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Abstract— For robots to be perceived as full-fledged team
members, they must display intelligent behavior along multiple
dimensions. One challenge is that even when the robot and
human are on the same team, the interaction may not feel
like teamwork to the human. We present a novel algorithm,
Teammate Algorithm for Shared Cooperation (TASC). TASC
is motivated by the concept of shared cooperative activity
(SCA) for human-human teamwork, developed in prior work
by Bratman. We focus on enabling the robot to prioritize
certain SCA facets in its action selection depending on the task.
We evaluated TASC in three experiments using different tasks
with human users on Amazon Mechanical Turk. Our results
show that TASC enabled participants to predict the robot’s
goal earlier by one robot move and with greater confidence.
The robot also helped reduce participants’ energy usage in
a simulated block-moving task. Altogether, these results show
that considering the SCA facets in the robot’s action selection
improves teamwork.

I. INTRODUCTION

As robots weave into people’s daily lives, they will need to
act as teammates to human users. These robotic teammates
must be able to reason about teamwork, for example, with
multi-dimensional models of the different elements that make
an effective team. By doing so, they can interact with human
users in ways that feel team-like. That is, a human and
robot working in proximity to each other or sharing the
same workplace are not necessarily a team. In particular,
the interaction may not feel like teamwork to the human
user. To enable robots to become full-fledged team members,
we apply the concept of shared cooperative activity (SCA),
developed by Bratman [1] for effective human-human teams
to human-robot teams. Our work provides a computational
structure to this multi-dimensional sociological model for
understanding teamwork.

Bratman defines three facets that must all be present for an
activity to be considered teamwork: mutual responsiveness
(MR), commitment to the joint activity (CJA), and commit-
ment to mutual support (CMS) [1]. Mutual responsiveness
is appropriately reacting to the intentions and actions of the
other while assuming that the other will do the same in
favor of the joint activity. Commitment to the joint activity
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means aligning the team members’ sub-plans so they are all
participating in the same joint activity. Lastly, commitment
to mutual support is the willingness to help each other if
there are breakdowns. Inspired by SCA, we present a novel
robotic teammate algorithm that extends the SCA facets
to human-robot teaming, Teammate Algorithm for Shared
Cooperation (TASC), and evaluate its performance. TASC
has three weighted parameters that map to the SCA facets:
legibility, which enables mutual responsiveness by recogniz-
ing and communicating intent; effort, which demonstrates
commitment to the joint activity by taking actions that appear
effortful to the human; and value, which shows commitment
to mutual support by providing assistance towards achieving
the team’s goal. We evaluated TASC in three user studies via
Amazon Mechanical Turk: two cooperative navigation tasks
and a tower assembly task. These tasks were implemented in
a Markov Decision Process (MDP) framework with discrete
states and actions.

The first navigation study provided insight into the re-
lationship between the parameters. We found that priori-
tizing value or weighting all parameters equally resulted
in significantly better performance in comparison to prior-
itizing legibility. Results from the second navigation study
showed that giving weight to legibility allowed participants
to make accurate goal predictions earlier by seeing one
less robot action and with more confidence. Participants did
not perceive teamwork to be significantly different between
the Legibility and Value conditions but did significantly
prefer the Legibility condition. In the towers study, we
saw that giving weight to effort enabled participants to use
6% less energy and positively influenced their perception
of MR. Our results show that TASC enables the robot to
exhibit behavior consistent with the SCA facets resulting in
improved teamwork when the weights on value, effort, and
legibility are tuned for the given task.

II. RELATED WORK

In this section, we describe the relationship between exist-
ing computational techniques for human-robot collaboration
and the three facets of SCA. Teamwork has been an area
of interest in computational HRI [2], but no prior algorithm
incorporates all three facets of SCA. Most research includes
at most two facets: mutual responsiveness and commitment
to mutual support, while commitment to the joint activity is
assumed, typically because the experimenter gives directions
to the participants.

To display mutual responsiveness, the robot must be able
to consider the human’s intentions and actions and respond

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11229



in a timely manner. Our prior work showed that a robot that
is able to recognize and communicate intent improves team
performance [3]. Another approach used spatial augmented
reality to convey the robot’s intent and eye gaze for the robot
to understand the human’s intent [4]. A probabilistic graph-
ical model of the structured tasks has also been proposed to
allow the robot to appropriately time its actions ([5], [6]).

Besides understanding the human’s intent, mutual respon-
siveness also requires robots to be able to communicate their
own intentions. Prior HRI work in intent communication was
inspired by animation techniques and focused on designing
human-like robot behavior so that the robot is intuitive to
understand ([7], [8]). Gielniak and Thomaz showed that the
spatiotemporal correspondence of actuators can be used to
generate motions that better convey intent [9]. Researchers
also investigated the concept of legibility of motions to help
the human to predict the robot’s goal ([10], [11]).

As defined earlier, commitment to the joint activity consist
of each teammate performing the joint action in accordance
with sub-plans that align. Hoffman and Breazeal [12] pro-
posed a hierarchical goal-oriented task execution system
based on SCA, Joint Intention Theory and Dialog Theory.
They achieved commitment to the joint activity by meshing
sub-plans and commitment to mutual support by asking the
human teammate for help when needed. They tested the
system in a collaborative, turn-taking button task with a
human-robot team and showed that by exhibiting behavior
that shows its commitment to the joint activity and mutual
support, this produced fluid and efficient collaboration. CJA
may also be influenced by a team member’s perception of the
other’s effort level. Chai et al. [13] investigated the influence
of the robot’s effort level on establishing common ground in
a situated human-robot dialogue setting. They defined low
effort as the robot’s minimum effort in accepting or rejecting
a presentation from its human teammate via solely explicit
confirmation. High effort was defined as the robot’s extra
effort in proactively describing what it perceives from the
environment after it accepts or rejects a presentation. Results
showed that low effort may incorrectly lead the human
teammate to believe a common ground has been established.

Lastly, commitment to mutual support is each teammate’s
willingness to provide assistance to the other when needed.
One method to achieve CMS is task allocation, which has
been well studied in the HRI domain [2]. Shah et al. used
insights from human-human teaming to design Chaski, a
goal-oriented task level controller that enables the robot
to take initiative to choose and schedule its own activities
and adapt real-time to the human teammate in a manner
that minimizes the human’s idle time [14]. Another task
allocation solution used hierarchical task networks [15].
Another capability that is needed to achieve CMS is the
ability to reason about when and how to be helpful. Mangin,
Roncone, and Scassellati proposed a high-level, hierarchical
task model that enables a robot to automatically determine
when and how to help the human [16].

Existing techniques focus on only one or two of the SCA
facets. Our approach incorporates all three SCA facets and

uses them as the foundation in the design of our TASC
algorithm. In three user studies, we show that TASC enables
the robot to exhibit behavior that correspond to all the SCA
facets leading to better team performance.

III. ALGORITHM DESIGN

We propose TASC, Algorithm 1. We model the interaction
as a Markov Decision Process (MDP):
• S = a finite set of states, with possible goal states G =
[G0...Gn]⊂ S,

• AR = robot actions,
• AH = human actions,
• aR ∈ AR = most recent robot action,
• aH ∈ AH = most recent human action,
• T = (s,aR,aH)→ s′ = transition function,
• R = [R0...Rn] = n separate reward functions for reaching

each goal,
• γ = discount factor, 0≤ γ ≤ 1.
We represent the facets of SCA as follows:

Mutual responsiveness: We aim for the robot to predict the
human’s goal GH ∈ G in order to take actions that reach
the same goal. To predict this goal, we define a classifier
CG(s,aH) that takes the current state s∈ S and the most recent
human action aH ∈ AH and returns PrG, the probabilities for
each possible goal state Gi ∈ G: CG(s,aH)→ PrG(Gi ∈ G).

Legible actions are introduced to convey the robot’s in-
tended goal. In order to take legible actions, the robot sets
its goals equal to the predicted human goal, GR = GH .
Pr[GR|s,a] is defined as the probability that a person will
predict goal GR after viewing action a from state s. This
legibility calculation is task dependent, but uses the notation

L(s,a) = Pr[GR|s,a]. (1)

Commitment to the joint activity: We aim for the robot
to take actions that appear effortful to the human. We define
Pr[E|,a] as the probability that a person will perceive action
a ∈ AR in state s as effortful, which can be determined
through data collection on human perception of effort. We
use the following notation for effortful actions

F(s,a) = Pr[E|s,a]. (2)

Commitment to mutual support: We aim for the robot
to take actions that, along with the human’s action, take
the team to the highest-valued state. This enables the robot
to provide assistance towards finishing the task. We define
a classifier, CA(s,PrG)→ (ap ∈ AH), that predicts the next
human action, ap, given the current state s∈ S and the current
probabilities of each goal Gi ∈ G, PrG. The robot solves for
MDP values VG for each Gi using the reward function in Ri
corresponding to Gi. The robot takes the action a 6= ap that
maximizes the expected value of the next state, s′, given PrG
and ap. We define change in value for our algorithm as

∆VGi,ap,a =VGi((s,ap,a)→ s′)−VGi(s). (3)
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Algorithm 1 Teammate Algorithm for Shared Cooperation
(TASC)

wV ,wF ,wL = weights on value, effort, and legibility
(S,AR,AH ,T,R = [R0...Rn],γ) = initialize MDP
G = [G0...Gn] = possible goal states
VGi(s ∈ S) = solved MDP value of s given goal Gi ∈ G
aH ∈ AH = idle
CG(s,aH)→ PrG(Gi ∈ G)
CA(s,PrG)→ (ap ∈ AH)

while completing task do
GH = argmaxGi∈G(CG(s,aH)) {predict human’s goal}
GR = GH
(ap) =CA(s,PrG) {predict human action}
L(s,a) = Pr[GR|s,a] {legibility}
F(s,a) = Pr[E|,a] {effort}
V (s,ap,a) = 1

2

(
E∆VGi ,ap ,a

maxα∈AR ,Gi∈G(|∆VGi ,ap ,α |)
+1
)

{value}
aR = argmax

a∈AR

(wF ·F(s,a)+wV ·V (s,ap,a)+wL ·L(s,a))

{robot action}
aH =human action
s = T (s,aR,aH) {update state}

end while

E∆VGi,ap ,a
= ∑

Gi∈G
PrGi ∗∆VGi,ap,a (4)

V (s,ap,a) =
1
2

(
E∆VGi ,ap ,a

maxα∈AR,Gi∈G(|∆VGi,ap,α |)
+1

)
(5)

Equation 3 calculates the change in MDP value between
the current state s, and the expected s′ when taking action a
and ap from s for Gi ∈G. To find the relative change in the
MDP value, this is divided by the maximum value change
expected when taking other actions α ∈ A (Equation 5). This
keeps the impact of V similar as the team is closer to the
goal by using the difference in MDP value between s′ and
s. V is scaled in the range [0,1].

Depending on the task, different parameters (legibil-
ity, effort, and value) may be more important than oth-
ers. Thus all three parameters must be assigned weights,
wV (value),wF(e f f ort), and wL(legibility), summing to one
to denote desired importance of each component. The robot
takes the action that maximizes the weighted sum of these
three parameters.

In the next sections, we present our evaluation of TASC
in three user studies. We assessed TASC in collaborative
scenarios where both teammates have the same capabilities
in terms of the possible actions. Since we are interested in
investigating the effects of value, effort, and legibility on
teamwork, our controls include keeping the number and du-
ration of all actions taken by each teammate to be the same.
While these tasks use synchronous human-robot actions,
TASC can be extended to scenarios where the teammates take

asynchronous actions via modifications to the goal classifier
and action classifier.

IV. ALGORITHM IMPLEMENTATION

Algorithm 1 shows the general form of the TASC al-
gorithm. We list here the implementation details used in
our evaluation of TASC, which may be changed based on
the desired task. In this work, the settings for our MDP
solver, MDPtoolbox [17] are the same for all evaluations:
the discount factor is set to 0.9, the stopping criterion is set
to 0.01 (default value), and the maximum iterations are set
to 1000 (default value).

The robot solves the MDP for each possible goal Gi
by using the reward function for goal Gi and solving for
VGi and policy PGi using value iteration for the navigation
experiments and policy iteration for the tower assembly
experiment. The transition and reward functions are deter-
ministic for all tasks in this work.

The classifier CG(s,aH) predicts a human goal GH by
comparing the potential values of the next state s′ for
different goals Gi ∈G, where (s,aR,aH)→ s′. The classifier
outputs the probability of all goals and gives a prediction GH ,
the goal with the highest expected increase in state value. For
the current state s and next state s′ after the human action
aH , the probability of some goal Gi ∈ G is

max(0,VGi(s
′)−VGi(s))

∑G j∈G max(0,VG j(s′)−VG j(s))
. (6)

Thus the probability increases with the difference in MDP
value between s and s′.

V. USER STUDIES

In this section, we present the three user studies that we
conducted to evaluate TASC (Figure 1, accompanying video).
For all the studies, we recruited participants from Amazon
Mechnical Turk. Only workers who reside in the U.S. and
had at least a 85% approval rating were eligible to participate
in the study. Instructions were provided to the participants
describing the task and study procedure. Each study included
a practice session, test session, and then the survey. We
analyzed only the test data. To ensure quality data, we pre-
processed the data. If a participant completed the study
multiple times, we only kept the data from their first session
to control for interaction time. We also excluded participants
who did not complete all the questions in the questionnaire,
selected the same response for all the questions since there
were reversed questions, or did not answer the check question
correctly. We collected both objective and subjective data.
The objective data varied based on the task. The subjective
data was a survey that we devised based on SCA [1] as
shown in Table I. Since the tasks were different, we slightly
modified the survey for each task.

A. Evaluation #1: Navigation Task

Task Description: We evaluated TASC in a shared manip-
ulation navigation simulation in a 10×10 gridworld (Figure
1(a)). In this simulation, the teammate agent and human
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(a) study 1: navigation (b) study 2: modified navigation (c) study 3: tower assembly

Fig. 1. We evaluated TASC in three user studies using these tasks.

Mutual Responsiveness
1. The robot perceives accurately what my goals are.
2. The robot does not understand what I am trying to accomplish.
3. I know which goal the robot is going towards.
Commitment to the Joint Activity
1. The robot was lazy.
2. The robot put forth its best effort.
Commitment to Mutual Support
1. The robot tried to help me.
2. The robot did not cooperate with me.
3. The robot wanted to make the task easier for me.
4. The robot did not care about supporting me.
Post-Study
1. Out of the two robot teammate programs, which one do you
prefer? Why?

TABLE I
SUBJECTIVE MEASURE (5-POINT LIKERT SCALE).

worked together to move a remote-controlled car to one of
four goal states. This gridworld navigation task allowed us
to evaluate in a task with distinct visual differences in action
paths chosen for value, legibility, or effort.

The robot did not know the human’s goal but was aware
of the four possible goal states. The human’s goal was dark
green, whereas the other possible goals were a lighter green.
Obstacles were black and the starting position was grey.
Both team members were allowed to choose from the same
set of actions. At each time step, the human or the robot
could choose a single action to control the remote-controlled
car, with the two team members taking turns throughout the
course of the game. The cells highlighted in blue indicated
the possible cells the remote-controlled car could be moved
to from the current state. We defined the states S= (x,y) coor-
dinates, possible goals states G = [(0,4),(9,5),(2,9),(8,9)],
and actions AR = AH as one idle, cardinal, or diagonal
movement. Transitions were deterministic and the agents
received a reward of 100 at the goal, -1 otherwise.

We set Pr[E|a ∈ AR] to 0.9 for actions that move the
remote-controlled car in diagonal directions, 0.5 for actions
that move the remote-controlled car in the cardinal directions
and 0.0 for idling. The probability of perception of effort
was higher for actions that move the remote-controlled car
further, and hence the probability was highest for diagonal
moves since they carried the combined effect of two cardinal

moves. We calculated legibility in the following manner.
First, the new state was predicted from each possible action
from state s, s′ = (s,a,ap), where ap was the human action
predicted by the agent, and ∆dist(Gi) was the change in
Euclidean distance to Gi from s to s′. Since this task was
turn-based, CA(s,PrG) simply returned ap as idle. If the car
idled or moved further away from every goal, the legibility
for each goal was 1

|G| . Otherwise, the legibility of action a
from state s given Gi was defined as

max(0,∆dist(Gi))

∑G j∈G max(0,∆dist(G j))
. (7)

The probability of Gi given an action a from state s that
takes the car further away from the goal was set to zero. As
a result, we discounted the goals with a negative ∆dist(G)
in our legibility calculation. We note that ∑Gi∈G Pr[Gi] = 1.
Teams moved the remote-controlled car to all four goals in
the test session. We randomized the order of the goals.

Experimental Design: We conducted a one-way between-
subjects study to investigate the effects of different weights
of value, effort, and legibility on teamwork. The independent
variable was the setting of the weights, wV ,wL, and wF .
We focused on three conditions: Value (wV = 1.0,wF =
0.0,wL = 0.0), Equal (wV = 0.333,wF = 0.333,wL = 0.333),
and Legibility (wV = 0.1,wF = 0.1,wL = 0.8). All conditions
set wV > 0 as this kept the robot working towards finishing
the goal. We did not test a condition that prioritizes only
effort due to the nature of this task. In our pilot study, we
observed that if only effort is prioritized, the robot’s behavior
does not move towards the goal, as there is no incentive to
finish the task. This resulted in the human correcting the
robot many times which can be frustrating. To control for
order effects, we counterbalanced the order of the conditions.

We formed two hypotheses:
H1.1 - Objective Measures of Teamwork: The Equal con-
dition will result in the best performance in terms of the
objective measures.
H1.2 - Subjective Performance Rating: Participants will rate
the Equal condition significantly higher than the Value and
Legibility conditions.
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We collected data from a total of 184 participants and after
data pre-processing, a total of 153 participants remained, 51
in each condition (64 F, 85 M, and 4 preferred not to answer,
age: Mean = 35.07, SD = 10.59). We calculated the average
of the following metrics across all four goals: reward earned,
task time, path length, and human counter moves, i.e., human
actions that directly undo the robot’s actions such as left and
right moves.

B. Evaluation #2: Modified Navigation Task

Task Description: Next, we modified the first navigation
task to investigate the influence of mutual responsiveness and
commitment to mutual support on teamwork. We reduced
the total number of possible goals to three, changed the
goal positions, and removed all the obstacles (Figure 1(b)).
The main difference was that the robot is now given the
goal and the human does not know the goal a priori. This
removed the need for CG(s,aH). We modified the MDP
from the first navigation task (Section V-A) as follows:
the possible goals G = [(9,1),(9,5),(9,8)], and the agent
received a reward of 100 for reaching the goal, otherwise -1
for taking cardinal actions, and -2 for taking diagonal actions.
We penalized diagonal actions more than cardinal actions to
encourage straighter paths to goals. At the end of each robot
move, we asked the participants to make a prediction of the
robot’s goal: “Which goal do you think the robot is heading
towards? How confident are you in your prediction?” (5-
point Likert scale). Teams completed all three goals during
the test session. The goal order was randomized.

Experimental Design: We used a one-way within-subjects
design to investigate the effects of incorporating MR (wL)
and CMS (wV ) in the robot’s action selection on teamwork.
The independent variable was the setting of the weights. We
tested two conditions: Value (wV = 1.0,wF = 0.0,wL = 0.0)
and Legibility (wV = 0.7,wF = 0.0,wL = 0.3). Similar to the
previous study, we set wV > 0 to enable the robot to work
towards finishing the task. We counterbalanced the order of
the conditions.

We made the following hypotheses:
H2.1 - Objective Measures of Teamwork: The Legibility con-
dition will enable participants to correctly predict the robot’s
goal earlier in the interaction and with higher confidence than
the Value condition.
H2.2 - Subjective Performance Rating: Participants will rate
the Legibility condition significantly higher than the Value
condition.

We collected data from 48 participants. For data pre-
processing, besides the standard protocol, we also excluded
participants who did not give a correct answer for the
goal prediction of the final time step as it indicated data
quality. After data pre-processing, we used the data from 34
participants (17 M, 17 F, age: Mean= 34.50,SD= 9.98). The
following objective measures were averaged across the three
goals: reward earned, task time, first correct goal prediction
(number of robot moves needed for the human to make the
first correct goal prediction), and confidence change (number
of times the goal confidence rating increased or decreased).

C. Evaluation #3: Tower Assembly Task

Task Description: In the last study, we evaluated TASC in
a simulated joint assembly task in which the robot and human
worked together to build a tower using blocks (Figure 1(c))
to investigate the influence of commitment to the joint activity
and commitment to mutual support on teamwork. While the
navigation task was turn based, in this task, the human and
robot were both able to take an action at every time step. At
the start, the human was given one out of the three possible
towers to build. The robot did not know the human’s goal but
did know the three possible towers. Both team members were
capable of performing all the actions. All the blocks for the
three towers were in the storage container. The preparation
area (prep) was a staging area for building the tower. Blocks
in storage must be moved to prep and then stacked on the
work station table. In addition, any blocks taken off of the
tower must be placed in prep before they can be moved back
to storage.

In this task, the effort of an action was conveyed via the
drag speed of the block and the distance between the initial
and final areas. The drag speed of a block was inversely
proportional to the block’s size. We also introduced an
exhaustion meter for the human to incentivize participants to
behave cooperatively and to raise awareness of the robot’s
work. The level of the exhaustion meter increased with the
time that the human spent moving blocks. For each tower,
the team needed to complete assembly before the exhaustion
level reached 100%, or else they had to start the task over
from the beginning. We defined the MDP as follows:
• S = [storage, prep, table] ∀ blocks,
• G ∈ [G0...Gn] = [tower1, tower2, tower3],
• AR = AH = [placeprep, placetable, idle,

removeblocktable,removeblockprep] ∀ blocks,
• T = (s,aR,aH)→ s′ = deterministic transition function,
• R = [R0...Rn]:

Ri =

{
100 s = Gi

sum of correctly placed blocks − 8 otherwise.
In S, blocks could either be in storage, prep, or stacked

on the table. The classifier CG(s,aH) functioned the same
as in the navigation task. In this task, the robot’s action
classifier CA(s,PrG) used intent recognition, implemented
here as tracking of the human’s mouse position. The subset
A ⊂ AH was chosen based on the position of the mouse at
the click. The action ap and probability pA was determined
by comparing the values of taking each action in A.

We assigned Pr[E|a∈ AR] based on the relative size of the
block the robot moves as well as the distance that the block
is moved. We calculated legibility in the same manner as
the navigation task except with a relaxed problem heuristic
in place of Euclidean distance. Given a current state and
a goal state, the heuristic compared the location of each
block between the two and estimated the minimum number
of moves that would be required to reach the goal state based
off of that. In the test session, teams built all three towers
where the order of the towers were randomized.

Experimental Design: We used a one-way within-subjects
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design to investigate the effects of CJA (wF ) and CMS (wV )
on teamwork. The independent variable was the weight set-
tings. We focused on two conditions: Value (wV = 1.0,wF =
0.0,wL = 0.0) and Effort (wV = 0.6,wF = 0.4,wL = 0.0).
Again, we set wV > 0 to enable the robot to work towards
reaching the goal. We counterbalanced the order of the
conditions to control for order effects.

We formed the following hypotheses:
H3.1 - Objective Measures of Teamwork: The Effort condi-
tion will perform significantly better than the Value condition
in reducing the human’s exhaustion level.
H3.2 - Subjective Performance Rating: Participants will
rate the Effort condition significantly higher than the Value
condition.

A total of 59 participants took part in the study. We
used the standard pre-processing method with the addition
of removing participants who made more than 14 moves
building any of the towers in the test session, since it took
one agent 14 moves to build the tower alone. In other
words, one agent making more than 14 moves means there
is no teamwork. After data pre-processing, we ended with
28 participants (10 F, 17 M and 1 preferred not to answer,
age: Mean = 29.14,SD = 6.00). For the objective measures,
we averaged the reward earned, task time, total actions taken
per teammate, and percentage of exhaustion.

VI. RESULTS

The objective results of all the studies are in Tables II,
III, and IV. For the subjective scales shown in Table I, we
calculated Cronbach’s α . Cronbach’s α was higher than 0.6
for these scales.

A. Navigation Study Results

Condition Reward Task Time
(sec)

Path
Length

Human
Counters

Value (M) 91.33 31.12 34.51 0.10
(SD) 3.34 32.12 12.83 0.36
Equal (M) 90.65 35.49 36.98 0.49
(SD) 3.11 46.75 11.54 1.05
Legibility (M) 87.32 37.48 50.37 0.53
(SD) 2.73 20.32 10.35 1.36
F(2,150) 24.92 0.45 27.52 2.83
p < 0.001 0.64 < 0.001 0.06

TABLE II
OBJECTIVE RESULTS FOR THE FIRST NAVIGATION STUDY.

For the first navigation study, a one-way ANOVA was cal-
culated on the average reward (Table II). The ANOVA result
was significant, F(2,150) = 24.92, p < 0.001. We conducted
post-hoc comparisons using Tukey HSD test. The post-
hoc test revealed that the average reward was significantly
higher in in the Equal condition (M = 90.65,SD = 3.11)
compared to the Legibility condition (M = 87.32,SD= 2.73),
p < 0.001. The Equal and Value (M = 91.33,SD = 3.34)
conditions were not significantly different from each other,
p = 0.51. For task time, there was no significant difference
between the conditions, F(2,150)= 0.45, p= 0.45. However,
the analysis was significant for path length, F(2,150) =

27.52, p < 0.001. Participants took longer paths when they
interacted with the Legibility condition (M = 50.37,SD =
10.35) as in comparison to the Value (M = 34.51,SD =
12.83) and Equal (M = 36.98,SD = 11.54) conditions, p <
0.001. The path lengths in the Equal and Value conditions
were not significantly different, p = 0.53. Next, we analyzed
the team’s efficiency as measured by the average number
of human counter moves and the results were marginally
significant, F(2,150) = 2.83, p = 0.06. These results do not
provide support for our H1.1 hypothesis that the Equal
condition would outperform both of the other two conditions.

Our H1.2 hypothesis predicted that the Equal condition
would be rated the best in terms of the SCA facets. We found
partial support for this hypothesis. The ANOVA results were
significant for MR, F(2,150) = 3.54, p < 0.05. The post-
hoc results showed that MR scored significantly higher in
the Equal (M = 3.78,SD = 0.90) condition compared to the
Legibility condition (M = 3.30,SD = 1.03), p < 0.05. The
MR ratings for Equal and Legibility (M = 3.69,SD = 0.98)
were not significantly different from each other, p = 0.11.
Moreover, results for participants’ ratings of CJA was signif-
icant, F(2,150) = 4.03, p < 0.05. CJA was rated marginally
higher with Equal (M = 4.25,SD = 0.90) compared to Leg-
ibility (M = 3.87,SD = 0.93), p = 0.08. Participants did not
perceived CJA to be significantly different between Equal
and Value (M = 4.33,SD = 0.77), p = 0.86. For ratings of
CMS, the results were significant, F(2,150)= 5.54, p< 0.01.
Participants perceived CMS to be significantly higher when
interacting with Equal (M = 4.02,SD = 0.76) vs. Legibility
(M = 3.58,SD = 0.87), p < 0.05. Participants’ ratings of
CMS for the Equal and Value (M = 4.03,SD = 0.71) condi-
tions were not significantly different, p = 0.99. In this study,
we did not administer the post-study question regarding
which teammate programs participants prefer.

B. Modified Navigation Study Results

Condition Reward Task Time
(sec)

1st Correct
Prediction

Confidence
Change

Value (M) 88.75 46.41 2.65 2.24
(SD) 1.37 25.24 0.87 0.94
Legibility (M) 88.75 42.76 1.49 1.73
(SD) 2.36 19.24 0.54 1.03
t(33) 0.00 0.88 9.61 2.73
p 1.00 0.39 < 0.001 < 0.05

TABLE III
OBJECTIVE RESULTS FOR THE MODIFIED NAVIGATION STUDY.

We used a repeated-measures t-test to analyze the modi-
fied navigation study data (Table III). Our H2.1 hypothesis
posited that the Legibility condition will enable participants
to correctly predict the robot’s goal earlier and with greater
confidence than the Value condition. We found full support
for this hypothesis; those interacting with the Legibility
condition (M = 1.49,SD = 0.54) made their first correct
goal prediction with significantly less robot moves than
those interacting with the Value condition (M = 2.65,SD =
0.87), t(33) = 9.61, p < 0.001. Also, participants who used
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Legibility (M = 1.73,SD = 1.03) were more confident in
their goal predictions than those interacting with Value
(M = 2.24,SD = 0.94) as shown by the significantly smaller
number of confidence rating change: t(33) = 2.73, p < 0.05.
Results of the repeated t-test were not significant for the
average reward and task time. Figure 2 shows example paths
from the Value and Legibility conditions.

Participants did not perceive MR to be significantly differ-
ent between the Legibility condition (M = 4.01,SD = 0.99)
and Value condition (M = 3.72,SD= 1.04), t(33)= 1.00, p=
0.33. Comparing participants’ rating of CJA in the Value
(M = 3.99,SD = 1.08) and Legibility (M = 4.18,SD = 1.06)
conditions, the t-test was not significant: t(33) = 0.86, p =
0.40. The ratings for CMS were also not significantly differ-
ent between the conditions (Value: M = 3.66,SD = 0.0.99;
Legibility: M = 3.70,SD = 0.97; t(33) = 0.21, p = 0.84).
These subjective results did not provide support for our H2.2
hypothesis regarding ratings to be higher for Legibility in
comparison to Value.

We analyzed participants’ responses to the post-study
question, “Out of the two robot teammate programs, which
one do you prefer? Why?”. The majority, 76% (26 par-
ticipants), preferred the Legibility condition, and 18% (6
participants) preferred the Value condition. One participant
indicated having no preference, and another indicated not
noticing a difference between the conditions. One partic-
ipant’s reason for preferring the Legibility condition was
“because it was clear what it’s intentions were from the start.
It even overshot the goal to make sure it was clear where it
was going”. On the other hand, a participant who preferred
the Value condition commented, “I think I liked the second
one (Value) because it didn’t make wasteful moves. The first
one (Legibility) moved too far left or right sometimes for no
real purpose”.

(a) wV = 1.0,wF = 0.0,wL = 0.0 (b) wV = 0.7,wF = 0.0,wL = 0.3
Fig. 2. Examples of paths from the modified navigation user study. The
Value condition is (a) and Legibility condition is (b). Goals are green, robot
actions are gray, and human actions are black.

C. Tower Assembly Study Results

We analyzed the tower assembly study data using a
repeated-measures t-test (Table IV). There was not a sig-
nificant difference in the average reward, task time, or total
actions between the Value and Effort conditions. Comparing
the human exhaustion level between the conditions, results
of the repeated-measures t-test was significant: t(27) =
3.72, p < 0.001. Consistent with our prediction, participants

were significantly less exhausted while working in the Effort
condition (M = 58.87,SD = 11.61) compared to the Value
condition (M = 65.17,SD = 11.59).

Participants rated MR to be significantly higher after
interacting with the Effort condition (M = 4.46,SD = 0.57)
in comparison to the Value condition (M = 4.15,SD =
0.64), t(27) = 3.20, p < 0.01. For CJA, participants did not
perceived a significant difference between the conditions
(Value: M = 4.36,SD = 0.80; Effort: M = 4.52,SD = 0.67;
t(27) = 0.85; p = 0.40). Participants’ rating of MS was not
significantly different between Effort (M = 4.51,SD = 0.55)
and Value (M = 4.31,SD = 0.64), t(27) = 1.51, p = 0.14.
These subjective results partially supported our H3.2 hypoth-
esis that Effort would be rated higher than Value.

We categorized participants’ responses to the post-study
question and found that 57% of them (16 participants)
preferred the Effort condition and 32% (9 participants)
preferred the Value condition. One participant liked both
conditions equally. Another participant indicated not noticing
a difference between the conditions, and one participant
did not provide a response. Participants who preferred the
Effort condition noticed the robot displaying higher effort
as shown by their comments. One participant wrote, “The
robot went out of its way to make sure I used as little energy
as possible”. Comments from participants who preferred the
Value condition included, “I felt like the robot knew what I
wanted to do better”.

Condition Reward Task Time
(sec)

Total
Actions

Exhaust
(%)

Value (M) 55.18 49.47 19.38 65.17
(SD) 16.11 12.90 7.80 11.59
Effort (M) 53.56 51.38 18.27 58.87
(SD) 11.68 16.00 5.16 11.61
t(27) 0.53 0.85 0.02 3.72
p 0.60 0.40 0.98 < 0.001

TABLE IV
OBJECTIVE RESULTS FOR THE TOWERS STUDY.

VII. DISCUSSION
We present TASC, a robotic teammate algorithm, that

enables a robot to select cooperative actions that take into
consideration the action’s legibility, effort, and value. We
expect that a robot that exhibits behaviors that are char-
acterized by all the SCA facets will be perceived by the
human teammate as collaborative. We evaluated TASC in
three different simulated tasks using human participants.

We first evaluated TASC in a cooperative navigation
gridworld study where the participant knew the goal and
the robot did not. The results showed that prioritizing value,
or setting value, effort, and legibility to be equal performed
significantly better than prioritizing legibility. The Value
and Equal conditions collected higher rewards, took shorter
paths, and were more highly rated by participants. Our
hypotheses were that Equal would outperform Value and
Legibility in both the objective and subjective measures,
but it only outperformed Legibility. This outcome may be
caused by certain aspects of the navigation task, in particular,
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participants may have preferred reaching the goal faster
which the Value condition also satisfied. Most importantly,
we found that wV should be at least equal to wF and wL for
this particular task domain where the shortest path is the best
solution. That is, in the task used, CMS must be weighted
highly to ensure teammate performance.

We followed up with another experiment on the same task,
for which the robot knew the goal a priori instead of the
human. These results revealed that giving weight to legibility
performed equivalently to only weighting value on reward
and task time. In other words, there was no trade-off between
legibility and efficiency. In fact, giving weight to legibility
improved teamwork, specifically enabling participants to be
significantly better at predicting goals, with significantly
greater confidence and earlier, supporting our H2.1 hypothe-
sis. Participants also preferred the Legibility condition to the
Value condition, although they did not rate it more highly in
SCA terms. Value and legibility both lead the robot to the
goal state, which may have influenced participants to rate the
SCA components equally. This experiment’s result suggest
that when the human does not know the goal, CMR need to
be given weight to ensure team performance.

Finally, we assessed TASC in a tower assembly task to
explore the influence of CJA and CMS on teamwork. Consis-
tent with our H3.1 prediction, our results showed that teams
in both the Effort and Value conditions were equally fast at
completing the task (i.e., no trade-off with efficiency), while
adding weight to effort for the robot allowed participants to
use significantly less energy. Participants rated Effort more
highly in terms of MR, and they preferred it over Value which
partially supported our H3.2 hypothesis. Since this task had
a large variation in action efforts, the robot needed to weight
CJA to ensure the robot’s contribution to the team.

These three sets of results together suggest that for differ-
ent tasks, the weights on value, effort, and legibility need to
be appropriately tuned, and thus all three are important facets
of human-robot teamwork. All three facets of SCA must be
apparent for teammate activity to occur, but different tasks
require different weights on the three in order for people to
perceive the robot behavior most favorably. TASC provides a
method of weighting these facets during a task. Future work
should evaluate TASC in user studies with a physical robot
and different types of collaborative tasks.

The contribution of our work is applying the SCA con-
cept in human-human teaming to the human-robot teaming
domain and mathematically modeling SCA to develop a
new robotic teammate algorithm to enable a robot to be-
come a full-fledged team member. Our work opens up a
multi-dimensional space for teamwork that can be explored.
Learning algorithms, such as reinforcement learning, can be
applied to find optimal weight combinations for different
types of collaborative tasks.

VIII. CONCLUSION

To achieve effective teamwork, robots must be endowed
with intelligent behavior along multiple dimensions since
teamwork is a multi-faceted concept. Working towards this

goal, we present TASC, a robotic teammate algorithm that
is inspired by Bratman’s SCA concept for human-human
teamwork. We focused on enabling the robot to consider
the SCA facets in its action selection. We evaluated TASC
in simulated cooperative tasks using human participants and
demonstrated that it enables the robot to be a cooperative
teammate that displays the three SCA facets resulting in
improved teamwork.
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