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Abstract— In this work, we explore how a strategic selection
of camera movements can facilitate the task of 6D multi-
object pose estimation in cluttered scenarios while respecting
real-world constraints such as time and distance travelled,
important in robotics and augmented reality applications. In
the proposed framework, multiple object hypotheses inferred
by an object pose estimator are accumulated both in space
and time with a fusion function. At each time step, this fusion
function makes use of a verification score to quantify the quality
of the hypotheses in the absence of ground-truth annotations
and passes this information to an agent. The agent reasons
about these hypotheses, directing its attention to the object
which it is most uncertain about, moving the camera towards
such an object. Unlike previous works that propose short-
sighted policies, our agent is trained in simulated scenarios
using reinforcement learning, attempting to learn the camera
moves that produce the most accurate object poses hypotheses
for a given temporal and spatial budget, without the need of
viewpoints rendering during inference. Our experiments show
that the proposed approach successfully estimates the 6D object
pose of a stack of objects in both challenging cluttered synthetic
and real scenarios, showing superior performance compared to
other baselines.

I. INTRODUCTION

Accurate 6D object pose estimation of multiple objects
on a cluttered scenario may become essential in applications
such as robotic manipulation and augmented reality which,
currently lacking proper solutions, resort to either coarse
approximations [1] or less interpretable solutions [2]. Such
applications and scenarios are naturally framed in an active
setting, where either a robot or a human has the capability
of moving the camera to different viewpoints as presented
in e.g. the Amazon Picking Challenge [3], [4]. The present
work explores how moving the camera in the scene, reaching
different viewpoints, can help to overcome the inherent
challenges in 6D object pose estimation, such as clutter and
occlusion, identifying two ends of the spectrum of such prob-
lem. On one end we can decide not moving the camera at all,
reducing the problem to single-view object pose estimation
and thus subject to the object pose estimator limitations [5],
[6], [7], [8]. On the other end, the camera can be moved
to cover all the possible viewpoints [4], however, this does
not respect real-world constraints, such as time limitation in
terms of a number of movements and energy expenditure
in terms of distance traveled. We are interested in finding
a compromised solution that moves the camera strategically
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by reaching the most informative viewpoints given a limited
number of camera movement and keeping the traveled dis-
tance as low as possible. Previous work in active 6D object
pose estimation includes the work of Doumanoglou et al.
[9], which explored the problem of estimating the next best
camera viewpoint by aiming to reduce the uncertainty of
the pose estimator in terms of entropy reduction. Sock et
al. [10] take a similar entropy reduction approach, but instead
of using pose inference, they propose a heuristic geometric
approach to estimate view entropy. Both [9] and [10] present
two severe limitations. First, both frameworks are short-
sighted, meaning that they move the camera to the next best
view independently of the past and future viewpoints and
potentially reaching a redundant view. Second, they require
rendering different views before making a camera movement,
which is an important limitation on real-world applications
where the number of possible viewpoints is high. This work
proposes a framework to tackle the active 6D object pose
estimation problem that overcomes the limitations of the
previous work and it is depicted in Fig. 1. Given a set of
objects hypotheses inferred by an object pose estimator, our
framework first fuses the information taking into account the
previous estimations and chooses the hypotheses that best
explain the scene without needing ground-truth information
with the use of a verification score. The result of this
fusion function is given to an agent, which analyzes all the
hypotheses. Using an attention mechanism, the agent directs
its attention to the object which it is most uncertain about
and moving the camera towards such an object. The agent is
trained in simulated scenarios on a reinforcement learning
framework, attempting to learn a policy that moves the
camera producing the most accurate object poses hypotheses
for a given temporal and spatial budget. The sequential nature
of the reinforcement learning framework gives the agent the
ability to reason temporally and make long term decisions
based on previous movements. Furthermore, our careful state
space design allows the agent to perform inference without
the need for rendering the entire amount of viewpoints at
each time step. We evaluate our framework on challenging
synthetic and real scenarios, showing that our framework can
produce camera movements that achieve robust 6D object
pose estimation over other baselines. In summary, this paper
contains the following main contributions:

1) An active 6D multi-object pose estimation within a
reinforcement learning framework is proposed. State
and action spaces are carefully designed and a reward
function is tailored to the problem of interest.

2) Application specific modules are proposed: a hypothe-
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Fig. 1. An image from viewpoint vt is passed through a 6D object pose estimator which generates pose hypotheses. Current and previous hypotheses
are accumulated using a fusion function. The agent analyzes the scene, focusing its attention to the object which it is most uncertain about and moving
the camera towards such object.

ses fusion function that works without ground-truth
annotations by a proposed verification score and an
object-specific attention module that directs the atten-
tion of the agent.

3) Extensive experimental evaluation of both the proposed
method and baselines on both synthetic and real clut-
tered scenarios.

II. RELATED WORK

6D object pose estimation. 6D object pose estimation from
a single image has been extensively researched in the past
decades [11], [12], [13], [14]. Accurate pose estimation
can be obtained under moderate occlusion and clutter with
handcrafted features [15], [5]. To handle occlusion and
truncation, keypoint detection with PnP [16], [17] or per-
pixel regression/patch-based approaches [6], [9], [7] followed
by Hough voting [18], [7] or RANSAC have been proposed.
Most recent approaches attempt to jointly learn features
and pose estimation using neural networks [12] in either
RGB [19], [17], [20] or RGB-D images [1], [21]. However,
many of the methods are designed and evaluated for Single
instance of single object [8] and pose estimation of multiple
instances of single object in cluttered scenarios remains a
challenge. Estimating object poses on such scenarios using
the above methods is challenging due to cascading errors
such as severe occlusions and foreground clutter. Sock et
al. [1] presented a work specifically for such scenarios by
generating training dataset with occlusion patterns. Sunder-
meyer et al. [22] learned an implicit representation of object
orientations defined by samples in a latent space to handle
occlusions. However, the accuracy of a pose hypothesis is
fundamentally limited by the visibility of the object in the
input image. We end this section by reviewing methods
that use multiple view information [23], [24], [25], [4],
[26], [27]. However, these methods assume a set of images
captured from pre-determined viewpoints are available. Our
framework is agnostic to the choice of object pose estimator

and we propose a fusion function to incorporate multi-view
information.
Active vision, object detection and poses. We review recent
work on the active vision that aims to either improve the
detection of objects, their pose estimation or both. Several
methods have been proposed to select glimpse on static
image to accelerate object detection [28], [29], [30] and
more recently view selection for a moving observers such
as visual navigation [31], [32], [33] and classification [34].
In [35] an active vision dataset and a reinforcement learning
based baseline to explore the environment to detect objects
are proposed. [36] presents a method to jointly learn a policy
for both grasping and viewing. The method uses a simulated
environment which detects objects depending on the occlu-
sion rate. Unlike our framework where multiple objects are
present, both methods include one object per scene. [37]
shows a geometry-aware neural networks which integrate
different views to a latent feature tensor which is also used
to select views for the purpose of object reconstruction and
segmentation. Similarly [38] uses reinforcement learning
framework to select views to reconstruct 3D volume from
RGB images of single object. More related to our work,
[9] proposes a Hough forest approach and an entropy-based
viewpoint selection. An important drawback of this method is
that it does not have a mechanism to resolve conflicting next
best view selection in the presence of multiple hypotheses.
[10] integrates different components to build a complete
active system which detects and pose estimates multiple
objects. However, both frameworks decide the next best
view independently of the past and future decision and also
requires rendering of different viewpoints.
Attention to objects. Recent work has shown that employing
attention mechanism is useful in the presence of multiple
objects, distractors, and clutter. [39] used attention to select
discriminative features for the purpose of view selection for
object classification given a single detected object, whereas
we use attention module to select a hypothesis from a set of
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detected instances. [40] uses a pixel-wise attention module
for the self-driving system to build more interpretable agent.
[41] presents a system for object grasping with object-level
attention where an attention mechanism is used to select the
object to be manipulated on specific tasks. Similarly, in the
proposed framework we propose an attention mechanism that
makes the agent focus on the most uncertain object.

III. PROPOSED FRAMEWORK

Problem definition. Given a target stack of n objects, our
aim is to infer the 6D pose xi ∈ R6 of every i visible
object in the stack, consisting of its 3D location and 3D
orientation in the scene. In other words, our objective is to
find the set of object hypotheses x̂ = {x̂1, ..., x̂N} that best
describes the scene. We formulate the problem in an active
setting, where an agent has the ability to navigate through a
finite set of viewpoints V = {v1, ...vM}, where vi ∈ R6

is the 6D camera pose, and M = |V| is the number of
viewpoints accessible to the agent. At each time step t, the
agent observes the state of the scene st from a viewpoint
vt ∈ V and decides an action at following a policy function
π that moves the agent to next viewpoint vt+1. The agents
proceeds until it reaches the maximum episode length T
generating a trajectory τ = (s0, a0, ..., sT−1, aT−1). Moving
an agent in the real world is costly in terms of time T
and energy consumption, which we indirectly measure as
a function of total traveled distance d. Both d and T are
budget-constrained and low values are desired.
Framework overview. In our framework, presented in Fig.
1, at each time step t an input image It is acquired from
a viewpoint vt and it is passed through a 6D object pose
estimator that provides pose hypotheses ht on the currently
observed objects. These hypotheses are accumulated using
a fusion function that considers both the current hypotheses
and the previously observed ones and a selection of such
is given to the agent. In a cluttered scenario, there are
multiple objects with different challenges such as occlusion
or measuring pose estimation confidence. This indicates there
may not be a single next view ideal for all the objects and
thus the agent reasons about the scene and focus its attention
to the object which it is most uncertain about and moves
the camera towards such object. This process is repeated
until the maximum fixed number of time steps T and then
the 6D pose hypotheses for the scene x is obtained. In the
following sections, we describe the different components of
our framework.

A. 6D object pose estimation

Given an image It acquired from viewpoint vt, the 6D
object pose estimator outputs a set of object hypotheses
for the current view ht = {h1t , ..., hkt }, where hit ∈ R6

and k might differ from the actual number of objects in
the scene N . Our framework is agnostic to the 6D object
pose estimator of use and in this work, we opted to regress
pixel-wise object-coordinate maps in a similar way to [21].
We use a 6D object pose estimator working on the RGB-
D domain which, in addition to object hypotheses, also
provides 2D bounding boxes and segmentation masks for

each detected object, which will be used on different stages
of our framework detailed below.

B. Multi-view hypotheses fusion

At each viewpoint, vt, the agent obtains a different set
of object hypotheses ht from the 6D object pose estimator.
To obtain a global scene hypothesis x̂ that accumulates the
information obtained from different viewpoints, we define
a hypotheses fusion function f . Given a history of object
hypotheses h1, ..., ht and camera viewpoints up to time step
t, the function f outputs the accumulated hypotheses x̂t in
the global coordinate system. Intuitively, f gathers all the
object hypotheses that have been observed so far, selecting
the ones that better explain the scene among all the pool
of hypotheses, hence x̂t ⊆

⋃t
i=1

⋃
j h

j
i . In our framework, f

makes use of hierarchical clustering to group hypotheses and
the hypothesis with the highest object pose confidence score
is selected from each cluster in a similar way to [10]. In our
framework, the hypothesis with the highest verification score
from each cluster is chosen, as we use verification score to
represent quality of the hypothesis.

Verification score. The hypotheses fusion function re-
quires quantifying the quality of a hypothesis in the absence
of ground-truth information. For this, we introduce a veri-
fication score that estimates hypothesis confidence inspired
by the work of [42] and [9]. These works assume that a
scene point q that belongs to an object -is an inlier- if the
distance to the nearest neighboring point p of a rendered
3D model of a hypothesis is lower than a certain threshold
ε. This assumption is not generally true in the presence of
multiple objects in clutter. To overcome this limitation, we
use the segmentation mask from the object pose estimator
and consider points on the depth map that lie inside the mask
as inliers. The local fitting between p and q is measured by
δ(p, q) and is defined as follows:

δ(p, q) =

{
1
2 (1− ‖p−q‖2ε ) + 1

2 (np · nq), if ‖p− q‖2 < ε

0, otherwise
,

(1)
where np and nq denote the normal vectors at p and q

respectively. The verification score c is calculated as the
mean value of δ(p, q) for all the inlier points. In Fig.2, a
graph of verification score against the eADD for coffee cup
is presented showing how the proposed verification score
correlates with eADD, making it suitable to be used in the
absence of ground-truth annotations. For coffee cup object,
10% of the diameter of the object is 14mm which is used to
decide whether the object pose hypothesis is of an acceptable
quality.

Objects feature representation. When encoding object
features, 6D object pose hypothesis information is not di-
rectly used given that some estimated object poses are of
poor quality to provide useful enough information. Instead,
we propose to use a more reliable and simpler feature
representation to encode object hypotheses. The output of the
hypotheses selector is a set of object features Bt for k object
hypotheses. Each element in Bt consists of a tuple (bi, di, ci),
where bi is the normalized 4 dimensional object 2D bounding
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Fig. 2. (Left) A graph showing a relation between verification score and eADD . (Middle and right) The figures show the scene and hypotheses rendered
in blue.

box coordinates, di is the distance of the hypothesis from
the viewpoint in depth values on the camera coordinates and
ci is the verification score of the hypothesis. Bounding box
coordinates are directly used for bi and di is approximated by
averaging the mean value of depth map values corresponding
to the segmentation mask of the 6D object pose estimator.
The value from the object hypothesis in depth axis is not
directly used as it is often incorrect notably when the object
is highly occluded.

C. Object attention module

At a given time step t, the agent observes a number
of object hypotheses and makes a choice on which next
viewpoint to visit at t + 1. To guide the agent on that
decision, we propose an attention mechanism that makes
the agent to focus on the most uncertain object and move
accordingly. In this section, we describe how we design this
attention mechanism and in Sec. III-D we provide details on
its learning function.

Our attention mechanism receives as input the set of
object features Bt from the previous module and returns an
individual object ot feature of the object to reason about
and its index mt in a similar way to [41] and [43]. First,
a representation of each object in Bt is extracted using
a fully connected network. These individual features are
aggregated using a mean-pool layer leading to a global object
representation that is concatenated to the individual feature.
A Selector network takes these concatenated features and
outputs a scalar score indicating the importance of the object
which is normalized using a softmax layer. The object with
the highest score is then selected and its features are given
to the policy network. Note that gradients flow from the
policy network, guiding the attention module to the object of
interest in our active setting. A description of the algorithm
can be found in Alg. 1. Selector(·) is a linear mapping from
object features to attention score which is optimized jointly
with the policy.

D. Policy learning

Formulation of reinforcement learning problem. We
formulate the decision process of choosing an action at
leading to a viewpoint vt+1 within a reinforcement learning
(RL) framework. The next viewpoint is strategically chosen
to lead to an optimal set of hypotheses x̂∗ that best describes

Algorithm 1: Attention module
Data: Bt features of k objects at time step t
Result: ot object feature and object index mt for the

policy network
for bi ∈ Bt do

gi := FC(bi, di, ci) // fully connected
network

end
gglobal := meanpool(g1, ...gk)
for bi ∈ Bt do

wi := Selector(concat(gi, gglobal)) // object
score

end
w̄1, ...w̄k = softmax(w1, ...wk)
mt = argmax(w̄1, ...w̄k) // attended object

index
ot = concat(gm ∗ w̄m, bm, dm, cm)

// individual object feature

the scene. The optimization problem is defined as the max-
imization of a parametric function J(θ) defined as J(θ) =

Eτ∼pθ(θ)
[∑T

t=0 γ
trt

]
, where pθ(θ) is the distribution over

all possible trajectories following the parametric policy πθ.
The term

∑T
t=0 γ

trt represents the total return of a trajectory
for a horizon of T time steps and a discount factor γ ∈ [0, 1].
Reward function. Our reward function involves three dif-
ferent terms: (i) individual pose estimation accuracy; (ii)
change in distance from camera to the attended object and
(iii) penalization for long distance camera movements. The
first term is defined as follows:

reADDt = eADD(x̂mt+1, x
m
t+1)− eADD(x̂mt , x

m
t ), (2)

where index mt denotes the object index selected by at-
tention network described in sec.III-C at time t. eADD is
the most widely used 6D object pose error function in the
literature and is the average Euclidean distance of model
points proposed by Hinterstoisser et al. [44]. It is defined as
the average Euclidean distance of the estimated pose x̂ with
respect to the ground-truth pose x of an object model.

We hypothesize that a viewpoint closer to the object of
interest is more likely to give better pose estimation. It can
be used to guide and accelerate the policy learning and this
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leads to the second term defined as:

rdistt = ‖x̂mt+1[xyz]− vt+1[xyz]‖2 − ‖x̂mt [xyz]− vt[xyz]‖2,
(3)

where [xyz] is the translation vector from a 6D pose. The
full reward function is the combination of the two above
and another term penalizing long distance camera motions
aiming to minimize the total distance traveled d:

rt = (1− α)reADDt + αβrdistt −
(1− α)(1− β)(‖vt+1[xyz]− vt[xyz]‖1).

(4)

where α and β are hyperparameters in [0, 1] weighting the
influence of the different reward terms.
State space. The state vector st in our framework consists
of three concatenated components. First, the object feature
ot that comes from the attention module presented in Algo-
rithm 1. Second, the current camera pose position vt[xyz].
Last, a history vector Ht that encodes previous camera
positions for T steps, which is initialized to zeros and it is
filled at each time step. This history vector is needed in the
absence of a memory module to respect the Markov property
on a reinforcement learning framework.
Action space. We define the action space as a two-
dimensional continuous space spanning azimuth and eleva-
tion angles the camera viewpoint of a hemisphere centered in
the stack of objects. More specifically, an action at time step
t is defined as at = {φat , φet} where φa and φe represent
azimuth and elevation angles of the camera respectively.
Given the finite nature of the viewpoint space, the angles
from at are mapped to the closest viewpoint in V .
Policy network We represent the policy function πθ as a
neural network with parameters θ that outputs the mean and
standard deviation of a Gaussian distribution. To optimize
θ different methods can be used, however, in our frame-
work, we use policy gradients method [45]. These methods
optimize J(θ), where the gradient of the expected return
∇θJ(θ) is estimated with trajectories sampled by following
the policy.

IV. EXPERIMENTAL RESULTS

Dataset and experimental setup. For synthetic experiments,
Bin-picking dataset with two different object models are
used for training and testing: Coffee Cup from [9] dataset
and Bunny model from [46] dataset. For each model, we
generate 40 scenes with different number of objects and
random pose configurations. Objects with low visibility
not detected in any viewpoints are removed from the
ground-truth and are not included in the evaluation. For
each object, 30 scenarios are used for training and 10
scenarios are used for testing. Each scenario has 100 views
on the upper hemisphere with radius of 80 cm. The view
grid consists of 5 elevation and 20 azimuth levels and both
RGB and depth images are rendered with OpenGL. The
number of instances varies randomly between 15-20 for
Coffee Cup and 7-12 for Bunny due to the size and shape
difference. For eADD, all detectable objects are taken into
account, and the undetected object are assigned the error of
50mm which is more than 3 times the acceptable threshold.

TABLE I
DETECTION RATE, eADD/I AND DISTANCE TRAVELLED EVALUATED

WITH THE DIFFERENT BASELINES ON SYNTHETIC ENVIRONMENT.
MAXIMUM EPISODE LENGTH SET TO 5.

Coffee cup Bunny

Policy Distance
d ↓

eADI
(mm) ↓

Detection
rate ↑

Distance
d ↓

eADD
(mm) ↓

Detection
rate ↑

Random 4.97 13.48 0.76 3.97 26.69 0.19
Maximum Distance 7.66 14.02 0.75 7.68 26.83 0.46
Unidirectional 2.88 14.32 0.74 2.88 27.12 0.44

Proposed 3.71 11.12 0.80 2.43 25.35 0.46

We use the coffee cup scenario from the dataset of
Doumanoglou et al. [9] for the real experiment. Since
the viewpoints of the dataset are not evenly distributed, a
view grid is constructed in the same ways as the synthetic
environment and the image from viewpoint closest to the
grid viewpoint is used as the observation. During training
and testing, 2D bounding box coordinate is rotated around
the depth axis to correct the in-plane rotation. The inference
time for the pose estimator depends on the number of
objects in the scene. In the case of 14 objects the pose
estimator outputs hypotheses at 2 Hz. The rest of the
pipeline including object accumulation, clustering and
policy network operate at 25 Hz. It is possible to design a
pipeline to leverage intermediate image data acquired while
travelling from vt to vt+1, however it is less practical due
to the processing time. The results are obtained with Intel
i5-6400 CPU and GTX 1080Ti.
Our framework implementation is built in PyTorch and the
learning algoritm, PPO [45].

Baseline policies. We test our active pose estimation system
against a variety of baselines. The first baseline “Random”
samples random actions from a fixed Gaussian distribution.
The second baseline “Unidirectional” moves the camera in
one horizontal direction around the scene. The trajectory is
generated such that it completes one full revolution around
the scene. Elevation of the viewpoint is fixed to be 45
degrees which provide a balanced view between occlusion
and variability in each view. The third baseline, “Maxi-
mum distance”, selects viewpoints with the longest distance
from previous viewpoints. This baseline test whether the
most informative views are simply far-apart views. Lastly,
an “Entropy-based” baseline which selects the next best
view based on entropy [10], [9] is presented to be able
to compare to a recent evaluation. For this baseline, the
pipeline is identical to the proposed system except the action
is generated based on view entropy, which is pre-computed
for every view. Segmentation masks inferred from the pose
estimator are used for the view entropy calculation. Sample
trajectories of baselines are visualized in Fig. 3.
Evaluation metrics: Pose accuracy is evaluated with eADD
for bunny and eADI for coffee cup due to symmetry. Fol-
lowing the standard practice [44], objects with eADD/I error
less than 10% of the object diameter is considered to be a
correct hypothesis. All pose errors are measured in mm. The
detection rate is defined as the ratio of number of objects
with correctly estimated pose to the total number of objects
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Fig. 3. (Left) Sample image of Maximum Distance policy baseline (Middle) Sample image of Random policy baseline (Right) Sample image of
Unidirectional policy baseline
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Fig. 4. Performances with different hyperparameters. (Left) Distance travelled and mean pose error with respect to α values. Change in mean pose error
(Middle) and detection rate (Right) with different number of maximum episode length (T ).

Fig. 5. (Left) An example of the learned trajectory for the coffee cup dataset. (Right) Every column represents one time step (Top and middle row) Image
from the viewpoint before and after taking the action. (Bottom row) 3D visualization of the action for each time step.

in the bin in each scenario. Distance traveled is the total
distance the camera moved where it is measured along the
surface of the hemisphere as it is unrealistic for the sensor
to move through the objects.
Synthetic dataset. Table. I shows the mean pose error and
the correct detection rate on the synthetic dataset. To obtain
the results, episode lengths T are held constant at 5 steps. For
Coffee Cup object, our approach consistently outperforms
all baselines in both eADD/I and detection rate metric by
a significant margin. In most cases, Unidirectional policy
results in low distance d as the agent only moves horizontally.
For Bunny object, the proposed method outperforms all
baselines in all metrics with a narrower margin due to the
smaller number of instances in the scene. Fig.5 shows how
the agent behaves at each time step of the trajectory. The
agent selects the object with the lowest confidence, which

is expressed as the verification score, but also not too far
away to reduce the distance traveled. The attention shifts to
different objects in different time step and it can be noted
the number of the correctly detected object (highlighted in
green) increases every step.

Real world dataset. Fig. 6 shows a sample trajectory
generated by the learned policy network and quantitative
comparison with other baselines. Unidirectional baseline is
not included since the distribution of viewpoints in the real
dataset is not in a grid form or uniform. Since most of
the viewpoints are densely populated on the top part of
the scene, the learned policy tends to select views with
lower elevation resulting in a behavior similar to maximum
distance baselines. The proposed method outperforms the
other baselines including the entropy-based method [10].
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Entropy
based [10]

Fig. 6. Evaluation on real dataset. (Left) Visualization of a sample trajectory. Blue camera represents a set of allowable viewpoints and red cameras
show the viewpoints selected by the proposed system. The arrow shows the order of view selection. (Right) Performance of different baselines on the real
dataset.

Fig. 7. Relationship between attention, verification score and action. (First column) Images of the scene before taking action. Attented object is highlighted in
red box. (Second column) Images of the scene after taking action. (Third column) Bar graph showing the object score(w̄i in the manuscript) and verification
score(shown as confidence). (Fourth column) 3D visualization of camera trajectory.

A. Ablation experiments

α and T parameters. Experiment with different trajectory
is presented to show how the performance changes within
the spectrum between single-view pose estimation (T = 0)
and all-view pose estimation (T = 99 in our case). Fig. 4
shows the performance indeed increases with more views
but the benefit saturates after T = 10. For α, excessively
emphasizing the rdist term results in the agent to give
attention to the furthest object and move the camera towards
the object to maximize the reward, increasing the travel
distance. However it is difficult for the agent to learn a
policy without rdist term since during training often there
are multiple views around the object of interest which are
equally favorable.
Attention module. To verify whether the attention module
properly learns to automatically select object, a baseline
which assigns attention to the object with the lowest
verification score is tested. Compared to the verification
score-based selection, our baseline improved the detection
rate by 3% and mean pose error by 9%.

Qualitative evaluations. More qualitative evaluation results
including the attention value for detected object for better
insights are shown in Fig. 7. It can be noted the selector
network tends to choose the object with the most uncertainty.

V. CONCLUSION

We presented a framework to deal with the active 6D
object pose estimation in cluttered scenarios problem. We
used recent reinforcement learning advances to formulate our
framework and carefully designed all the different compo-
nents to achieve superior performance compared to different
baselines. We believe there is a margin for improvement in
terms of performance and real-world framework evaluation
due to the lack of proper datasets. As future work, we
would like to explore the use of the proposed framework
on a real robot, its impact on the graspability of objects,
its generalizability to different scenarios/objects and the use
hand-object pose priors to accelerate the policy training [47],
[48]. Also, using a real robot could ease the real world dataset
generation.
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