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Abstract— Modern robots act in dynamic and partially un-
known environments where path replanning can be mandatory
if changes in the environment are observed. Task-prioritized
control strategies are well known and effective solutions to
ensure local adaptation of robot behaviour. The highest priority
in a stack of tasks is typically given to the management of
correct robot operation or safe interaction with the environment
such as obstacles or joint limits avoidance, that we can consider
as constraints. If a constraint makes impossible achieving a
certain task, such as tracking a Cartesian trajectory, a local
control algorithm partially sacrifices the latter which is only
accomplished to the best of the robot’s ability to generate
internal motions. In this control framework, problems may
occur in some applications, like in the surgical domain, where
it is not safe that some tasks are simply sacrificed without
prior notice. The contribution of this work is to introduce a
coordinate invariant index, that is used to provide a geomet-
rical interpretation of task conflicts in a task-priority control
framework and to develop a method for on-line detection of
algorithmic singularities, with the goal of increasing safety and
performances during robot operations.

I. INTRODUCTION

Kinematic singularities are robot configurations where the
Jacobian matrix is rank-deficient and cannot be inverted. This
condition causes many control methods to fail and let the
task assigned to the robot unfeasible. Hence, the study of
such singular configurations is of significant importance for
the application, control and design of robots. A common
research objective has been to acquire tools/methods to detect
and avoid such singularities during robot operations [1].

When multiple tasks are assigned to the robot, besides
kinematic singularities, also singularities between tasks can
occur, namely tasks conflicts better known as algorithmic
singularities. Several solutions have been proposed in litera-
ture to assigns a hierarchical control structure and to manage
multiple tasks, dealing with different aspects like: strict or
soft priority hierarchy, static or dynamic priority hierarchy.
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Fig. 1: Trocar use case with a KUKA LBR MED (Courtesy
of KUKA Deutschland GmbH).

In this work, we consider the framework where multiple
tasks are assigned, and handled by attributing to each of
them a different level of priority using a Nullspace projection
method. In this context, if a task with higher priority makes
another task with lower priority unfeasible, the following
situations can occur: (i) the task with lower priority can be
partially accomplished, (ii) it could be completely neglected,
(iii) the robot could get stuck because of the so called
algorithmic singularity.

As a matter of fact, these reactions in some scenarios
are not acceptable. If we consider medical applications, it
is crucial for the patient healthiness that the surgeon can
safely operate with the robot without abrupt interruptions.
Let’s consider the Trocar kinematics use case [2] (Fig. 1).
In this operation context, the robot tool is inserted into
the patient body, through a Trocar. The Trocar point is
defined as a fix point in the world frame through which the
shaft of the tool has to pass and that constitute a remote
center of motion (RCM) for the manipulator. This kinematic
constraint has to be obeyed while hand-guiding the robot.
It is clear that the surgeon must be able to hand-guide the
robot, while keeping away from all the kinematics constraints
and workspace limitations (joint limits, singularities and so
on), and avoiding any kind of unpredictable reactions from
the robot. In such a context, possible task conflict should
be promptly detected and an appropriate reaction triggered.
Of course, many other use cases not only in the medical
context can be found. Usually even in industrial context,
in particular in human-robot collaborative applications, the
problem of avoiding unpredictable robot reaction due to
conflicts between multiple tasks and workspace limitations
play an essential role for the design of the robot control law.

The problem of finding suitable indexes to measure these
kind of singularity is still open. An interesting question
arises: does it make sense trying to extend the kinematic
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singularity index to algorithmic singularity? And if it makes
sense, how can this be realized? In this work, we try to an-
swer to these questions and we propose an approach to detect
conflicts between tasks, considering a coordinate invariant
measure used for the analysis of kinematic singularities of
an open-chain mechanical structure already introduced in [3].
Then we give a geometrical interpretation of the detected
algorithmic singularity.

The paper is organized as follows: Section II gives a
brief overview of the multiple task-priority algorithms that
could be found in literature for the management of a set of
tasks. Section III presents a list of indexes for the analysis
of robot kinematic singularities (Section III-A), followed by
considerations about manipulability ellipsoids in Section III-
B. In Section III-C we present the proposed method for the
detection and the geometrical interpretation of task conflicts.
Illustrative examples are presented in Section IV.

II. RELATED WORKS

Motion generation for highly redundant robots, either
manipulators or humanoid robots, have been intensively
studied in the past decades. To assign a hierarchical control
structure to manage multiple tasks [1] several solutions have
been proposed in literature, i.e. techniques based on extended
Jacobian [4], [5] and augmented Jacobian [6], [7]. Multiple
ways to define the desired hierarchy can be found in literature
and are mainly divided into two categories: strict and non-
strict priority hierarchy. To the first one belong the strategies
that project lower priority tasks in the null-space of the higher
priority tasks, through the usage of null-space projectors ([8],
[9], [10], [11]). With these strategies the highest priority task
is exactly fulfilled, while the others are performed just if they
don’t interfere with the ones at higher priority. Recursive
projection onto the Nullspace of the higher priority task
Jacobian have also been proposed in [12] and [13], where
different projection matrices are used, depending on the
chosen control framework, i.e., velocity, acceleration or force
based. Flacco et al. in [14] propose a reverse priority method
which allows to execute at best all tasks, preserving the
desired hierarchy. They process higher priority tasks at the
end, and add joint motion contribution following the reverse
order of priorities.

Non-strict priority approaches replace idempotent pro-
jections with non-idempotent matrix operators that realize
approximate projections. Soft priorities introduce coupling
between tasks. [15] and [16] propose to adapt nullspace
projectors to achieve dynamic adaptation of task priorities.
A weighted mixture of multiple tasks implements a soft
prioritization by assigning a scalar priority to each task ([17],
[18]). Both strict and soft priorities hierarchies have also been
formulated as a quadratic program ([19], [20]).

Liu et al. in [21] proposes an approach to handle both
strict and non-strict priorities of an arbitrary number of tasks,
completely projecting a task into the null-space of a set of
tasks and partially into the null-space of some other tasks.
[22] extends the work proposed by Liu et al. to include
a weighting matrix in the computation of the nullspace

projection, adding dynamic-consistency to the stack-of-tasks.
The proposed extension is advantageous also in the case of
non-strict priorities because it reduces the inertia coupling
between tasks.

The methods to define multiple tasks have then been
extended to include also set-based tasks (e.g. distance from
joint limits) to the hierarchy in [23], [24], [25], [26], [27], in
addition to equality tasks. Strategies to learn time-dependent
priorities are under investigations. They can be learnt em-
ploying policy search relying on a user-defined cost func-
tion [28], [29] or employing programming-by-demonstration
techniques [30].

When multiple tasks are assigned to the robot, singularities
between tasks can occur, in addition to kinematic ones. [8],
[31], [25] have proposed different methods to detect them.
In particular, in [32] sufficient conditions regarding the rank
of the augmented Jacobian for the stability of the regulation
problem are presented.

III. METHODOLOGY

In the following we will refer to the high priority task
as the constraint and to the secondary task (lower priority
task) as the task to be executed in the Cartesian space.
A robot joint configuration, q(t), with q ∈ Rn is a conflict
configuration if and only if:

min
σi

SV D[JT (q(t)) ·NC(q(t))] = 0, (1)

where JT ∈Rr×n is the Jacobian of the task and NC ∈Rn×n

is the nullspace projector of the constraint identified by the
jacobian JC [8]. SV D is the singular values decomposition
and σi is the i-th singular value. It is worth noting that the
product in (1) might present a singularity even though the
two jacobians related to the task and the constraint, JT and
JC, might be non-singular at the specific configuration q(t).
Methods to analyze kinematic and algorithmic singularities
have been widely investigated through years. In the next
subsection we will present some of them.

A. Indexes for Kinematic Singularities

The literature is rich and comprehensive regarding indexes
and measures of robot kinematic singularities [1]. A general
overview of the most common indexes utilized for the anal-
ysis of kinematic singularity is shown in Table I. References
for further details are reported as well.

The eigenvalues (EIG) or singular values (SVD) (indexes
of line 1, 2 and 3 of Tab. I) decomposition (for non-square
matrix) are well-known methods for singularity analysis of a
linear mapping [40]. In general, those methods are computa-
tionally expensive. Some low-cost methods for eigenvalues
decomposition have been proposed during the years [41]. A
natural extension, less expensive from a computational point
of view, is the condition number (indexes of lines 4 and 5).

M(q) (reported in line 7) is the robot mass matrix, while
Λ(x) (in lines 3 and 8) is the robot inertia in the Cartesian
Space. For sake of clarity, dependency from the robot joint
configuration and from the end-effector position will be
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TABLE I: List of indexes for the Kinematic Singularity

number index expression reference

1 λ̃m(J) minλi [EIG(J] [33]

2 σ̃m(J) minσi [SV D(J)] [34]

3 σ̃m(Λ
−1) minσi [SV D(Λ−1)] [35]

4 K2(J) σM
σm

[36]

5 KF (J) 1
n

√
tr(JJT )

√
tr[(JJT )−1] [37]

6 w
√

det(JJT ) [38]

7 wd

√
det[JM−1(JM−1)

T
] [39]

8 wm

√
det(Λ−1) -

omitted in the remainder of this paper for all the relative
matrices.

A common property of all the mentioned indexes of Tab. I,
is that their value is zero in a singular configuration and it
increases as soon as the configuration of the robot moves
out of the singularity. The way the value increases can be
rather different from one index to another, depending on the
robot kinematic structure and the physical entity the specific
index can be related to. All the presented indexes normally
deal with manipulability measures related to the kinematic
structure of the robot. Indeed, they are typically used to
analyse pure kinematic feasibility to arbitrarily generate
end-effector velocity in a certain joint configuration. The
concept of manipulability is always related to the one of
manipulability ellipsoids.

What is not quite often remarked from other authors is
that those ellipsoids are dependent from the joint coordinate
choice [3]. A change of this parametrization will lead to a
different ellipsoid, meaning that any desired ellipsoid can
be generated given a suitable coordinate choice. Therefore,
it is of crucial importance the choice of the kernel of the
quadratic form which describes the ellipsoids equation, i.e.,
the matrix used for the manipulability analysis. This aspect
is examinated more in detail in the next subsection.

B. Manipulability Ellipsoids

The derivation of manipulability ellipsoid typically starts
by visualising the joint velocities q̇ as an hyper-sphere, given
by the equation: q̇T q̇ = 1.

By (pseudo)-inverting the differential kinematic equation,
an ellipsoid in the Cartesian Space is obtained:

ẋT J#T J#ẋ = 1, (2)

where J# is a generalized inverse of the robot Jacobian.
As pointed out in [3], an aspect that is not often remarked

in the context of manipulability analysis is that the matrix
J#T J# is in general not independent of joint coordinates. In
fact, different joint parametrization would lead to a different
sphere of joint velocities and thus, to a different ellipsoid
in (2) for the same joint configuration. Furthermore, in case
of redundant robot, the inverse of J does not exist and a

pseudo-inversion is required. As a pseudo-inverse of J is
not unique, arbitrarily high or poor manipulability can be
obtained for the same joint configuration, depending on the
selected pseudo-inverse. Thus, without a meaningful choice
of joint parametrization, the manipulability ellipsoid embeds
no physical meaning.

A coordinate-invariant approach consists in recalling that
joint velocities q̇ are elements on a manifold, namely the
Joint Configuration Space. To speak about length or norm of
an element, a metric has to be defined [3]. An appropriate
choice is the mass matrix M, which leads to the redefinition
of the sphere related to joint velocities as:

q̇T Mq̇ = 1, (3)

which represents an ellipsoid in the space of joint veloci-
ties for a given joint configuration. It can be noticed that in
this way equation (3) provides the same ellipsoid, no matter
the parametrization or the units chosen for q̇ [3]. Note that
the problem still remain on how to invert the differential
kinematics equation in order to obtain a velocity ellipsoid in
the Cartesian Space.

Following the reasoning from above, it is possible to define
the ellipsoid of generalized joint forces τ , i.e. τT M−1τ = 1.

Note that M is positive definite and can always be inverted.
If now we map the joints generalized forces to end-effector
generalized forces, f , by using τ = JT f, we obtain the
ellipsoid:

fT (JM−1JT )f = 1. (4)

This time no inversion of the Jacobian is required. The
kernel of the quadratic form in (4) is the inverse of Λ =
(JM−1JT )−1 already seen in Tab. I (indexes of lines 3 and 8).
This matrix represents the end-effector inertia in the Carte-
sian Space and it is the induced metric in this space, obtained
by using M as a metric in the Joint Configuration Space. Note
that Λ is also independent of joint parametrization [3].

Being consistent with the metric definition adopted so far,
we can define the velocity ellipsoid as:

ẋT (JM−1JT )−1ẋ = 1, (5)

which can also be obtained from (3) by adoperating the
dynamically consistent inverse of the Jacobian [42]. For
this reason we call the ellipsoid defined in (5) dynamically
consistent velocity ellipsoid, the kernel of which is Λ itself.

The velocity and force ellipsoids in (5) and (4) incor-
porate a strong physical meaning: their principal axis de-
scribe the capability of the robot to produce end-effector
velocities/forces in certain directions taking into account
not only the kinematic structure of the robot, but also the
dynamic constraints intrinsically expressed by the inertia
matrix Λ; furthermore, they are independent of the joint
parametrization, which comes as consequence of choosing
a proper metrics in the Joint Configuration Space [3]. It can
be recognized, that the core of the quadratic form of the
velocity ellipsoid is constituted by the inverse of the matrix
core of force ellipsoid. Therefore, the principal axis of the
two ellipsoids coincide, while their respective dimensions are
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Fig. 2: Comparison between the classical velocity ellipsoid
(blue) and the one obtained with Λ−1 (red) in (2a), for a
2-DOF planar robot in different configurations: q1 = −90°
and q2 = 30° in A, q2 = 90° in B and q2 = 150° in C.
Comparison between the minimum singular value for the
classical velocity ellipsoid (blue) and the one obtained with
Λ−1 (red) in (2b), for the same robot, with q1 = −90° and
q2 ∈ [0°,180°].

in inverse. Good velocity manipulability is then obtained in
directions of poor force manipulability and viceversa, which
is a known property according to force/velocity duality (Fig.
2a, Fig. 2b, Fig. 3a and Fig. 3b).

The analysis conducted above, remarks that only ellip-
soids obtained by choosing a proper metric in the Joint
Configuration Space reflects physical properties of the robot.
Other ellipsoids could infer for the same configuration arbi-
trarily high or poor manipulability, depending on the joint
coordinates and the units chosen to parametrize the Joint
Configuration Space. Based on this idea, it is reasonable for
the analysis of kinematic singularities to consider only the
indexes based on Λ (indexes 3 and 8 from Tab. I)

C. Task-Conflict Singularities

The feasibility of tasks assigned to a robotic manipulator is
strictly related to the invertibility of the associated Jacobian
(or others) matrix that is required in the control loop [43].
We show that to investigate task-constraint singularities in a
natural way it is possible to consider the same index of the
kinematic singularity (Tab. I) but with a different ”input”
matrix carrying information about the tasks feasibility.

Without losing generality let consider the feasibility of
two tasks performed simultaneously. These tasks can be
feasible for the robot when performed separately, but become
unfeasible when performed together despite the assigned
level of priority for each task. In (1) a condition for a task-
conflict to occur was given. The product JT |C = JT ·NC,
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Fig. 3: Comparison between the classical force ellipsoid
(blue) and the one obtained with Λ−1 (red) in (3a), for a 2-
DOF planar robot in different configurations: q1 =−90° and
q2 = 30° in A, q2 = 90° in B and q2 = 150° in C. Comparison
between the minimum singular value for the classical force
ellipsoid (blue) and the one obtained with Λ−1 (red) in (3b),
for the same robot, with q1 =−90° and q2 ∈ [0°,180°].

JT |C ∈ Rr×n, represents the restriction of the mapping JT
to the nullspace of Jacobian matrix related to the constraint,
i.e. to the task subspace that is consistent with the constraint.
It can then be interpreted as a new task Jacobian (constraint-
consistent task Jacobian), associated to a virtual manipulator
that can only produce motion in the range of JT |C.

A task-conflict singularity for the real manipulator cor-
responds to a kinematic singularity for the virtual one.
Thus, it seems reasonable to apply the same index identified
for kinematic singularity to JT |C, in order to analyse task-
constraint conflict situations:

σ̃m(Λ
−1
T |C) = min

σ i
[SV D(Λ−1

T |C)] (6)

wm =
√

det(Λ−1
T |C), (7)

where ΛT |C = (JT |CM−1JT
T |C)

−1 ∈ Rr×r is the inertia matrix
in the task space that is consistent with the constraint. It must
be pointed out that ΛT |C can be inverted just if there is no
conflict between the task and the constraint, and thus if the
virtual manipulator is not in a singular configuration.

For some simple cases, the virtual manipulator can be
easily identified as a substructure of the real manipulator.
Some practical examples are shown in the next section.

IV. ILLUSTRATIVE EXAMPLES

The singularity between different tasks assigned to a
robot manipulator can be recognized as a pure kinematic
singularity of a particular sub-structure of the manipulator
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Fig. 4: Task-Constraint conflict geometrical example with a
3-DOF manipulator

itself. In this way, to analyze such a singularity, it is possible
to extend the same indexes and measure which normally are
used to detect pure kinematic ones. As shown before (in sect.
III-C), we can use the same indexes with a different input
matrix. The input matrix this time has to bring information
about the tasks and constraints involved. This information
restricts the indexes into the subspace of the task which is
consistent with the assigned constraint defined by JT |C.

It is worth to show our proposed geometrical interpretation
of task-conflict singularities with different kinematic struc-
tures. We first show the above mentioned concept with an
example considering a 3-DoF manipulator (see the Appendix
for further details). For the sake of simplicity, in this example
let consider as a constraint to not move the joint 1, and as task
to move the end-effector along a line through the positive
direction of the x-axis, starting from the initial configuration
(qinit = [45°,−90°,45°]T ). At some point both tasks become
unfeasible because the robot will not be able to move the
end-effector along a straight line taking into account the
constraint, see Fig. 4. It is exactly in that moment which
we can recognize that the matrix JT |C loses full rank. In
this specific configuration, such matrix describes a robot
manipulator of 2-DOF which is in the outstretched kinematic
singular configuration (see the red link in Fig. 4).

It is now interesting to present our method for a more
complex kinematic structure such the one of a redundant
manipulator. Let consider the following scenarios with a
robot KUKA LBR iiwa 7kg:
• Example 1: the 3 dimensional task consists to move

the end-effector along a straight line in the negative
direction of the x-axis of the robot base frame. The
constraint is to keep joint 2 fixed at its initial joint
position (Fig. 5).

• Example 2: the 3 dimensional task consists to move the
end-effector along a straight line in the positive direction
of the x-axis of the robot base frame. The constraint is
to keep joint 4 fixed at its initial joint position (Fig. 6).

In each of them the task and the constraint are both
feasible for the robot, but when performed together the robot
will reach a configuration in which they are in conflict. For
such a scenario, it has been emphasized the novel geometrical
interpretation of these singularities. The virtual manipulator,
highlighted in black in Fig. 5 and 6, represents the virtual
kinematic structure described by the Jacobian of the task

Fig. 5: Task-Constraint conflict geometrical interpretation
with KUKA LBR iiwa (during example 1)

Fig. 6: Task-Constraint conflict geometrical interpretation
with KUKA LBR iiwa (during example 2)

projected into the nullspace of the constraint, which is in a
kinematic singularity.

In the end, for a given kinematic structure it is not trivial
to determine whether a task-conflict singularity would arise.
There are conditions related to tasks and their jacobians to
prove the feasibility of multiple tasks, and these have been
widely investigated by G. Antonelli through years [32].

V. CONCLUSIONS

The problem of on-line unfeasibility detection of a stack of
tasks has been addressed. Thanks to a geometrical interpre-
tation of the singularities between tasks assigned to the robot
with different priorities, it has been possible to state that any
valid measure for the kinematic singularities can be used
to detect the conflict between tasks. The above mentioned
measure has to be restricted into the space of the task which
is consistent to the constraint. Finally, a coordinate invariant
index to on-line measure such a kind of singularities has
been proposed.

Further research direction would be to investigate an ap-
propriate reactive control schemes (to be decided according
to the specific application) to manage the conflict situations.

APPENDIX

In the following details about the experiment with the 3
DoFs planar manipulator of Fig. 4 are shown. As explained
in Sec. IV the considered constraint is to keep fixed the
first joint and move the end-effector along a straight line
in the positive direction of x axis, starting from initial
configuration qinit = [45°,−90°,45°]. The jacobian of a 3
DoFs manipulator is:

J =

[
−a1s1−a2s12−a3s123 −a2s12−a3s123 −a3s123

a1c1 +a2c12 +a3c123 a2c12 +a3c123 a3c123

]
where ai is the length of the i-th manipulator’s link, ci j

and si j are respectively cos(qi + q j) and sin(qi + q j). For
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the considered constraint, the respective jacobian is Jc =
[1 0 0], and the associated nullspace is NC = I3×3−J#

CJC.
The constraint consistent task jacobian is then:

JT |C = JT NC =

[
0 −a2s12−a3s123 −a3s123
0 a2c12−a3c123 a3c123

]
which is equivalent to the jacobian of a 2DoFs manipula-

tor, the virtual one. For q3 = 0 it is in a singular configuration
since the columns become linearly dependents, and thus the
virtual manipulator is in the outstretched configuration. Con-
sidering the aforementioned task, the obtained configuration
is the one highlighted in red in Fig. 4.
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