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Abstract— Prediction of the human behaviour is essential
for allowing an efficient human-robot collaboration. This was
confirmed recently showing how scheduling approaches can
significantly increase the productivity of a robotic cell by
planning the robotic actions in a way as much as possible
compliant with the human predicted behaviour. This work
proposes an innovative approach for human activity prediction,
exploiting both a-priori information and knowledge revealed
during operation. The resulting approach is proved to achieve
good performance through both off-line simulated sequences
and in a realistic co-assembly involving a human operator and
a dual arm collaborative robot.

I. INTRODUCTION

Collaborative robotics is emerging as an important re-
search line within the robotics community. Much attention
was given to industrial contexts, where humans and robots
collaborate to accomplish structured tasks, which can be dif-
ficult to fully automatize by exploiting only robots. Although
many different applications were proposed, few key abilities
were proved to allow for an efficient human-robot interaction
among which we can find the capability to predict the human
behaviour.
When considering a physical interaction, typical approaches
predict the human behaviour in terms of the future human
motion, in order to enhance impedance controls. Such a
prediction is done in [1] by exploiting a machine learning
approach based on radial basis neural networks, able to
forecast the human motion according to the force applied at
the end effector. A similar approach is exploited in [2], where
neural networks are exploited for improving an adaptive
impedance control scheme.
When dealing with co-assemblies, humans and robots have
to alternate and synchronize to finalize a set of products. In
such contexts, the intention prediction is considered at a task
level, i.e. predicting the sequence of future human actions
according to the past ones. Cyber-physical systems [3] can be
exploited to optimally control the robotic actions, according
to a digital model describing the plant to supervise and
in particular the precedence constraints among the actions
assigned to both humans and robots. The actions done
by agents are recorded and notified to the digital model
for updating the state of the system. Recent works have
demonstrated the benefits of predicting the human behaviour
[4], [5] for improving the scheduling capabilities of cyber-
physical systems.
The predictive models can be also adopted for determining
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the waiting time to see again a certain specific action
assigned to the human [6]. In this context, the human activ-
ity recognition becomes of paramount importance. We can
assume humans in the robotic cells as constantly monitored
by surveillance systems, able to track the human motion.
Then, algorithms like [7] or [8] are able to solve the action
recognition problem by analyzing the trajectory of some
specific points of the human upper body, detecting also the
starting and ending time instants of the human actions. In
this way, an artificial intelligence is able to keep track of
the operations performed during time by the human. Finally,
algorithms performing time series prediction can be exploited
to determine the future actions the human will undertake.
The time series prediction problem was already addressed
in the literature. In [9] the concept of prediction by par-
tial matching was introduced. It describes the time series
evolution by means of transition probabilities. In [10] Sup-
port Vector Machines are used for hierarchical multi-label
prediction of gene functions. Li et al. [11] proposed a
Variable Order Markov model approach, able to represent
both high and low temporal correlations. Gueniche et. al
proposed another approach, based on a tree of suffixes [12],
[13]. The approach proposed in this paper takes inspiration
from these works, extending them with the adoption of a
probabilistic perspective. In [14], Recurrent Neural networks
are exploited, while another kind of network is exploited in
[15] for predicting stock market prices.
When considering the possible actions assigned to a human
in a robotic cell, it is common to have affine actions, for
which the probability to be executed in sequence is high.
Classical probabilistic models (Markov chains, Bayesian
networks, etc.) are trained in a data-driven way, trying to
highlight the temporal dependencies among the actions. The
relationship between affine actions might be included as an
a-priori knowledge, which must be however modelled as a
probability distribution of some kind that must be included
in the model with severe modifications. On the opposite,
the aim of this work is to propose an innovative algorithm
that considers both the actions relationships as well as their
temporal dependencies in a unique time varying model,
which is the main innovation of our approach.

II. PREDICT THE HUMAN ACTIONS

We assume the actions assigned to the human in an assem-
bly task as contained in a finite set A = {a1, · · · , am}. Every
element in A is an elementary action which requires one
operator’s hand to enter in a certain area of the workspace,
taking tools or parts to assemble. The sequence of actions
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performed during time can be described by a time series
X = x1 � x2 � · · ·� xn, with x1,2,··· ,n ∈ A 1. Timestamps
t1,2,··· ,n of the elements in X refer to instants at which
the operator begins the corresponding action. In order to
optimally plan the operations assigned to robots, the future
values of X must be predicted. This is possible by adopting
the model described in this Section, which is made of two
main parts: the first one models the logical sequence of
operations (Section II-A), while the second one accounts for
the temporal durations (Section II-B).

A. Predicting the sequence of human actions

The process governing the time series X is assumed to be
stochastic. The conditional probability to see a certain action
a ∈ A as a realization for xn must be characterized. Such
distribution can be built by taking into account σ preceding
actions, i.e. considering the sub-series Xσ

n = xn−σ � · · · �
xn−1. In this work we propose to use a Gibbs distribution
to model the following conditional distribution:

P(xn = a|Xσ
n ) =

Ψ(Xσ
n , a, t)∑

ã∈AΨ(Xσ
n , ã, t)

=
Ψ(Xσ

n , a, t)

Z
(
ST (t)

) (1)

σ is also referred to be the order of the predictive model.
The factors characterizing Ψ are all exponentials:

Ψ = Ψv

(
Xσ
n , a, t

)
·
NC∏
i=1

Ψci

(
Xσ
n , a

)
(2)

Ψv = exp

(
w0Φv

(
Xσ
n , a, t

))
(3)

ΨCi = exp

(
wiΦCi

(
Xσ
n , a

))
(4)

The adoption of a Gibbs distribution made by exponential
linear factors was done to have a model whose logarithmic
likelihood is easy to differentiate, making the training com-
putationally affordable (see Section II-C). Φv is a piecewise
time varying function, depending on the definition of a suffix
tree, see Section II-A.1. A suffix tree is a dynamic data
structure storing all the information acquired during time
about the time series to predict. On the opposite, functions
Φc1,··· ,C remain invariant and are assumed as given. They
model an a-priori knowledge to be used in the prediction
process, see Section II-A.2. Equation (1) is used for the
single step prediction. Then, by recursively propagating it,
the probability of a sequence xn � xn+1 � · · · � xn+L,
conditioned to Xσ

n can be also evaluated. The computations
for xn � xn+1 will be detailed, then it is easy to extend the
reasoning to the general case:

P(xn = a0, xn+1 = a1|Xσ
n ) = P(xn = a0|Xσ

n ) ·
P(xn+1 = a1|xn−σ+1 � · · ·� xn−1 � a0) (5)

The two factors in the above equation are computable
by making use of equation (1). The conditional probabil-
ity of xn+L w.r.t Xσ

n , regardless the intermediate values

1The notation xa�xb is used for expressing the fact that xb was done
immediately after xa.

xn,··· ,n+L−1 could be computed with the following summa-
tion:

P(xn+L = aL|Xσ
n ) =∑

ã0,··· ,L−1∈A×···×A
P(xn = ã0, · · · , xn+L = aL|Xσ

n ) (6)

Each terms in the above summation can be evaluated by
making use of equation (5).
The following Sections show how to build the two kind
of factors contained in equation (2), which are the ones
required for computing the one-step predicting distribution
of equation (1).

1) Definition of the suffix tree: A suffix tree (ST) is a time
varying structure: every time a new value xn+1 is available,
the tree is updated. A ST describes in a compact way the
information contained in the sequence x0�· · ·�xn. To every
node, excluding the root, an action a ∈ A is assigned. The
path connecting the root with the ith leaf, also called branch,
is denoted as Bj and is an ordered sequence of actions
xBj1 � xBj2 � · · · . The population of all the branches of
the tree contains all the observed sub-sequences in X , up to
step k.
When considering a particular model order σ, each branch
in the tree will have a length equal to σ + 1. A set of
tokens Γj = {γj1, γ

j
2, · · · } is assigned to the jth leaf, whose

meaning will be clear later.
Every ST is initialized with the presence of the sole root.
The sequence x1 � · · ·� xσ+1 is inserted as first branch B1

at step σ + 1, i.e. after observing the first σ + 1 values of
X . At the same step, set Γ1 is initialized with a single token
γ1

1 = σ + 1. Then, at the generic step n the ST is updated
in this way:
• Case a): Xσ

n � xn is already contained in the ST, i.e.
there exists a branch Bj = Xσ

n � xn. In this case, a
token equal to n is added to Γj , i.e. Γj = Γj ∪ n.

• Case b): Xσ
n � xn is not present in the ST. In this

circumstance, a new branch Bm = Xσ
n �xn is inserted

in the tree, whose corresponding set Γm is initialized
with the value n.

Fig. 1 reports some examples. Function Φv , equation (3),
depends on an ST structure. Prior to define Φv , the operators
I[·] and O[·] must be introduced. I describes the kind of
actions contained in a sequence Y = y1 � y2 · · · � ys,
regardless their order, and is defined as follows:

I[Y ]ai =

s∑
j=1

L(yj)ai ai ∈ A (7)

where the indicator function L is here defined:

L(yj)ai =

{
1 if yj = ai

0 otherwise
(8)

On the opposite, O aims at describing the way actions are
disposed in a sequence and is defined in this way:

O[Y ]Kai =

{
0 if I[Y ]ai < K

minimum k s.t. I[Y k]ai = K
(9)
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Fig. 1: Examples of suffix tree updates. The structure of the tree after the update is reported for each example. The token
sets Γ associated to the leaves are indicated in the lower part of the pictures containing the trees.

Y = {2, 1, 3, 3, 2}


I[Y ]1 = 1

I[Y ]2 = 2

I[Y ]3 = 2




O[Y ]11 = 2 O[Y ]21 = 0

O[Y ]12 = 1 O[Y ]22 = 5

O[Y ]13 = 3 O[Y ]23 = 4


TABLE I: Results obtained when applying operators I and
O on the series Y reported at the top.

with Y k indicating the sub portion of Y truncated at step
k, i.e. Y = y1 � · · · � yk. Refer to the example reported
in Table I. Two possible distances, dI and dO can express
the similarity existing between two sequences X and Y .
They are defined according to the two previously introduced
operators:

dI(X,Y ) =

m=|A|∑
i=1

∣∣∣∣I[X]i − I[Y ]i

∣∣∣∣ (10)

dO(X,Y ) =

J∑
j=1

m=|A|∑
i=1

∣∣∣∣O[X]ji −O[Y ]ji

∣∣∣∣ (11)

with J equal to the length of the X (or Y ). The
domain of Φv is divided into three disjoint regions
DI(ST ),DII(ST ),DIII(ST ) (refer to equation (3)):

Φv(X
σ
n , a|ST ) =


ΦvI if {Xσ

n , a} ∈ D1

ΦvII if {Xσ
n , a} ∈ D2

ΦvIII if {Xσ
n , a} ∈ D3

(12)

Set D1 contains those sequence already existing in the ST.
More formally:

D1 = {Xσ
n , a | ∃Bj ∈ ST s.t. Bj = Xσ

n � a} (13)

Then, the complement of D1, is divided into two parts: the
first one contains all those sequences for which in the ST
there exists at least one branch having the same actions
(with a different order) while the second one contains all the

remaining ones. Assume operator V defined in the following
way:

V[X,ST ] = {Bj ∈ ST | dI(Bj , X) = 0} (14)

Then, it holds that:

D2 = {Xσ
n , a | V[Xσ

n � a, ST ] 6= ∅} (15)
D3 = {Xσ

n , a | V[Xσ
n � a, ST ] = ∅} (16)

We are now in position to discuss the definition of ΦvI ,ΦvII
and ΦvIII . To this purpose, the activation function fΓ

act must
be introduced:

fΓ
act(n) =

∑
γ∈Γ

exp

(
− α(n− γ)

)
(17)

The parameter α is determined in order to verify that
fΓ
act(N) ∼= 0 for N > 5

α , with N a desired forgetting
time that can be tuned considering the lengths of the human
assembly sequences. ΦvI is defined as follows:

ΦvI = fΓj

act(n) (18)

The Γj in the above equation is the one related to branch
Bj = Xσ

n�a. Therefore, the aim of tokens is to activate more
those sequences recently seen. However, since a summation
is present in equation (17) a high activation value is provided
also by those sequence seen many times. ΦvII is defined in
this way:

ΦvII =
1

|S|

( ∑
Bi∈S

1

β
fΓi

act(n)

)
(19)

where S = V[Xσ
n � a, ST ] (20)

β = dO
(
Bi, Xσ

n � a
)

(21)

Finally, the definition of ΦvIII is as follows:

ΦvIII =
1

|ST |

( ∑
Bi∈ST

1

δ
fΓi

act(n)

)
(22)

where δ = dI
(
Bi, Xσ

n � a
)

+ dO
(
Bi, Xσ

n � a
)

(23)
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2) Handling the prior knowledge of the process: As
humans, we are easily able to make predictions by exploiting
contextual information. For instance, when someone takes a
screwdriver, we naturally think that a subsequent action will
involve screws. Similarly, when we see an operator gluing
a surface, we guess that in the near future something will
be attached. For this reason, we developed our method so as
to manage some prior information regarding the process to
predict. More formally, the generic activation function ΦCi
(equation (1)), expresses the circumstance that a subset of
actions Ci ⊆ A are affine. The evaluation of ΦCi, is done as
follows:

ΦCi(X
σ
n , a) =

σ∑
j=1

LCi(xn−j , a) · exp
(
− α · j

)

where LCi(x, a) =


1 if x ∈ Ci ∧ x 6= a

− 1
|Ci|−1 if x = a

0 if x /∈ Ci
(24)

where α in the above equation has the same meaning of the
one in equation (17).
We assume the sub-sets C1,2,··· as given: they can be easily
determined by clustering actions with a strong ontological
similarity (an extensive review of this topic can be found
in [16]). The importance of the information provided by the
a priori knowledge w.r.t the one contained in the predictive
suffix tree discussed in the previous Section, is determined
by tuning weights w0,1,2,··· (equation (1)), which is the aim
of training, see Section II-C.

B. Predicting the waiting times

Since the process governing the evolution of X is stochas-
tic, the time to see again a certain action ai ∈ A can
be modelled as a probability distribution function. It is
possible to perform a Monte Carlo simulation for collecting
a certain number of samples of the latter distribution. Then,
the time at which ai will be done again can be described by
the empirical distribution taking into account that samples.
For every trial, the series Xσ

n is extended by adding some
samples xs1�· · ·�xsp, such that xsp = ai and xs1,··· ,sp−1 6=
ai, i.e. the sampling is arrested when finding for the first time
the action for which we want to predict the waiting time.
Every xsi is obtained by sampling from the distribution in
equation (1). Every single waiting time T iwait is obtained by
computing the arrival time in xsp. This is done by summing
the durations of the intermediate actions Ts1,··· ,sp−1 of the
intermediate actions:

T iwait =

p−1∑
i=1

Tsi (25)

Every single Tsi is generated by sampling from a set
of past measured durations, refer to the pipeline in Fig.
2. After performing N trials, the empirical distribution
{T 1

wait, · · · , TNwait} is obtained.

G2

Operator

G1

G3

X

xk

Waiting time predictor

Update

Evaluate
waiting

Training

Predictive

time

a1
a2
a3

Collected durations

model

Fig. 2: The pipeline involved in the prediction of waiting
times for the actions in A. The predictive model is the one
adopted for evaluating the probability expressed by (1), while
the collected samples of activity duration are exploited for
computing the waiting time Twait.

C. Tuning the model

The weights w0,1,2,···, see Section II-A, can be determined
through learning. In fact, they can be determined in order
to maximize the likelihood of X , up to a step K, i.e.
considering all the known realizations x1,··· ,K . The logarithm
of the joint probability of all the values in X till K (equation
(1)) can be determined as the following product:

L = log

(
P(xσ+1|Xσ

σ+1) · · · · · ·P(xK |Xσ
K)

)
=

K∑
j=σ+1

(
w0Φv(X

σ
j , xj |ST ) + · · ·

· · · +
∑
Ci

wCiΦCi(X
σ
j , xj |ST )− log

(
Z(ST )

))
(26)

Since it is impossible to find the value maximising L in
a closed form, a gradient ascend strategy can be adopted.
To this purpose, the derivatives

[
∂L
∂w0

∂L
∂wC1

∂L
∂wC2

· · ·
]

must be evaluated. It is not difficult to prove that their
expressions are as follows:

∂L

∂w0
=

K∑
j=σ+1

(
Φv(X

σ
j , xj |ST ) + · · ·

· · · −
∑
a∈A

(
P(a|Xσ

j , ST ) · Φv(Xσ
j , a|ST )

))
(27)

∂L

∂wCi
=

K∑
j=σ+1

(
ΦCi(X

σ
j , xj) + · · ·

· · · −
∑
a∈A

(
P(a|Xσ

j , ST ) · ΦCi(Xσ
j , a)

))
(28)

In principle, it is possible to re-train a model every time a
new action xn is observed for the series X . In such a case,
the update and learning (Fig. 2) are done for every step.
This is reasonable for the most of real contexts, since the
human activity durations (which are in the order of seconds)
are higher than the time required for performing the gradient
ascent described (in the order of the milliseconds). However,
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an approach where learning is done only sporadically is also
possible.

III. EXPERIMENTS

A. Off-line comparisons

With the aim of comparing the developed approach with
[6], some off-line simulations were performed, considering
the assembly of the emergency button reported in Fig. 3.
Steps involved for the completion of a finite product are
reported in the same Figure and are made of a series of
forks and joints. All the operations in the same fork must
be done before the succeeding ones, without a particular
order (for instance the screws can be taken before the
screwdriver and vice-versa). We created a population of
artificial series X , by alternating 20 assembly cycles. Each
cycle is a random sequence of operations consistent with
the precedence constraints expressed in Fig. 3. Then, an
error simulating the non perfect segmentation of human
actions was introduced: the 5% of the elements of a X
were replaced with random numbers. A total amount of
100 artificial series were generated for producing the results
reported in the following. Comparisons are made computing
the mean prediction error ε 2 defined as:

εk =
1

|A|

∥∥∥∥[P(xk = a1) · · ·P(xk = am)
]
−Xk

∥∥∥∥
2

(29)

where Xk is the distribution modelling the real value seen
at step k. For example if xk = a1, Xk =

[
1 0 · · · 0

]
.

The affine sets are made by considering the actions in the
same fork 3 leading to the definition of the following sets:
C1 = {a1, a2} ; C2 = {a4, a5, a6} ; C3 = {a7, a8} and
C4 = {a9, a10}.
Fig. 4b reports the results when considering the complete
assembly process, while Fig. 4a reports similar statistics but
considering the simplified assembly, for which the existence
of the affine sets was ignored. As it can be seen, the curve
of the mean prediction error of the proposed approach is
completely below the one of [6] in Fig. 4b. Moreover,
the dispersion is lower (curves of the quantile are closer).
Performance are significantly improved when introducing the
affine sets and the best performance are achieved when all
of them are taken into account. It is important to remark that
the approach in [6] would not be able to manage an a-priori
knowledge without severely modifying the approach itself. It
is interesting to notice that the performance gap is reduced
when considering the assembly simplification, Fig. 4a.
As a general consideration, the proposed approach seems to
perform well also for low values of σ. Indeed, even with a
low order, the suffix tree is able to represent the temporal

2The prediction errors obtained in each step of the artificial series X
are computed using equation (29), leading to a population of errors, whose
percentiles are reported in Fig. 4a, 4b and 4c.

3This can be also the systematic criterion to follow in industrial
contexts.

correlations among the actions, by simply including more
branches. For this reason a repeating pattern of actions with
a length higher than the model order, would be anyway
handled.

B. Experimental validation

Real experiments were conducted by reproducing a real-
istic human-robot co-assembly, involving the production of
torches and clocks. The steps involved are indicated in Fig.
6 4. The predictive algorithm discussed so far was adopted
for predicting the starting time of the actions assigned to
the human. This information was exploited for optimally
scheduling the robotic actions, assuming the approach of [5].
In particular, the aim is to minimize the human inactivity
times, instructing the robot to execute the actions preceding
those assigned to the human and predicted to start in the
near future. The starting and the ending of the human actions
is recognized by checking when the operator’s hands enter
into specific areas of the workspace. We omit further details
regarding the scheduler and the implementation of the real
experiments since are extensively described in [5]. The dual
arm YUMI of ABB was employed as robotic mate, while
a MICROSOFT KINECT monitored the human in order to
detect the starting and the ending of human activities. To
this aim, the positions of the operator’s hands are tracked
during time using the RGB-d image provided by the KINECT
sensor. When the hands of the operator enter or go out
from a specific spherical area of the workspace 5, an action
is recognized to start or be completed. The adopted set-
up is reported in Fig. 5. 10 volunteers were enrolled for
the experiments, divided into two equally sized groups.
The first group (GA) was asked to perform the assigned
operations (in the order they prefer) while the scheduler [5],
exploiting however the predictions provided by the algorithm
described in this paper, controlled the robotic arms. For the
other group (GB) the robotic actions were done without
exploiting predictions of the human behaviour, since robots
were controlled in a reactive way: when the human expressed
the intention to begin a certain action 6, its starting was
enabled by the robots after performing a specific series of
actions.
The predicted waiting time before a new execution of a1,
Wa1, for one of the experiments in GA as well as the time
at which the operator actually started that action are reported
in Fig. 7. The ideal Wa1 profile is a sawtooth one, assuming
null values immediately before the time instants at which a
new a1 is started. As can be appreciated from Fig. 7, the
predictions are reliable since the predicted waiting time has
a profile very close to the ideal sawtooth one described so
far. For this reason, the scheduling approach adopted for
GA was able to efficiently produce optimal plans for the
robots, reducing the human inactivity times. Comparing the

4A video reporting all the activities is available at https://www.
youtube.com/watch?v=ZWKrzrdSlI8

5Such spheres are centred considering the positions of the buffers
storing the parts and the working progress involved in the assemblies.

6Since one of his or her arm entered in a specific area of the workspace
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a1 = Take upper case

a2 = Take cylinder

a3 = Take lower case

a4 = Take ring 1

a5 = Take ring 2

a6 = Take ring 2

a7 = Place QR code

a8 = Place bar code

a9 =

a10 =
Take screwdriver

Take screws

a1

a2

a3

a4

a5

Fig. 3: On the left the sequence of actions required for assembling an emergency button: the actions contained in a box can
be done with no particular order, but before the actions contained in the boxes following in the sequence. A total number
of 10 actions are needed to finalize the product. The top right part of the Figure reports the emergency button to assemble,
while the lower part a simplification of the same assembly, for which the size of set A is equal to 5.

results coming from GA and GB, we found a clear statistical
evidence that the mean cycle time of the experiments in GA
is lower than the ones in GB: single-tailed Wilcoxon rank
sum returns r = 0.0251 when adopting an α = 5%.

IV. CONCLUSION

This work addressed the prediction of human activities in
industrial contexts. A novel algorithm is proposed, factor-
izing the distribution probability predicting the next action
in a time series as a product of terms. The first one is
related to a suffix tree, embedding the knowledge of the
process acquired during time, i.e. the sequence of past actions
seen, while all the others refer to some a-priori information
that can be used for improving the prediction process. The
approach was proved to perform better than a state of the
art algorithm based on a Markovian model through exten-
sive off-line simulations. Moreover, the prediction algorithm
proposed was efficiently exploited for enhancing a human-
robot co-assembly, allowing the robots to properly adapt and
synchronize with the human mate.
Future works should address the development of improved
techniques for defining the a priori knowledge leading to
the definition of sets C (see Section II-A.2) which signifi-
cantly influence the prediction capabilities of the proposed
approach, Fig. 4c. Regarding this point, approaches involving
the semantic similarities of the actions could be efficiently
exploited.
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(a)

(b)

(c)

Approach in [6]

Suffix tree without affine sets

Suffix tree considering only C1

Suffix tree conisdering C1,2,3,4

Fig. 4: Statistics of the prediction error obtained from the
simulations. The model order σ is the number of preced-
ing actions taken into account for computing the one-step
probability prediction, equation (1), while the error ε is the
normalized prediction error defined by equation (29). curve
of the 50th quartile is inserted into a shaded area delimited by
the 80th quartile and the 20th one. Fig. 4b and 4c consider
the complete assembly in Fig. 3, while Fig. 4a takes into
account the simplification reported in bottom right corner of
the same Figure.

Kinect

YUMI

Fig. 5: The robotic cell adopted for the experiments. What
is reported, is the point of view of the human inside the cell.
The table at the bottom contains several buffers used to store
work in progress.
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Fig. 6: Actions to perform for finalizing the assemblies of
a torch and a clock. Gray shaded boxes refer to actions
executed by the robots, all the others, a1,2,3,4,5, are the
human actions. Notice that |A| = 5.
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Fig. 7: Evolution of the predicted waiting time Wa1 for
seeing again action a1. Black vertical lines refer to instants
at which the operator started a new execution of a1. As
can be seen, starting from the second execution of a1, the
predicted waiting time begin to be reliable, since decreases
quasi-linearly till the time at which a new a1 is actually
started.
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