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Abstract— This paper deals with continuous tension valida-
tion for Cable-Driven Parallel Robots (CDPRs). The proposed
method aims at determining whether or not a quasi-static path
is feasible regarding cable tension limits. The available wrench
set (AWS) is the set of wrenches that can be generated with
cable tensions within given minimum and maximum limits. A
pose of the robot is considered valid regarding the tensions
if and only if the wrench induced by the platform weight
is inside the AWS. The hyperplane shifting method gives a
geometric representation of the AWS as the intersection of
half-spaces. For each facet-defining hyperplane of the AWS,
we define a value which is positive when the pose is valid,
i.e. when the corresponding wrench lies on the proper side of
the hyperplane. Using this value and an upper bound on its
time derivative along the path, the half-length of a valid time
interval is obtained. Intervals are repeatedly validated for each
hyperplane until either the whole path is validated or a non-
valid pose is found. The presented method is integrated within
the open-source software Humanoid Path Planner (HPP) and
implementation results using the configuration of the CDPR
CoGiRo are presented.

I. INTRODUCTION

A cable-driven parallel robot (CDPR) is a parallel robot
whose mobile platform is suspended by flexible cables,
which serve as actuated limbs. By modifying the lengths of
the cables, the position and orientation of the mobile platform
can be controlled, as well as the wrench applied to it. CDPRs
present the advantage of having large worskpaces compared
to standard robots. However, the workspace of a CDPR
is constrained by the limits on the cable tensions. Indeed,
since cables can only pull and not push, their tension has
to be positive. They also have a maximum allowed tension,
which is set by the admissible loads on the robot mechanical
components weighted by safety factors. The minimum and
maximum tensions limit the reachable positions and the
possible wrenches that can be generated at the platform. This
paper deals with continuous cable tension validation for CD-
PRs. The problem consists in determining exactly whether
an input path between two poses (position and orientation)
of the robot, which is subjected to the wrench induced by
its weight (quasi-static motion), is feasible regarding cable
tension limits, or if there exists a pose along the path for
which there exists no feasible tension set. A more complete
version of this paper is availabe at [1].
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Fig. 1: Vizualisation of a path of the CDPR CoGiRo.
The first and last poses of the path are valid (blue). The
continuous tension validation has found a non-valid pose
(red) at parameter tnon-valid, therefore the path is not valid.
Cables (grey) are shown only for the red pose.

The method developed in this paper is applied to the robot
CoGiRo, a redundantly-actuated cable-suspended CDPR de-
veloped by Tecnalia and LIRMM [2]. The developed method
is integrated within the open-source software Humanoid Path
Planner (HPP) [3] which includes sampling-based planning
algorithms like Probabilistic RoadMaps (PRM) and Rapidly-
exploring Random Trees (RRT) [4], and different optimiza-
tion methods. Those methods are already implemented and
ready-to-use with few modifications needed for CDPRs,
which is one of the main motivations for using HPP.

The issue of CDPR workspace analysis has been well
studied, often with the assumption of a constant orientation
of the platform and a simple straight line cable model [5],
[6], sometimes with more complex cable models taking into
account elasticity or sagging [7]. Concerning CDPR path
planning, Tempel et al. [8] presented a practical approach
which allows artist to design trajectories of the mobile
platform as Bézier curves, with an automatic path verification
based on [9]. The present work is closer to [10], where
trajectories are validated by expressing the tensions limits
as algebraic inequalities. This method is applied to dynamic
paths of a planar two-dimensional CDPR with a point-mass
mobile platform. Merlet [11] showed that CDPR trajectories
can be analysed to detect changes in the set of cables under
tension, for example when a cable becomes slack along a
trajectory. This method focusses on analyzing the evolution
of a particular tension distribution along a path which is
already known to be feasible, while the method proposed
in the present paper aims at validating whether or not there
exists feasible cable tensions along a path.

The contribution of this paper is a continuous cable
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tension validation method for constant-velocities trajectories
integrated within the open-source software HPP. The method
never fails to validate a path for which there exists at least
one feasible cable tension distribution. Moreover, if a path
is found non-valid, it means that there is absolutely no
feasible tension distribution along this path. The method
proposed in this paper complements the continuous cable
collision checking approach proposed in our previous work
[12], aiming at a complete continuous path validation method
for CDPRs. Moreover, its implementation in HPP makes it
easy to use with other CDPR configurations and/or payloads,
provided that the number of cables is at least equal to the
number of mobile platform DOFs.

The general method presented in the present paper is
inspired from [13], where Schwarzer et al. proposed to
check collision of a multi-arm robot along a continuous path
composed of linear interpolations in the joint space. The
method is notably based on the computation of upper bounds
on the relative velocities – linear and angular velocities – of
each body in the reference frame of the other bodies. Then,
given the distance – or a lower bound on the distance –
between two bodies at a given parameter value, the method
computes a time interval over which no collision can occur
between the bodies. Our previous paper [12] extended this
method to cable collisions (with the environment, with the
mobile platform, and among them). In this paper, a similar
approach is taken to validate the feasability of the cable
tensions of a CDPR, by reasoning in the wrench space using
the hyperplane shifting method [14].

The Cartesian space of the CDPR consists of seven values
defining the pose of the mobile platform: three values for the
translation and four values of a quaternion for the rotation.
The method takes as input:
• A path of the CDPR mobile platform which is a linear

interpolation in the Cartesian space, called in this paper
a straight path.

• The weight-induced wrench applied on the platform
along the path.

The method checks the validity of the path: it is not valid
if there exists, along the path, at least one pose where the
mobile platform weight cannot be balanced with feasible
cable tensions. A non-valid path is illustrated in Fig. 1.

In Section II, the general algorithm to continuously val-
idate a path is briefly recalled. Section III then introduces
useful notations and definitions, and details the calculations
to find a valid interval around a given pose using the
hyperplane shifting method. Implementations results in HPP
with the CDPR CoGiRo are presented in Section IV and
Section V concludes the paper.

II. CONTINUOUS VALIDATION ALGORITHM
We consider the general continuous validation algorithm

presented in [12]. The algorithm can determine if a straight
path is valid or not regarding a list of validation elements.
A validation element can be a pair of bodies which must not
collide for example, or in the case of the present paper, cable
tensions which must be feasible. Each validation element
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Fig. 2: Example of first four steps of the continuous valida-
tion of the path [0;T ]. The validated parts of the interval are
shown in green, the rest of the path remains to be checked.

has a method which takes as input a path and a joint
configuration at a time parameter along this path, and returns
a valid time interval around this parameter. The method tries
and validates intervals at different time parameters on the
path, until either a non-valid configuration is found, or all
the path has been covered by the validated intervals.

Let us consider the straight path [0;T ]. The algorithm
starts by validating the path around t0 = T

2 . Either
the pose at parameter t0 is non-valid and the algorithm
stops, or it is valid and the method finds a valid inter-
val of length 2 ∗∆t0 around t0. At this point, a portion
[T2 −∆t0; T2 + ∆t0] has been validated and the intervals
[0; T2 −∆t0] and [T2 + ∆t0;T ] remain to be validated. The
algorithm proceeds by dichotomy: the middle of the first
non-validated interval is taken as the next time parameter
t1 =

T
2 −∆t0

2 and the algorithm checks the validity of an
interval around t1. When validated intervals overlap, they
are merged. The algorithm iterates until a non-valid pose at
a parameter ti is found or the whole path is validated. The
process is illustrated in Fig. 2, which shows the first four
steps of the validation.

The next section details how the half-length of the valid
interval around a time parameter is obtained for the validation
of the feasibility of the cable tensions of a CDPR.

III. EXTENTION OF THE HYPERPLANE SHIFTING
METHOD

For a given pose and being given minimum and maximum
allowed cable tensions, respectively τmin

i and τmax
i for cable

i, the set of wrenches that a CDPR is able to generate, i.e.
with cable tensions lying between minimum and maximum
allowed tensions, is called the available wrench set (AWS),
denoted A. The hyperplane shifting method [15] allows the
determination of the AWS. This wrench set is a zonotope,
i.e. a particular type of convex polytope with pairs of parallel
facets, as shown in Fig. 3. The hyperplane shifting method
gives the equations of the facet-defining hyperplanes, which
can be used to check if the required wrench set needed for
a task is inside the zonotope and thereby feasible. Let us
assume that the required wrench set is reduced to a single
wrench f . For a given pose, if the wrench f is inside the
zonotope, then the pose is valid regarding the cable tensions.
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Fig. 3: A two-dimensional zonotope A with three pairs of
parallel facet-defining hyperplanes.

Along a path, the required wrench and the hyperplanes vary.
To extend the static test to the continuous validation method,
we define for each facet-defining hyperplane H a ”distance”
D whose positivity means that f lies in the feasible half-
space delimited by H . An upper bound V max on the time
derivative of D is computed, valid along the whole path.
These two values allow to compute the half-length ∆t of a
time interval where f is guaranteed to remain in the (feasible)
half-space defined by the hyperplane H: ∆t = D

V max .
By taking the minimum of these half-lengths for all the

facet-defining hyperplanes, we obtain the half-length of an
interval where the tensions in all cables are feasible. This
paper deals with the case where the required wrench is the
weight of the platform, which corresponds to the case of
quasi-static motions of the CDPR.

A. Definitions and notations

Let us consider a CDPR composed of a mobile platform
with n degrees of freedom, suspended on m cables, with
m ≥ n. In the rest of this paper, we consider the case m = 8
and n = 6 but the proposed method can be used for n < 6. A
classic suspended CDPR is represented in Fig. 4. The cable
elasticity and mass are neglected and all cables are assumed
to be under tension, thus there is no sagging of the cables.
It is also assumed that each cable exits the fixed structure at
a fixed point Ai and is attached to the mobile platform at
a point Bi, fixed in the platform frame. The constant vector
ai denotes the position of point Ai expressed in the global
frame, while bi denotes the position of Bi expressed in
the platform frame. The position of the the mobile platform
expressed in the global frame is denoted p. The total mass
mT — the mass of the platform and its optional payload —
is fixed and constant along the path. Point Gp, the center
of mass of the platform, is the origin of the platform frame
and the reference point for moments. The external wrench
fg applied on the platform is the wrench induced by the
platform and payload weights. It implies that fg is constant
in the fixed reference frame, with fg = [0, 0,−mT g, 0, 0, 0]T

where g is the gravity acceleration.
The wrench matrix of the robot is noted W , has size 6×8

cable
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Fig. 4: Notations for a CDPR.

and is given by the following expression:

W =

[
d1 d2 · · · d8

Qb1 × d1 Qb2 × d2 · · · Qb8 × d8

]
(1)

where di is the unit vector directing cable i, and Q is
the rotation matrix defining the orientation of the plat-
form. The vector wi denotes the i-th column of W :
wi = [dTi (Qbi × di)

T ]T .
The presented method is intended for use with path

planning algorithms like RRT, which generate straight paths
from random poses and uses the proposed method to validate
them. Therefore, the mobile platform is considered to have
a constant linear velocity vp and constant angular velocity
ωp along the input path, of norm vp and ωp, respectively.

B. Facet-defining hyperplane of the AWS

The relationship between the wrench f applied by the ca-
bles on the platform and the cable tensions τ = [τ1, ..., τ8]T

is f = Wτ . Along a quasi-static motion, the static equi-
librium of the platform holds and f + fg = 0. Let us
consider, for a given pose x of the CDPR, the AWS
A = {f | f = Wτ , τmin

i ≤ τi ≤ τmax
i ,∀i ∈ [1, 8]}. Since A

is the image of a box by a linear application, A is a zonotope,
with pairs of parallel facet-defining hyperplanes. As shown in
[15], each such pair of hyperplanes H1 and H2 corresponds
to a combination of n−1 = 5 linearly independent columns
wi of the wrench matrix W defined in (1). Let I0 be the set
of the indices of these columns and W0 be the corresponding
submatrix of W . According to [15], the two hyperplanes have
the following equations:

H1 = {f | cT f = d1} H2 = {f | cT f = d2} (2)

where c is any non-zero vector orthogonal to the set
(wi)i∈I0 , and d1 and d2 are given by:

d1 =
∑
I+

τmax
i cTwi +

∑
I−

τmin
i cTwi (3)

d2 = −
∑
I−

τmax
i cTwi −

∑
I+

τmin
i cTwi (4)

with I+ = {i | cTwi > 0} and I− = {i | cTwi < 0}.
The vector c can be chosen by means of any routine that

determines the nullspace of a matrix. The vectors wi and c
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and the values d1 and d2 are continuous along a path. The
value cTwi for a cable i can change sign along a path, which
means that the sets I+ and I− can change. The wrench f
is in the AWS A if and only if for all hyperplanes H1 =
{f | cT f = d1} and H2 = {f | cT f = d2}, we have:

cT f − d1 < 0 and − cT f − d2 < 0 (5)

For each pair of hyperplanes, the goal is to compute, for a
given pose of the robot along a path, an interval around that
pose over which the conditions of (5) are respected.

For the hyperplane shifting method, and thus the present
method, to work, the matrix W must have at least n linearly
independent columns. For CoGiRo, with n = 6 and m = 8,
this means there should be 3 or fewer linearly dependent
columns for the method to work. If there are more than 3,
the robot is in a singularity and cannot control all its DOFs.

C. ”Distance” D between f and a hyperplane H

For a given pose of the CDPR and a pair of facet-defining
hyperplanes H1 and H2 defined in (2), we define the values
D1 and D2:

D1 = −cT f + d1 D2 = cT f + d2 (6)

The pose is valid if for all pairs of hyperplanes H1 and H2,
D1 and D2 are positive. It should be noted that D1 and
D2 depend on the vector c, and are not the 6-dimensional
euclidian distances between f and the hyperplanes H1 and
H2, which are respectively D1

‖c‖ and D2

‖c‖ .
Without loss of generality, let us assume that the index set

I0 is equal to {1, 2, 3, 4, 5}. Let us consider V = WT
0 , so

that the rows of V are the transposes of the 5 column vectors
(wi)i∈I0 . Since the set (wi)i∈I0 is linearly independent, V
is a matrix of size 5 × 6 with full rank 5. Let vi be the
columns of V . The nullspace of V has dimension 1 and (7)
gives a determinant-based expression of a vector c spanning
this nullspace, e.g. ker(V ) = span(c) [16]. Such a vector c
satisfies V c = 0, which means that c is orthogonal to the
set (wi)i∈I0 .

c =


det([v2v3v4v5v6])

− det([v1v3v4v5v6])
det([v1v2v4v5v6])

− det([v1v2v3v5v6])
det([v1v2v3v4v6])

− det([v1v2v3v4v5])

 (7)

The ith element of c, 1 ≤ i ≤ 6, is equal to (−1)i+1deti
where deti is the determinant of the 5 × 5 square matrix
obtained from the matrix V by deleting its ith column. Since
the matrix V has full rank, c defined in (7) is a non-zero
vector. Using this expression of c, we can easily compute
D1 and D2 from (3), (4) and (6). It should be noted that
c is deliberately not normalized in order to facilitate the
computation of the upper bound on the derivative of c in
the next paragraph.

D. Upper bound V max on the derivative of D for a hyper-
plane H

For a given pose and a pair of facet-defining hyperplanes
H1 and H2, the time derivatives of the values D1 and D2

are obtained by differentiating (6):

Ḋ1 = −ċT f − cT ḟ + ḋ1 Ḋ2 = ċT f + cT ḟ + ḋ2 (8)

As stated in paragraph III-A, we assume the platform wrench
f is constant and known, which gives: ḟ = 0. Using the
triangle inequality, we obtain:

|Ḋ1| ≤ ‖ċ‖‖f‖+ |ḋ1| |Ḋ2| ≤ ‖ċ‖‖f‖+ |ḋ2| (9)
By differentiating (3) and (4):
ḋ1 =

∑
I+

τmax
i (ċTwi + cT ẇi) +

∑
I−

τmin
i (ċTwi + cT ẇi) (10)

ḋ2 = −
∑
I−

τmax
i (ċTwi + cT ẇi)−

∑
I+

τmin
i (ċTwi + cT ẇi) (11)

Since we consider a fixed combination of 5 vectors (wi)i∈I0
for which cTwi = 0, we know that I+ ∪ I− is constant.
For i ∈ I+ ∪ I−, the absolute values of the correspond-
ing terms of ḋ1 and ḋ2 are either τmax

i |ċTwi + cT ẇi| or
τmin
i |ċTwi + cT ẇi|. Moreover, τmin

i ≤ τmax
i gives:

|ḋδ∈{1,2}| ≤
∑

i∈I+∪I−
τmax
i |ċTwi + cT ẇi| (12)

We consider the following upper bounds:
• wmax

i is an upper bound on ‖wi‖.
• ẇmax

i is an upper bound on ‖ẇi‖.
• cmax is an upper bound on ‖c‖.
• ċmax is an upper bound on ‖ċ‖.
An upper bound V max on the norms of Ḋ1 and

Ḋ2 is obtained using these bounds and the fact that
‖f‖ = ‖ − fg‖ = mT g:

V max = ċmaxmT g (13)

+
∑

i∈I+∪I−
τmax
i (ċmaxwmax

i + cmaxẇmax
i )

We now have to find values for the upper bounds defined
above.

1) Upper bound wmax
i on ‖wi‖: A vector wi is a

column vector containing the unit forces and torques applied
by cable i to the platform and has the following expression:

wi =

[
di

Qbi × di

]
(14)

By definition, di is a unit vector and Q is a ro-
tation matrix and thus have norm 1. We can write
‖wi‖2 = ‖di‖2 + ‖Qbi × di‖2, which gives an upper
bound wmax

i on the norm of wi:

‖wi‖ ≤
√

1 + b2i = wmax
i (15)

where bi is the constant norm of vector bi, fixed by the
CDPR design.

2) Upper bound ẇmax
i on ‖ẇi‖: Differentiating the

expression of wi in (14) gives:

ẇi =

[
ḋi

[ωp]×Qbi × di +Qbi × ḋi

]
(16)

where [ωp]× is the cross product matrix associated to the
platform angular velocity vector ωp. We need to find upper
bounds on the norms of the two vectors composing ẇi. For
ḋi, we have by definition: di =

−−−→
BiAi

li
, with ‖

−−−→
BiAi‖ = li.

The formula for the derivative of a unit vector u = v
‖v‖ ,
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u̇ = 1
‖v‖ (I − uuT )v̇, applied to di, gives:

ḋi =
1

li
(I − did

T
i )
d
−−−→
BiAi
dt

(17)

Since
−−−→
BiAi = ai−Qbi−p, we have d

−−−→
BiAi

dt = −Q̇bi − vp
because ai and bi are constant vectors. This gives
‖d
−−−→
BiAi

dt ‖ ≤ ωpbi + vp. We consider a constant non-negative
minimum possible length for each cable of the CDPR:
Lmin
i ≤ li.
The vector di has a norm of 1 and ‖didTi ‖ ≤ ‖di‖2,

therefore ‖didTi ‖ ≤ 1. The following expression for the
upper bound ḋmax

i on ‖ḋi‖ is obtained:

‖ḋi‖ ≤
2

Lmin
i

(ωpbi + vp) = ḋmax
i (18)

For the norm of the derivative of the torque in (16), the
following inequality can be written:

‖[ωp]×Qbi × di +Qbi × ḋi‖ ≤ ‖[ωp]×‖‖Q‖‖bi‖‖di‖+ ‖Q‖‖bi‖‖ḋi‖
(19)

By definition ‖di‖ = 1 and ‖Q‖ = 1, and the norm of
ωp is constant along the path by hypothesis. Inequality (19)
can be rewritten as:

‖[ωp]×Qbi × di +Qbi × ḋi‖ ≤ ωpbi + biḋ
max
i (20)

The norm of ẇi can be expressed using (16):
‖ẇi‖ =

√
‖ḋi‖2 + ‖[ωp]×Qbi × di +Qbi × ḋi‖2, which

provides the following inequality defining the upper bound
ẇmax
i on the norm of wi:

‖ẇi‖ ≤
√
ḋmax
i + b2i (ωp + ḋmax

i )2 = ẇmax
i (21)

3) Upper bound cmax on ‖c‖: The vector c is defined
in (7). Let us consider the square matrix Vi whose columns
are the vectors vj with j 6= i. For example, for V1, we have:

det([v2v3v4v5v6]) = det(V1) (22)

= det(V T1 ) = det([u1
1u

1
2u

1
3u

1
4u

1
5])

(23)

where the uik, 1 ≤ k ≤ 6 are the columns of V Ti (i.e. the
rows of Vi). The vector uik is equal to the vector wk with
the i-th coefficient missing. Then:

c =


det([u1

1u
1
2u

1
3u

1
4u

1
5])

− det([u2
1u

2
2u

2
3u

2
4u

2
5])

det([u3
1u

3
2u

3
3u

3
4u

3
5])

− det([u4
1u

4
2u

4
3u

4
4u

4
5])

det([u5
1u

5
2u

5
3u

5
4u

5
5])

− det([u6
1u

6
2u

6
3u

6
4u

6
5])

 (24)

Knowing that uik is a vector of dimension 5 and wk is
a vector of dimension 6 with the same elements as uk and
one more element, we can write ‖uik‖ ≤ ‖wk‖ and ‖u̇ik‖ ≤
‖ẇi

k‖. Using Hadamard’s inequality, which states that the
norm of a determinant of a matrix is not larger than the
product of the norms of its column vectors, we get:

‖c‖ ≤

√√√√i=6∑
i=1

(
k=5∏
k=1

wmax
k

)2

(25)

Hence, the following expression for the upper bound cmax on

the norm of ċ is obtained:

‖c‖ ≤ cmax =
√

6

k=5∏
k=1

wmax
k (26)

4) Upper bound ċmax on ‖ċ‖: The expression of
c is given in (24). The formula of the derivative of the
determinant of a matrix and the Laplace expansion provide
an expression of the i-th coefficient of ċ:

ċi = (−1)i+1

j=5∑
j=1

deti,ju (27)

with deti,ju = det(ui1, ..., u̇
i
j , ...,u

i
5). Using again Hadamard’s

inequality, ‖deti,ju ‖ can be bounded:

|deti,ju | ≤ ‖u̇ij‖
k=n−1∏
k−1,6=j

‖uik‖ (28)

Using again the inequalities ‖uik‖ ≤ ‖wk‖ and ‖u̇ik‖ ≤
‖ẇi

k‖, the following bound on ‖ċ‖ is obtained:

‖ċ‖ ≤

√√√√√i=6∑
i=1

j=5∑
j=1

‖ẇj‖
k=5∏

k=1,k 6=j

‖wk‖

2

(29)

Thus ‖ċ‖ ≤ ċmax can be written as:

ċmax =
√

6

j=5∑
j=1

ẇmax
j

k=5∏
k=1,k 6=j

wmax
k

 (30)

Using (15), (21), (26) and (30), V max defined in (13) can
be computed. With D1 and D2 defined in (6), the values
∆t1 = D1

V max and ∆t2 = D2

V max are obtained. Repeating these
computations for every pair of facet-defining hyperplanes and
taking the lowest value ∆t gives the half-length of a valid
interval.

IV. IMPLEMENTATION RESULTS

The continuous validation algorithm presented in
Section II and the computations presented in Section III
are implemented in HPP. To find a valid trajectory between
two given poses of the robot, several path planning methods
such as RRT [17] can be used. These methods then call the
validation method proposed in this paper to validate smaller
paths, and concatenate them to obtain a global valid path.

The length T of a path is expressed in a arbitrary unit
corresponding to the variation in position and orientation of
the mobile platform. The CDPR static equilibirum workspace
with varying orientation is not convex: for a straight path
between two valid poses, a non-valid interval may exist along
the path. The proposed method is able to detect any such non-
valid intervals along a path, no matter how short the interval
is.

Random straight paths were generated by shooting ran-
dom valid poses of the mobile platform in the workspace, and
checked using the continuous validation algorithm of Section
II. Table I shows computation times for the continuous
validation of N = 1000 random paths all having a length
equal to 1. If the pose at the middle of a path is non-
valid, then the continuous method finishes very quickly,
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nb of computation times (s)
paths min mean max

Valid paths 994 1.21 4.51 29.52
Non-valid paths 6 4.31e-04 2.45 14.68

All paths 1000 4.49

TABLE I: Results for the continuous tension validation of
1000 straight paths of length 1.

as shows the minimum computation time. Paths that take
the longest to validate are paths along which the mobile
platform approaches (without crossing) the border of the
valid workspace. In these cases, the required wrench f gets
closer and closer to the boundaries of the AWS, and therefore
the algorithm validates smaller and smaller intervals, which
results in a longer computation time.

Fig. 1 shows different poses of the CDPR CoGiRo along
an example path. The poses at the extremities of the path
are valid. This example path has a total length of T = 5.
Using the continuous validation method, it is shown that the
path is not valid and that there exists a non-valid interval
of length d = 0.09. If the same path is checked using a
discretized validation with a time step larger than d, for
example a default value of 0.1, it may be wrongly validated
and constitute a false positive. The continous method never
produces such false positives.

The numerical results show that the upper bound V max

on the derivative of D obtained in (13) is not a tight bound:
there is a factor of 103 between V max and the observed values
of Ḋ. For CoGiRo, paths can have length up to T = 15.
Tested on random paths of random lengths, the continuous
validation takes up to two minutes to validate a random
path, while a discretized method with a default time step
of 0.01 takes up to 0.5 seconds. Although the difference in
computation time is important, the continuous method offers
garantees that are crucial in an industrial setting and that a
discretized method does not offer.

V. CONCLUSIONS

The presented continuous tension validation method is
able to guarantee that the cable tensions are feasible along
a path. While a discretized method may produce false
positives, the presented method never does. Used with the
continuous collision checking method presented in [12],
it constitutes a complete continuous validation method for
CDPRs integrated within the open source software HPP and
can be used for automatic path planning.

The proposed method may be especially useful for CDPRs
whose design could not be optimized regarding the cable ten-
sions. For robots such as CoGiRo, which have been designed
to optimize wrench capabilities across their workspace, the
method is useful when validating movements in the limits of
the workspace.

Future works will focus on improving the upper bound
V max used in the proposed continuous validation method, and
thereby improving the computation time, and on extending

this method to paths with a varying external wrench, for
example by considering a robotic arm mounted on the
platform of a CDPR. Such a hybrid CDPR should yield more
cases where a straight path between two valid poses contains
a non-valid interval, for which the proposed method should
prove useful. It is also possible to modify the algorithm to
consider a larger required wrench set not limited to a single
point, in order to take into account the uncertainty of the
pose of the robot or the dynamics of the movement.
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