by the developers, thus reducing the publicly available
data to the training set with around 29.000 annotated poses
and prohibiting self-evaluation on the proposed test set. From

the training set, Tompson et al. [13] extracted almost 3000
samples to form a separate validation set, which was also
adopted by Newell et al. [14] and Zhang et al. [16]. Our
evaluation will be performed on this validation set.

To determine if a detected body keypoint matches the
ground truth, MPII uses the so-called PCKh score [2]. To
calculate this score, an annotated bounding box around the
head is necessary in addition to the annotated ground truth
locations of the body keypoints. For keypoint i, the distance
between the detected keypoint kpdet,i and the ground truth
keypoint kpgt,i is calculated, as well as the length of the
diagonal lendiag head of the annotated head bounding box.
To obtain the PCKh score for kpdet,i with respect to kpgt,i,
the calculated distance between the keypoints is divided
by lendiag head. Therefore the PCKh score is a normalized
distance measure. The actual evaluation script provided for
MPII by Andriluka et al. [2] applies an additional scaling
factor of 0.6 to lendiag head before performing the division,
resulting in the following formula:

PCKh(kpdet,i, kpgt,i) =
‖kpdet,i − kpgt,i‖2
0.6 · lendiag head

(2)

Using the PCKh score, kpdet,i is considered to be detected
correctly with respect to the corresponding kpgt,i, if the
PCKh score is below or equal to a certain normalized
distance threshold, with 0.5 being the standard value used.

To prove that our general concept for eliminating false
keypoint detections works, we are going to adopt this
measure for determining if the keypoint detections of both
neural networks match. Looking at (1) the condition for two
keypoint detections to match is, despite their existence, that
the following equation holds true:

‖kp1,i − kp2,i‖2 ≤ thresholdmatching (3)
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First we are going to rewrite thresholdmatching as a prod-
uct of a normalized distance threshold norm thresmatching

and a distance for normalization norm dist:

thresholdmatching = norm thresmatching

· norm dist
(4)

If we now use (4) in (3) and divide both sides by
norm dist (assuming norm dist > 0) we get a new
formulation for our keypoint matching condition:

‖kp1,i − kp2,i‖2
norm dist

≤ norm thresmatching (5)

Using norm dist = 0.6 · lendiag head, the left side of
(5) equals the calculation of the PCKh score in (2). This
way, we can easily use the PCKh score for matching our
poses one with another just as we match a detected pose
with the ground truth, with norm thresmatching controlling
how restrictive the matching process is. Throughout all of our
experiments, we are going to use norm thresmatching = 0.5
unless stated otherwise.

For our experiments in this section we are going to
use the work of Tompson et al. [13] and Newell et al.
[14], as their architectures are very different and we expect
better results from more diverse networks. To measure the
impact of our approach on the number of false detections,
we introduced a new measure on the MPII dataset: The
percentage of false detections in relation to the normalized
distance threshold used for matching the estimated pose with
the ground truth. To achieve similar evaluation conditions,
missing detections when evaluating single networks will not
be counted as false detections, as our approach with multiple
networks treats them as ’Don’t know’. While we observe
different normalized distance thresholds for matching the
final detection with the ground truth, our normalized distance
threshold for matching the detections of two neural networks
before producing the final output remains static at 0.5 as
mentioned before. We are also going to have a look at the
percentage of correct detections in the same way. Fig. 4
shows the results using the two mentioned neural networks
on their own and our redundant usage of them. At the
normalized distance threshold of 0.5 it can be seen that
the number of false detections was reduced from 11.6% to
4.5% in relation to the better single neural network, thus
leading to an elimination of about 61% of the previously
undetected false detections. However, this result comes also
at the cost of correct detections when formerly correct
detections are shifted to the ’Don’t know’ label, for example
when one neural network outputs a correct result but it does
not match with the other ones result. As seen in Fig. 4,
the amount of correct detections for our approach at 0.5
is reduced from 82.3% to 79.9% compared to the worse
neural network. In this case, we compare to the worse neural
network, as it imposes a soft limit on the performance of
our approach because of the performed keypoint comparison.
The limit is soft as in some cases a correct average keypoint
can emerge from matching keypoint detections with one

Fig. 4: Results of our approach with the networks of Tomp-
son et al. [13] and Newell et al. [14] compared to the
performance of the single neural networks. For matching the
poses of both networks in our approach, data from MPII
ground truth annotations and a steady normalized distance
threshold of 0.5 was used, while different thresholds for
matching detections to the ground truth were evaluated.

(or more) detections not being correct with respect to the
ground truth. Examples can be found in Fig. 5. Looking at
the relation of lost correct detections and eliminated false
detections, our approach loses one correct detection per 2.94
eliminated false detections.

The results show, that our approach has the potential of
eliminating a high amount of false detections, while being
able to keep the negative impact on correct detections small.
For application at runtime, however, a method for calculating
a suitable matching threshold from data being available at
that point needs to be used, which will be the subject of the
following section V.

V. DISTANCE THRESHOLD DESIGN

As the missing piece for application at runtime, we need
a way to realize the comparison of different poses with data
being available at that point, thus not using ground truth
annotations. As we are evaluating on the MPII dataset, we
decided to stick with our formulation from (5) for threshold-
ing, breaking down the problem to calculating norm dist.
The most straightforward approach with respect to the MPII
dataset would be to employ an additional neural network
to calculate head bounding boxes to extract their diagonal,
which we decided against as another neural network would
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Fig. 5: Examples for possible results for two keypoints KP1 and KP2 that match according to the comparison module, thus
producing the average keypoint KPavg. Green dots mark keypoints that would be evaluated as correct with respect to the
ground truth keypoint KPgt and the normalized distance threshold 0.5, red dots mark keypoints that would not. In special
cases, it is possible that a valid average keypoint is produced from two matching keypoints despite one or both of them
would not be valid with respect to the ground truth.

pose a new potential error source as well as consuming
additional computational power. Rather we decided to rely
on the pose data already available from the different neural
networks. The human keypoints we are going to use should
have two characteristics: They are detected reliably and are
suitable for conservatively estimating the head diagonal. The
keypoints ’top head’ and ’upper neck’ have both characteris-
tics, being the most reliable keypoints (see Table I) and can
be used to estimate the height of the head lenhead, which
is a conservative (smaller) estimation for the head diagonal.
Using only two keypoints is not enough, as their distance
can vanish in a two-dimensional image when forming a line
with the camera. We choose the shoulder keypoints as an
additional pair of keypoints to calculate the shoulder width
lenshoulder. They have high correct detection rates as well
and can not vanish at the same time as the head keypoints due
to their relative position to the camera because of anatomic
constraints. We can furthermore estimate the height of the
head with the distance between both shoulders. Using the
work of Winter [26], who formulated the length of human
body parts as a function of the body height, the relation of
shoulder width to head height is approximately 2:1, which we
are going to use. After calculating lenhead and lenshoulder

we are applying a 0.6 scaling factor to both lengths just as
the original MPII evaluation script does to the head diagonal,
and an additional 0.5 scaling factor to the shoulder length to
account for the 2:1 ratio. To take potential false detections of
keypoints into account, we are performing this process for
each estimated pose. Afterwards we are going to calculate
the average lengths avg lenhead and avg lenshoulder. If the
deviation between the single values for lenhead respectively
lenshoulder from the different poses is larger than 50% or one
of them is missing, the corresponding average value is set
to zero as a protection against possible wrong length values.
The final value we are going to use for norm dist is the
maximum of the average lengths and an additional minimal
length len min:

norm dist = max(avg lenhead, avg lenshoulder,

len min)
(6)

The additional len min is seen as a protection against
missing average lengths and is calculated as the average

over the smallest 5% of annotated head diagonals from the
training set after scaling them with 0.6.

We tested our methodology on the training and validation
set to see if we usually achieve a smaller or equal estimation
of the head diagonal length after scaling. On the training
set, we achieved this for 98.1% of the cases and on the
validation set for 97.4%. Being smaller or equal to a 50%
increase of the scaled head diagonal length was achieved for
99.93% of the cases on the training set and for 99.86% of the
cases on the validation set. Given the results, we have now
a conservative method of estimating norm dist at runtime.

VI. FURTHER EVALUATIONS

First, we are going to show that our approach works
at runtime by repeating our experiment from section IV
using our own calculation for norm dist from section V
instead of relying on ground truth data for comparing the
keypoints of different poses. The results of the experiment
can be seen in Fig. 6a. The number of false detections was
reduced from 11.6% to 3.8%, eliminating about 67% of
the remaining false detections, which is 6% more compared
to the ground truth usage. With our own calculation of
norm dist being designed more conservatively than using
the ground truth, this result is not surprising. However,
this improvement comes at the cost of losing more correct
detections, with the percentage being decreased from 82.3%
to 77.2%. This corresponds to one lost correct detection per
1.52 eliminated false detections, which is worse than one lost
correct detection per 2.94 eliminated false detections in the
experiments using ground truth data. In total, these results
show that our approach is applicable at runtime without using
ground truth data.

Until now we have only used neural networks with a very
different architecture. Therefore we want to investigate the
behaviour of our approach with very similar architectures,
using the neural networks of Newell et al. [14] and Zhang
et al. [16]. We repeat the previous experiment using these
networks, with the results being shown in Fig. 6b. Despite
Zhang performing better than Tompson on its own, the com-
bination of Zhang and Newell is not capable of eliminating
more false detections, only reducing the percentage of false
detections from 11.0% (Zhang) to 6.5% and thus eliminating
only about 40% of the remaining false detections. Correct
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(a) Results with Tompson et al. [13] and Newell
et al. [14]

(b) Results with Newell et al. [14] and Zhang et
al. [16]

(c) Results with Tompson et al. [13], Newell et
al. [14] and Zhang et al. [16]

Fig. 6: Experimental results for our approach with different setups of neural networks on the MPII dataset [2]. The percentage
of false detections and correct detections are examined for each setup in relation to the threshold for matching detections
with the ground truth (GT). During all experiments, the normalized distance threshold norm thresmatching for matching
the different poses in our approach before producing the final output is kept fixed at 0.5.

detections are reduced from 88.4% to 85.9%, resulting in one
lost correct detection per 1.77 eliminated false detections.

The previous experiments support our initial assumption,
that architectures with high difference yield better results for
eliminating false detections in our diversity-based approach.
In an additional experiment, we are going to use all three
architectures together. We want to investigate if there is any
value of adding a neural network to a setup that already
contains a similar and a different one. The experiment will
be performed similar to the previous ones in this section, but
with all calculations of our approach now being performed
on 3 instead of 2 detected poses. This includes the need
for all 3 detections to match. The results can be seen in
Fig. 6c. The number of false detections has been reduced
from 11.0% to 2.8%, being 1% lower than the 3.8% from
Tompson and Newell alone. The reduction corresponds to an
elimination of about 75% of the remaining false detections.
The amount of correct detections was reduced from 82.3%
to 75.3%, resulting in one lost correct detection per 1.17
eliminated false detections. Based on the results, using Zhang
together with Newell and Tompson despite it’s similarity to
Newell added additional information useful for eliminating
false detections, as the best results among all experiments
were achieved, with only 2.8% false detections remaining.
For further information, a detailed summary of all results

from the experiments performed in this section can be found
in Table I.

VII. CONCLUSION

In this paper, we have introduce a new approach to deal
with false detections of human poses from neural networks,
which is especially important for safety-critical applications
like HRI. Our approach is inspired by software diversity.
By comparing the human poses produced by different neural
networks, we introduced a ’Don’t know’ label for mismatch-
ing human body keypoint detections, which enables us to
eliminate formerly undiscovered false detections at the cost
of correct detections. Furthermore, we introduced a method
to compare our poses with data being available at runtime,
based on the PCKh score. In our best experiment, we were
able to reduce the number of false detections from 11.0%
to 2.8%, while achieving correct detections in 75.3% of
the cases, despite including a neural network with only
82.3% correct detections on its own in this setup. From a
functional safety perspective it should be pointed out that
losing some correct detections in the process of eliminating
false detections is not a safety problem, as one can always
fall back to more conservative safety strategies when a ’Don’t
know’ output occurs. We also investigated different combi-
nations of neural networks in our experiments, showing that
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
C F C F C F C F C F C F C F C F DK

Tompson et al. [13] 96.6 3.4 92.7 7.3 83.4 16.6 76.7 23.3 81.9 18.1 73.3 26.7 65.4 34.6 82.3 17.7 0.0
Newell et al. [14] 96.8 3.2 95.2 4.8 89.1 10.9 84.2 15.8 87.0 13.0 83.2 16.8 80.4 19.6 88.4 11.6 0.0
Zhang et al. [16] 97.5 2.5 95.5 4.5 89.0 11.0 84.3 15.7 88.9 11.1 84.1 15.9 80.7 19.3 89.0 11.0 0.0

Ours (Tompson + Newell) 93.7 0.9 89.4 1.9 78.7 3.9 71.1 5.0 75.2 5.9 66.7 4.9 58.9 4.6 77.2 3.8 19.0
Ours (Tompson + Zhang) 95.0 0.9 90.4 2.3 79.8 4.7 72.4 6.0 78.0 6.2 68.3 6.1 60.6 5.6 78.8 4.5 16.7
Ours (Newell + Zhang) 96.5 1.9 94.2 2.9 86.4 6.6 80.0 8.3 85.5 8.8 79.4 8.8 75.4 9.8 85.9 6.5 7.6

Ours (Tompson + Newell + Zhang) 93.3 0.6 88.2 1.6 76.7 2.9 68.9 3.4 72.3 4.6 64.1 3.4 56.4 3.0 75.3 2.8 21.9

TABLE I: Results on the MPII dataset [2] for single neural networks and our diversity-based approaches using a normalized
distance threshold of 0.5 to the ground truth. Our approaches used the distance threshold design from section V with
norm thresmatching = 0.5 for matching different poses before the evaluation on the ground truth. Legend: C - percentage
of correct detections; F - percentage of false detections; DK - percentage of ’Don’t know’ outputs.

our approach profits more from different architectures being
employed than similar ones.

Further research needs to be done to perform a detailed
analysis of the impact of training in a diversity-based ap-
proach, up to potentially introducing higher diversity for
multiple neural networks by joint training. For practical
application, we will usually have to calculate 3D poses from
our 2D poses, thus it would be useful to develop a 2D
keypoint-specific matching threshold that corresponds to a
fixed safety distance in 3D space.

ACKNOWLEDGMENT
We want to thank Aiden Nibali for adjusting the official

MPII evaluation script to the validation set used by Tompson
et al. [13] and sharing his work on GitHub1. We used his
work as a basic foundation for our own evaluation.

REFERENCES

[1] Functional safety of electrical/electronic/programmable electronic
safety-related systems – Part 7: Overview of techniques and measures,
International Electrotechnical Commission (IEC) Std. IEC 61 508-
7:2010, 2010.

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human
pose estimation: New benchmark and state of the art analysis,” in
Proceedings of the IEEE Conference on computer Vision and Pattern
Recognition, 2014, pp. 3686–3693.

[3] D. H. P. Nguyen, M. Hoffmann, A. Roncone, U. Pattacini, and
G. Metta, “Compact real-time avoidance on a humanoid robot for
human-robot interaction,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, 2018, pp. 416–
424.

[4] (2019) Mpii human pose dataset results. Acessed: 2019-12-11.
[Online]. Available: http://human-pose.mpi-inf.mpg.de/#results

[5] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Strong
appearance and expressive spatial models for human pose estimation,”
in Proceedings of the IEEE international conference on Computer
Vision, 2013, pp. 3487–3494.

[6] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training
of a convolutional network and a graphical model for human pose
estimation,” in Advances in neural information processing systems,
2014, pp. 1799–1807.

[7] Z. Su, M. Ye, G. Zhang, L. Dai, and J. Sheng, “Cascade feature
aggregation for human pose estimation,” 2019.

[8] M. Ruggero Ronchi and P. Perona, “Benchmarking and error diag-
nosis in multi-instance pose estimation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 369–378.

[9] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu networks
yield high-confidence predictions far away from the training data and
how to mitigate the problem,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 41–50.

1https://github.com/anibali/eval-mpii-pose

[10] S. Johnson and M. Everingham, “Learning effective human pose
estimation from inaccurate annotation,” in CVPR 2011. IEEE, 2011,
pp. 1465–1472.

[11] Y. Yang and D. Ramanan, “Articulated human detection with flexible
mixtures of parts,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 12, pp. 2878–2890, 2012.

[12] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 1653–1660.

[13] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 648–656.

[14] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 483–499.

[15] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose:
Realtime multi-person 2d pose estimation using part affinity fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

[16] F. Zhang, X. Zhu, and M. Ye, “Fast human pose estimation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3517–3526.

[17] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose
estimation with iterative error feedback,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp.
4733–4742.

[18] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive search
space reduction for human pose estimation,” in 2008 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[19] (2020) Coco keypoints evaluation. Accessed: 2020-02-25. [Online].
Available: http://cocodataset.org/#keypoints-eval

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 1765–
1773.
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