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Abstract— Bilateral teleoperation systems allow the telep-
resence of an operator while working remotely. Such ability
becomes crucial when dealing with critical environments like
space, nuclear plants, rescue, and surgery. The main properties
of a teleoperation system are the stability and the transparency
which, in general, are in contrast and they cannot be fully
achieved at the same time. In this paper, we will present a
novel model predictive controller that implements a passivity-
based bilateral teleoperation algorithm. Our solution mitigates
the chattering issue arising when resorting to the energy tank
(or reservoir) mechanism by forcing the passivity as a hard
constraint on the system evolution.

I. INTRODUCTION

Even though several works in the last decades have
investigated many aspects and proposed different control
algorithms, teleoperation is still an active research field.
Bilateral teleoperation systems allow humans to interact
with remote environments by providing to the operator the
reaction forces that occur during the task execution. This
force feedback from the environment to the operator side
improves human perception and understanding and conse-
quently enhances performance. When the operator feels to
be interacting with the remote environment, the teleoperation
structure provides what is called telepresence or transparency
as described in [1]. In bilateral teleoperation communication
delay and/or package losses are critical challenges since
they can induce instability in the system. The solutions in
the literature can be subdivided into three main categories:
no communication delay, constant delay, and time-varying
communication delay [2].

In [1] the transparency of the teleoperation in case of
no communication delays is achieved using a coupling
between the transmitted impedance and the impedance of
the environment. In case of constant delays, the operator
and environment side are coupled using the so-called wave
variables which allow dealing with the energy stored in the
communication channel [3]. For time-varying delays, the
main approach is based on the computation of the energy
balance at run time. The work of [4] introduced two new
components in the teleoperation architecture: the passivity
observer and the passivity controller. These components
keep track of the energy entering or leaving the operator
and environment sides and in case of instability dissipate
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the exceeding energy adding artificial damping. Another
approach proposed in [5] modifies the reference signals
between the operator and the environment side to keep the
system stable.

One of the most recent solution addressing time-varying
delays is proposed in [6] and implemented successfully in [7]
and [8] where the hierarchical control scheme consists of a
transparency layer and a passivity layer. The verification of
the passivity is done after the computation of the command
and acts as a modulator before the command is sent to
the robot. The hierarchical decoupling between control and
passivity modulator has two characteristics. First, it allows
the implementation of different transparency policies without
changing the passivity layer. Second, this solution can pre-
vent an optimal global control strategy. Since the passivity
action is made after the computation of the control action
the performance in terms of transparency can be arbitrarily
degraded to keep the system passive. All the mentioned
solutions sacrifice performance to guarantee the stability in
a sort of “blind” way.

Model predictive controller (MPC) was also proposed as
a solution in teleoperation. In [9] the MPC is applied to
provide input/output constraints with unbounded communi-
cation delay. The proposed solution adds a recovery mode
where the system in case of long delays switches in an
open-loop mode; the MPC is only placed at the operator
side. A different approach proposed in [10] incorporates the
delay in the discrete state-space model of a Linear Quadratic
Gaussian (LQG) controller to enhance transparency in the
case of a known constant delay. The main drawback is
that the state-space dimension is proportional to the delay.
In [11] a model predictive controller is also used to achieve
stable teleoperation in the presence of uncertain constant
time delays and force feedback. The delay effect is managed
to design a specific controller for free-motion and contact
scenarios. In [12] the authors proposed a single MPC at
the operator side allowing teleoperation under time-varying
delay when the state at the environment robot is estimated
using a Smith predictor.

In this paper, we propose a distributed passive nonlinear
model predictive controller with the aims of obtaining the
optimal control command maximising the transparency. Al-
though passivity in MPC has been successfully integrated
in [13] where it was imposed as a constraint of the system,
there are no implementations in the particular bilateral tele-
operation scenario. As in [6] and [4] we rely on the energy-
storing principle. We modelled the operator and environment
side robots with their corresponding tanks as a unique system
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and we exploited the receding horizon principle to compute
the optimal commands over the prediction horizon. The main
contributions of this paper are the following:

• a distributed MPC for bilateral teleoperation,
• the exploitation of the passivity to avoid the modelling

of the communication delay within the MPC,
• a formalisation of a less conservative energy-storing

tank dynamics,
• a reduction of chattering on the computed commands

when the energy within the tank reaches its lower
bound.

The paper is organised as follows: in Section II we review
the two-layer algorithm and propose a new formulation of
the tank dynamics evolution. In Section III we define the
MPC problem tackled in this paper. In Sections IV and V
we show the simulation and experimental results. Finally in
Section VI we draw a few conclusions and present the future
work.

Remark: The following notation holds for both the robots
at the operator and environment side, so we’ll specify with
the subscript i the corresponding teleoperation side (op, env)
only when needed.

II. PROBLEM FORMULATION

Since our method is based on the two-layer algorithm, in
this section we will briefly summarise its main concepts. The
key component of the two-layer architecture is the energy-
storing system, called tank. The purpose of the tank is to
keep track of the energy exchanged between the operator
and the environment side, and within each side (e.g. for the
operator side: the operator, the controller, the haptic device).
Due to the communication delays, there are two tanks: one
at the operator side and one at the environment side. The
controllers within the transparency layer provide the desired
input commands to the operator and environment robots.
These commands are eventually modulated by the passivity
layer based on the energy available in the tanks.

The Cartesian dynamic model of a gravity compensated
robot is

I(x)ẍ+ C(x, ẋ)ẋ+B(x)ẋ = u+ τ (1)

where x represents the task space position and orientation, u
and τ are the command input and the external torque, I(x)
is the inertia matrix, C(x, ẋ) is the centrifugal and Coriolis
terms and B(x) < 0 is the damping matrix corresponding
to the friction and the artificial damping terms as defined
in [14].

Let H(t) be the Hamiltonian function representing the
stored energy of the system (1)

H(t) = −1

2
ẋT I(x)ẋ+ ẋT (u+ τ). (2)

The passivity of the system follows from the power balance
[15]

Ḣ(t) ≤ ẋT (u+ τ). (3)

Since the dynamic model of the robot is passive ([16]) we
can guarantee the passivity of the whole teleoperation system

by ensuring the passivity of the controllers and the commu-
nication channel. In this paper, we will implement a position-
position teleoperation architecture where we will denote as
ū the torque command computed by the transparency layer
and u the torque effectively applied to the robot (i.e. after
the passivity layer). As previously mentioned, to apply u the
system should have in its tank E enough energy to implement
it, otherwise the two-layer algorithm simply doesn’t apply
the command if no energy is available, or modulates the
command to use only the energy available within the tank.

The tank is modelled as the dynamic system{
ẋt = σD(x)+P in(t)

xt
+ −P out(t)+Pu(t)

xt

yt = xt
(4)

where xt is the state of the tank and E = 1
2x

2
t is the energy

stored in the tank. D(x) is the power dissipated by the system
(1), P in(t) ≥ 0 and P out(t) ≥ 0 are the incoming and
outgoing powers exchanged between the tanks, and Pu(t) is
the power dissipated by the current desired command (the
output of the transparency layer).

Pu = −ūT ẋ (5)

The model (4) describes the energy evolution of the tank: the
power dissipated, D(x), and the incoming power P in(t) are
stored in the tank whereas P out(t) is the outgoing power. To
avoid singularities in (4), an artificial minimum amount of
energy in the tank is placed, i.e. E(xt(0)) > ε > 0, by pre-
venting any energy extraction if E(xt) ≤ ε. The tank must be
also upper bounded to avoid excessive energy accumulation.
In fact, in case of highly dissipative environment (i.e. in a
teleoperation, human users often keep injecting energy) if
the accumulated energy is released in a short period of time
may cause safety issue to the operator [5]. The flags σ and
σ̂ are used to control the energy storage

σ =

{
1, if E(xt) < Tmax

0, otherwise
(6)

σ̂ =


1, if σ = 0 and Pu(t) < 0

1, σ = 1

0, otherwise
(7)

where Tmax > 0 is an application-dependant positive con-
stant. Differently from [14] we introduced the new term σ̂
in order to correctly upper bound the tank. In fact, in (4)
we must take care about the direction of the power related
to command input. Since the transparency layer is acting
without any knowledge of passivity it can anytime insert or
remove energy from the tank. The term σ̂ defined in (7)
differs from the classic upper bound term σ since it enables
to store the incoming power either if the tank is full and the
summation of the outgoing power P out(t) and input related
power Pu(t) is not positive, or if the tank is not full yet.
This term allows also to have a faster response. In fact, the
dissipated power of Pu(t) at the operator side can be stored
at the environment side if the operator robot doesn’t need it
(i.e. its tank has already reached the upper bound). Finally
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the tanks can send or require energy from the tank on the
other side of the network. These flows are controlled by terms
Treq and β

Ereq =

{
1, if E(xt) < T req

0, otherwise
(8)

β =

{
1, if E(xt) ≥ T ava

0, otherwise
(9)

where T req and T ava are also application-dependant con-
stants and satisfy the following inequalities Tmax ≥ T ava ≥
T req ≥ ε. The flows P out(t) and P in(t) for the operator and
environment tanks are defined as follow

P out
op (t) = (1− σop)Dop(x) + Ereq

env(t− d(t))βopP̄+

+ (1− σ̂op)Pu
op(t) (10)

P out
env(t) = (1− σenv)Denv(x) + Ereq

op (t− d(t))βenvP̄+

+ (1− σ̂env)Pu
env(t) (11)

P in
op (t) = P out

env(t− d(t))

P in
env(t) = P out

op (t− d(t))

where d(t) is the communication channel delay (possibly
time-variant) and P̄ is the rate of change of the energy flow
and it is a design parameter. From (10) and (11) we can also
see that if the tank is full then the dissipated power Dop(x)
and Denv(x) are added to the outgoing power P out

op (t) and
P out
env(t) respectively.
Proposition 1: The definition of P out

? (t) in (10) and (11)
preserves the passivity with respect to the pair (τop, ẋop) and
(τenv, ẋenv) even if the system is affected by communication
delay.

Proof: By definition D?(x) and P̄ are positive terms
and since σ?, E

req
? , β? ∈ {0, 1} are positive as well, P out

? (t)
is positive if and only if (1 − σ̂?)Pu

? (t) is positive. By (7)
σ̂? is zero only if Pu

? (t) is positive: this is the only case in
which the input term contributes to P out

? (t). Then we

P out
? ≥ 0 (12)

The total energy stored H in the system is

H = Hop(t) +Henv(t) +Eop(t) +Eenv(t) +Hch(t) (13)

where Hop(t) and Henv(t) are the energy associated to (1),
Eop(t) and Eenv(t) are the energy stored in the tanks and
Hch(t) is the energy flowing in the communication channel.
Considering the derivative Ḣ of the Hamiltonian H

Ḣ = Ḣop(t) + Ḣenv(t) + Ėop(t) + Ėenv(t) + Ḣch(t) (14)

and using (4) we end up with

Ḣ = −Dop(t)−Denv(t) + uTopẋop + uTenvẋenv+

+ σop(Dop(t) + P in
op (t))− P out

op (t) + Pu
op(t)+

+ σenv(Denv(t) + P in
env(t))− P out

env(t) + Pu
env(t)+

+ τTopẋop + τTenvẋenv + Ḣch(t) (15)

where Pu
op(t) = −uTopẋop and Pu

env(t) = −uTenvẋenv are the
powers needed to execute the current robot commands. As

shown in [17] the power flowing through the communication
channel is defined as

Ḣch(t) = P out
op (t) + P out

env(t)+

− P out
op (t− d(t))− P out

env(t− d(t)) (16)

where d(t) ≥ 0 is the communication delay. We can rewrite
(15) using (11), (10) and (16) as

Ḣ = −(1− σop)Dop(t)− (1− σenv)Denv(t)+

− (1− σenv)P out
op (t− d(t))− (1− σop)P out

env(t− d(t))+

+ τopẋop + τenvẋenv (17)

Since σop, σenv, σ̂op, σ̂env ∈ {0, 1} we can upper bound Ḣ
by exploiting the inequalities uT? ẋ ≤ uT? ẋ + σP out

? (t) and
P out
? (t) ≥ 0

Ḣ ≤ τTopẋop + τTenvẋenv (18)

which proves the theorem.

III. PASSIVE MODEL PREDICTIVE CONTROL

Figure 1 shows the block diagram of the control ar-
chitecture. The plant model within the P-MPC (opera-
tor/environment) consists of the robot dynamics and the tank
evolution (4). The passivity (i.e. Eop ≥ ε, Eenv ≥ ε) of
the system is implemented as a nonlinear constraint in the
optimisation problem.

Operator

Operator
Robot Estimator

P-MPC Operator Estimator
Remote
Robot

P-MPC Environment

Environment

τop

τenv

uop

uop(k − d) uenv

uenv(k − d)

xenv

xenv(k − d)
ẋenv

ẋenv(k − d)

Eenv

Eenv(k − d)

xop

xop(k − d)
ẋop

ẋop(k − d)

Eop

Eop(k − d)

C
om

m
unication

netw
ork

Fig. 1. The control architecture implemented. The green blocks are the
controllers, the blue blocks are the sources of external torques, the grey
blocks are the robots, the orange blocks are the tank estimators and the
dashed line is the communication channel where P out

? and Ereq
? are

exchanged.

A. Robot dynamic

The robot model used in the MPC is the exact linearisation
via feedback of the robot dynamic defined in (1) [16]. Each
degree of freedom is assumed to be independent of the other
and modelled as a mass-damper equation. Let h(x, u) be the
update function of the equivalent SISO discrete-time second-
order linear system

x(k + 1) = h(x, u) = Āx(k) + B̄(u(k)T , τ(k)) (19)
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where the vector x contains the joint position and velocity,
u and τ ∈ R are the torque applied by the motor and the
external force. This implies that the state space matrices are
the discretised version of the differential equation

jẍ+ bẋ = u+ τ (20)

where b ≥ 0 is the friction and j > 0 is the inertia. The
external force τ is assumed to be an exogenous input. We
have as many system (19) as degrees of freedom.

B. Tank dynamics

We rewrite (4) in order to express directly the energy
stored in the tank to ease the modelling of the update function
g(E, ẋ, u) as a non linear discrete time system

E(k + 1) = g(E, ẋ, u) = E(k) + ∆t(σ(
1

2
bẋ2(k) + P in(k))

− P out(k) + Pu(k)) (21)

where E(k) ∈ R+ represents the energy stored in the tank
at time k, P in(k), P out(k) are the in/out power functions,
and ∆t is the sampling time of the discrete dynamics. In our
formulation both the transparency and passivity layers will
be implicitly taken into account within the P-MPC. Pu(k)
is defined as the power needed to apply the control input
during the optimisation

Pu(k) = −uẋ (22)

where ẋ is the velocity of the robot. The damping term D(x)
in (1) in our case corresponds to the friction term and is equal
to 1

2bẋ
2.

C. P-MPC at the operator side

Let z ∈ R6 be the state vector of the MPC at the operator
side

z(k) =


xop
ẋop
Eop

xenv(k − d(t))
ẋenv(k − d(t))
Eenv(k − d(t))

 (23)

where d(t) is the communication delay from environment to
operator and uop ∈ R is the operator robot control command.
Let fop(z, u) be the update function of the robots state xop,
xenv and the tank values Eop, Eenv

fop(z, uop) =

=


hop(z1(k), uop(k))

gop(z3(k), z2(k), uop(k))
henv(z4(k − d(t)), uenv(k − d(t)))

genv(z6(k − d(t)), z5(k − d(t)), uenv(k − d(t)))


which yields to

z(k + 1) = fop(z, uop) (24)

where h is the evolution of the motor defined in (19), and g
is the tank dynamics defined in (21). Due to the distributed
approach the states about the opposite site and the last

applied command (i.e. the environment side for the operator
side and vice-versa) are received after d steps of delay.

Assuming the controlled robot fully observable we can
directly recover at each control cycle the state. The operator
tank level Eop is computed using the observed states xop(k),
ẋop(k) and the control input uop(k). The environment tank
level Eenv(k − d(t)) is computed using the delayed envi-
ronment robot states xenv(k− d(t)), ẋenv(k− d(t)) and the
delayed control input uenv(k−d(t)). The estimator computes
at every control cycle the tank level applying (21). The cost
function to be minimised would balance the tracking error
between the operator and environment robot states (position
and velocity) and moderates the control input ûop and its
rate of change ∆ûop. The resulting cost function at time k
is

Jop(ẑ, ûop) =

kp∑
i=1

[q(x̂op(k + i)− x̂env(k − d(t) + i))2+

+ w(ˆ̇xop(k + i)− ˆ̇xenv(k − d(t) + i))2]+

+

kc∑
j=1

[cûop(k + j)2 + d∆ûop(k + j)2] (25)

where q, w, c, d are application-dependant positive weights,
and kp and kc are the prediction and control horizons,
respectively.

The optimal control inputs û?op(k), . . . , û?op(k + kc) are
obtained as a solution of the finite-horizon optimal control
problem

û?op(k + i)|kc
i=0 = arg min

ẑ,ûop

Jop(ẑ, ûop)

s. t. ẑ(k) = z(k)

ẑ(k + 1) = fop(ẑ, uop)

Êop ≥ εop (26)

Êenv ≥ εenv (27)

where we assume uenv constant over the optimisation hori-
zon. As usual in MPC, the applied command to the robot is
the first value

uop(k) = û?op(k).

The inequality constraints (26) and (27) guarantee that the
tank levels would be always non negative. In this way, the
overall teleoperation system is passive and so stable. Exploit-
ing the prediction behaviour of the P-MPC the controller
computes the command always taking into account the time
evolution of the tank. In this way, the command is not forced
to be zero when the tank is closer to the lower bound. Instead,
we look for an optimal solution that will avoid the chattering
behaviour of the classic two-layer implementation as shown
in Section IV.

D. P-MPC at the environment side

For the environment side, the optimisation problem is the
same as the operator side. The state vector z ∈ R6 is the
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following

z(k) =


xop(k − d(t))
ẋop(k − d(t))
Eop(k − d(t))
xenv(k)
ẋenv(k)
Eenv(k)

 (28)

where the communication delay is moved from the en-
vironment robot state variables to the operator ones. The
equations for fenv , Jenv , and the optimisation problem must
be changed accordingly with the new definition of z and to
the control input for the environment robot uenv .

IV. SIMULATION RESULTS

The proposed solution has been initially validated using
Simulink and the Optimisation Toolbox provided by Mat-
lab R2019b on 1 degree of freedom robots. As shown in
Figure 1, the robot at the operator side is moved by a PD
controller, acting as the operator, which takes as input the
reference signal and the delayed position and velocity of the
environment robot; the output is the torque to be applied
at the operator side to track the reference. This feedback
loop models the classic video streaming used in a real
setup. The P-MPC controllers provide commands both to
the operator and environment robots. At the operator side,
the command acts as force feedback to the operator, while
at the environment side it drives the robot. We implemented
the two-layer controller proposed in [14] with position PD
controllers in the transparency layer. The passivity layer
shares the same tank dynamics.

A. Simulation setup

The test is conducted with a constant delay of 0.1 s
between the operator and the environment side. The sampling
time of the controller was set to ∆t = 0.02 s, the prediction
horizon of the P-MPC equal to 5 steps and the control
horizon is 3 steps. The energy thresholds of the two tanks
defined in Section II are set equal to small values in order to
induce the operator and environment tank towards the upper
and the lower bound respectively (Tmax = 1.5, T ava = 0.6,
T req = 0.4, ε = 0.001, P̄ = 0.01) and in this way to
validate the proposed architecture. The tanks are initialised
to Tmax/2 at the operator side and to ε at the environment
side. The robot model parameters (i.e. inertia and friction)
used during the simulation are identified on the experimental
setup and reported in Section V.

B. Soft contact

The experiment is conducted using as a reference signal
for the operator a low-passed step signal. The two controllers
are tuned to behave similarly when the energy stored in the
system is enough to perform the action required. We simulate
a soft contact placing an obstacle along the path of the
environment robot (at 0.5 rad) so it can’t reach the desired set
point. Figure 2 shows the P-MPC and the original two-layer
algorithm driving the environment robot to track the position
and the velocity of the operator robot until the remote robot

interacts with the environment (around 2 s). Figure 2g shows
a high frequency chattering in the torque commanded to the
robot at the environment side: this is because the environment
tank has reached its lower bound, as shown in Figure 2h and
Figure 3. Since the passivity layer simply sends zero torque
in case of lack of energy the resulting controller jitters around
the lower bound until the required energy to apply the torque
is transmitted by the operator side tank. On the other hand
Figure 2c shows a smoother command than Figure 2g when
the environment tank reaches the lower bound. In fact, as
shown in Figure 2d and Figure 3, the tanks evolution is also
smoother since the P-MPC avoids a high rate of change in the
command. It’s also clear how the MPC avoids the chattering:
the position and velocity tracking is less precise when the
environment tank reaches the lower bound. In fact, the cost
function has to trade off the tracking error and the rate of
change of command. However, in this way, we guarantee a
smoother control action (i.e. no vibrations on the motors and
reflected to the operator).

In Figure 2h and Figure 2d the increasing of the environ-
ment tank at the end of the experiment, starting from 4 s, is
due to the incoming power P̄ from the operator side. In fact,
even if the robots do not move, the environment tank is still
requesting energy to the operator side since Eenv < T req

env

and Eop ≥ T ava
op .

V. EXPERIMENTAL RESULTS

The P-MPC has been implemented in C++ using NLopt to
solve the optimisation problem, the solver adopted is the Se-
quential Least Squares Programming (SLSQP). The overall
teleoperation architecture has been implemented using ROS.
The experimental setup is composed of two brushless DC
motors controlled via current feedback loops by two Maxon
Escon boards (see Figure 4). The motor’s axes are connected
through gearboxes and a pair of high precision encoders
(4096 readings per rotation) provide position measurements.
The operator and environment sides exchange data through
a simulated network connection that allows delaying and/or
losing packets. The network component queues packets and
assigns them a delay value. The communication delays can
be constant or randomly time-varying, with the possibility of
receiving packets out-of-order.

A. Experimental setup

We conducted two experiments, the first with a constant
delay of 0.1 s and the second with a uniform random delay
between 0.1 and 0.5 s. The sampling time of the controller
was set to 0.02 ms, the prediction horizon of the P-MPC
is equal to 5 steps and the control horizon is 3 steps. The
threshold values used in the two tanks are: Tmax = 1.5,
T ava = 1.0, T req = 0.5, ε = 0.001, P̄ = 0.01. The tanks
are initialised to Tmax/2 for the operator side and T req/2
for the environment side.

The inertia and the friction of the motor have been
identified using a least square approach and the resulting pa-
rameters for (20) are: j = 0.0266 kgm2 and b = 0.0218N s.
The parameters are the same for both motors. Since the
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(a) P-MPC position tracking (b) P-MPC velocity tracking (c) P-MPC commanded torques

Eava

Ereq

(d) P-MPC tanks evolution

(e) Two-layer position tracking (f) Two-layer velocity tracking (g) Two-layer commanded torques

Eava

Ereq

(h) Two-layer tanks evolution

Fig. 2. Simulated soft contact comparison between two-layer and P-MPC approach. The blue and orange lines are the operator and environment robot
trajectories respectively. a) P-MPC position tracking, b) P-MPC velocity tracking, c) P-MPC torque commanded, d) P-MPC stored energy, e) two-layer
position tracking, f) two-layer velocity tracking, g) two-layer torque commanded, h) two-layer stored energy.

Fig. 3. A magnification of the environment side tank behaviour. The blue
and orange lines are the environment tank evolution for the P-MPC and the
two-layer approaches respectively. The time axis and the data are the same
of Figure 2.

experiments focus only on hard contact, the environment
stiffness is assumed to be infinite.

B. Hard contact with constant delay

In the first experiment, the operator moves the robot and
the environment motor will touch an obstacle placed along
the path. The delay is constant and as it can be seen in
Figure 5a and Figure 5b the remote robot goes in contact
several times with the environment. The contact position
moves a bit during the experiments and this is due to a
backlash in the handle attached to the motor.

Figure 5c shows the command computed by the P-MPCs,
the operator and the environment torque commanded match

a

b

c

d

Fig. 4. Experimental teleoperation setup. (a), (b) DC motors with encoder
and gearbox, (c) motors controller, (d) environment side obstacle.

during the contacts (of course with opposite signs). Figure 5d
shows the evolution of the tanks, as explained in Section IV.
The tanks are correctly upper-bounded and the action of
the new P out definition can be seen between 7 and 9 s.
In that interval the operator tank is full and the power
dissipated by the operator is not “wasted” but transferred
to the environment side. This causes a faster increase of the
available energy for the environment robot allowing a more
reactive response.

C. Hard contact with variable delay

In the second scenario, the communication delay changes
randomly over time. The operator moves the robot and the
motion at the environment side is blocked by an obstacle.
Figure 6c shows the command torques: also in this case the
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(a) Position tracking (b) Velocity tracking

(c) Commanded torques

Emax

Eava

Ereq

(d) Tanks evolution

Fig. 5. Hard contact with constant delay P-MPC. The blue and orange lines
are the operator and environment robot trajectories respectively. a) position
tracking, b) velocity tracking, c) torque commanded, d) stored energy.

interaction with the environment is correctly reflected to the
operator. The tanks are initialised with the same values as
in the previous experiment and as before between 10 and 13
s the environment tank receives the dissipated power by the
operator which helps to have a faster response. As before
Figure 6a shows a small movement of the contact position
due to the backlash in the robot handle.

VI. CONCLUSION

In this paper, we proposed a novel implementation of the
two-layer teleoperation algorithm exploiting a nonlinear pas-
sive model predictive controller P-MPC. Such a distributed
controller works in a smoother way than the original two-
layer algorithm. It can better deal with chattering induced
by the hard threshold that controls the time evolution of
the tank. Moreover, we introduced a variation on the tank
dynamic to cope with the upper bound of the tank allowing
the sharing of the dissipated power between the operator
and the environment side. We plan to extend our work on
multiple degrees of freedom robot.
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