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Abstract— While abstract knowledge like cause-and-effect
relations enables robots to problem-solve in new environments,
acquiring such knowledge remains out of reach for many tradi-
tional machine learning techniques. In this work, we introduce
a method for a robot to learn an explicit model of cause-and-
effect by constructing a structural causal model through a mix
of observation and self-supervised experimentation, allowing
a robot to reason from causes to effects and from effects
to causes. We demonstrate our method on tool affordance
learning tasks, where a humanoid robot must leverage its prior
learning to utilize novel tools effectively. Our results suggest that
after minimal training examples, our system can preferentially
choose new tools based on the context, and can use these tools
for goal-directed object manipulation.

I. INTRODUCTION

In The Crow and the Pitcher, the fifth century B.C.E.
Greek poet Aesop wrote of a thirsty crow who ingeniously
found relief after dropping stones into a jug of water until the
water level was high enough for the crow to drink from it.
More recently, the scientific community corroborated this re-
markable feat of physics-based instrumental problem-solving
in New Caledonian Crows (NCC; Corvus moneduloides) [1].
Contrary to the flexible reasoning capabilities of crows and
other higher species, robot learning and reasoning remain
starkly limited despite substantive advancements in statistical
machine learning techniques. Additionally, what exactly is
learned by these systems remains largely opaque [2], which
not only makes them difficult to debug but poses serious risks
in robotics settings where unforeseen behaviors can cause
physical harm.

Ideally, robots should be able to acquire knowledge and
skills in a way that is both transparent and portable across
contexts, but without compromising on the incredible ad-
vancements made by the machine learning community. To
that end, we have developed a system whereby a robot can
learn and exploit a graphical causal model to solve a physical
reasoning task. Our approach has a robot learning a structural
causal model (SCM) [3] through a mix of observation and
physical exploration. The SCM is used to perform causal
inference, which is completed by a group of neural networks
that are dynamically constructed and trained as a function of
the learned structure of the SCM and the goals of the current
task. As a result, our system represents the robot’s knowledge
in an explicit and explainable way by the directed acyclic
graph (DAG) entailed by the SCM, but that also leverages the
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Fig. 1: Tool selection via causal inference. A Baxter col-
laborative robot queries a learned causal model of tool-
assisted manipulation using perceptual information from its
workspace. Information from the graph is used to select the
most appropriate tool for completing its goal.

powerful pattern recognition capabilities of machine learning
techniques via the use of neural networks.

We demonstrate our method on a humanoid robot that
must build a model of the cause-and-effect relationships un-
derlying tool-assisted manipulation and then use this model
to both solve goal-directed manipulation tasks, and quickly
learn the affordances of novel tools given a kinematic model
of each tool. We demonstrate that our system is capable of
selecting the appropriate tool and action to take to move
an arbitrarily placed block into goal regions, as well as
leveraging prior learning to bootstrap learning of new tools.

In sum, our contributions are the following:
• A method for a robot to construct a transparent model

of causation via a mix of observation and experimental
learning.

• A method for performing forward and backward causal
inference using a series of dynamically constructed
neural networks.

• A method for a humanoid robot using learned causal
models to quickly learn and utilize tool affordances of
novel tools.

II. RELATED WORK

A. Causality in ML and Robotics

Many researchers have attempted to formalize causal
relations over the past century. Here we focus on Pearl’s
SCM framework to formalize causal relations using directed
acyclic graphs (DAGs) that define structural equations be-
tween causal variables [3]. Pearl argues that SCMs accom-
modate sophisticated forms of reasoning, including interven-
tional (e.g., ”What if I had done X?”) and counterfactual
(e.g., ”What if I had acted differently?”) [4]. Counterfactual
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reasoning has been integrated into RL systems; for example,
it has been shown to enable the acquisition of effective
decentralized multi-agent policies in a credit assignment task
[5], and aid in the evaluation of high-risk healthcare policies
[6].

SCM-based reasoning has been employed in a robot by
Angelov et al. [7] which used learned SCMs to counterfac-
tually reason about user preferences in their demonstrations
of a motion task. Non-SCM based approached to causal
reasoning include Xiong et al. [8], which integrated spatial,
temporal, and causal and-or graphs learned from user demon-
strations to enable a robot to fold clothing. Nevertheless,
causal learning and reasoning for robots remains relatively
unexplored despite the active developments from the machine
learning and artificial intelligence communities.

B. Affordance learning

Ecological psychologist J.J. Gibson defined object affor-
dances as the possible actions an agent can take on object
as a function of both the properties of the object and the
physiology of the agent [9]. For example, a coffee mug is
”pick up-able” to humans, and not to dolphins, because its
shape fits nicely in the human hand. While there have been
many approaches to formalizing affordances in a robotics
context (see [10] for a review), a common framework defines
affordances as the three-way relationship between an object,
the actions a robot can take, and the effects of these actions
on the object [11]. While Bayesian networks have been a
popular method for representing affordances (see [12] for
a recent example), an explicitly causal framework is rarely
employed despite centrality of cause and effect within many
affordance paradigms. As frameworks like SCMs can tease
apart causal, and not merely correlational, properties in the
environment, a robot equipped with such a framework is
better poised to model the effects of its actions on the world,
and thus to acquire and utilize affordances. We demonstrate
this capability by showing that our system can effectively
complete goal-directed tool and action-selection tasks using
acquired affordance knowledge.

III. PROBLEM STATEMENT

Our goal is to have a robot model simple tool use
behaviors using SCMs, and then subsequently use this model
to quickly ascertain the affordances of novel tools. We begin
by giving a brief overview of the SCM formalism (refer to
[3] for more technical details).

The problem of learning an SCM is twofold: the structure
of the graph which links variables to other variables – or
causes to effects– must be learned, as well the functional
mechanism that formalize the these relationships.Formally an
SCMM is a tuple {U ,V,F} where U is a set of unobserved
background features or, ”exogenous” variables, V is a set of
observed features, or ”endogenous” variables, and F is a set
of functions that assigns values to variables in V based on
other variables in U and V . Under the assumption that the
causal structure is acyclic, there is a corresponding DAG G

where the nodes in the graph correspond to variables in U
and V and the edges to the functions in F .

Kocaoglu et al. [13] demonstrated that feedforward neural
networks admit an interpretation as SCMs. We take advan-
tage of this fact by using the causal structure uncovered
during learning to guide the construction of series of neural
networks that define the structural equations F underlying
the SCM. The advantage of using such a scheme it min-
imizes the assumptions of the generating distributions of
the variables of interest, which in many potential real-world
scenarios are likely unknown a priori. Exogenous variables
U are represented by the hidden nodes in the neural network.

IV. OUR APPROACH

A. Causal Learning

The goal of the observational phase is to bootstrap
learning of causal structure by taking advantage of the fact
that it can be inferred (usually within an equivalence class of
DAGs under reasonable assumptions of causation, see [14]
for an overview of causal discovery) from passively col-
lected, observational data using standard structural learning
algorithms. This helps minimize the amount of interventional
data required to fully specify the graph, which may be
beneficial, as often collecting this sort of data is difficult
to collect for reasons of practicality. The result of this phase
is an undirected graph with edges drawn between causally
dependent nodes, though the direction of causation may not
be known.

Subsequently, the robot enters the self-supervised vali-
dation phase, wherein it attempts to orient the graph by
collecting interventional data. An edge between nodes V1
and V2 is oriented V1 → V2 if P (V2|do(V1 = x) 6=
P (V2|do(V1 = y) for some interventions x and y, and vice-
versa. As interventional samples can be difficult or costly to
obtain, it is desirable to be able to preferentially select nodes
to intervene on such that the total number of experiments is
minimized. To that end we take an active learning approach
adapted from [15], which simply intervenes on nodes in the
graph produced during the observational phase starting with
the nodes with the highest degree, ensuring that the most
informative interventions are carried out first.

Finally, in the augmentation phase, the robot attempts to
incorporate a new node V3 into its causal model. Unlike in
the validation phase, the goal of the augmentation phase is
not orienting edges that already exist, but rather to add new
oriented edges where none had existed previously. An edge
between a new node V3 and an extant node V1 is added to
the model if it is determined that intervening on V3 effects
the value of V1 using the method described above.

In order to minimize the number of edges to be tested, and
thus the chances of falsely identifying causal relationships,
we developed a few heuristics for selectively testing nodes.
First, nodes are tested in topological sorted order. This
ensures that the causal antecedents that have thus far been
identified are tested first. In addition, we make the following
assumption: if an edge V1 → V2 is found for some nodes
V1, V2, then we do not test any descendants of V2. While
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Fig. 2: The causal discovery Process. During the observation phase (a) the robot learns a skeleton of the causal graph
observing demonstrations performed by a human. During the validation phase (b) the robot attempts to orient the edges of
the graph via self-supervised experimentation. Finally, during the augmentation phase (c), the robot introduces a new node
(blue) and attempts to incorporate it into its graph via further experimentation.

this has the potential to produce an incomplete causal graph,
it avoids the possibility of mistaking indirect causation from
V1 → V2 → V3 for some descendant V3 of V2, for the direct
causal connection V1 → V3.

B. Causal Inference

Once the causal structure is in place, the functional mech-
anisms underlying the SCM can be learned, allowing for the
robot to perform causal inference. As we wish to minimize
our assumptions about these underlying mechanisms, we use
neural networks to estimate these functions, using the struc-
ture of the graph to guide the structure of the neural network
architectures. However, while this allows for reasoning from
causes to effects, it is not immediately clear how other forms
of causal inference, e.g. diagnostic or ’abductive’ reasoning
from effects to causes, can be performed. Similarly, in many
real-world scenarios, it is often the case that observations
have been made for only a subset of variables in the SCM,
and it may be desirable to estimate the unknown values using
known information.

In order to support these capabilities, the final set of
neural network architectures are dependent on not only the
causal graph structure G, but the observed and unobserved
variables as well. We treat these unobserved values as a
set of ”queries” Q, the values of which we would like to
estimate. Each node q ∈ Q is ranked with ”causal score”
that is used to ultimately guide the order of inference, as
well the construction of the neural networks via a recursive
algorithm (refer to algorithm 1). A causal score is a value
between 0 and 1, computed as the ratio of the number of
q adjacent nodes with observed values to the total number
of q adjacent nodes. If the values of all of q’s parents are
observed, it is automatically assigned a score of 1, as it’s
value can be estimated by standard means. Once the scores
are computed, the value of the node with the highest score
is inferred, and it is treated as an observed variable, and so
can be used to infer the values of other qs. This process
of scoring and inference is repeated until all qs have been
estimated.

Inferring the q values was accomplished using feedforward
neural networks, though the structure of these networks may
not match the forward structure of the corresponding causal
graph in cases where abductive inference is required. We

use two heuristics to construct each network f ; 1) if all
of q’s parents are observed, then q = f(Pa(q)), where
Pa(X) denotes the parent nodes of node X; 2) otherwise,
q = f(Vobserved∪Vcollider), where Vobserved is the subset of
nodes adjacent to q that have been observed, and Vcollider is
the possibly empty subset of nodes that belong to a collider
subgraph with q, as these dependencies may carry useful
information about q’s state. Thus the size of the input and
output layers of any neural network was equal to the number
of nodes in Vobserved ∪ Vcollider and the number of nodes
in q (i.e. 1), respectively. In practice, we found that a single
hidden layer consisting of 10 nodes worked well across all
networks.

Algorithm 1 Recursive procedure for causal inference.

1: procedure ANSWERQUERIES(Q,G)
2: if Q is empty then return
3: else
4: (q, score) = max(causalScores(G,Q))
5: if score == 1.0 then
6: Input = Pa(q)
7: else
8: Input = Vobserved ∪ Vcolliders
9: q̂ = f(Input)

10: Append q̂ to G.obs
11: AnswerQueries(Q \ q,G)

C. Affordance learning

Andries et al. [12] identify equivalences between affor-
dances based on how similar their effects are on an object
when acted upon. We employ a similar approach to learn
and represent tool affordances. For some tool t and set
of possible actions A, we represent its affordances as a
vector at ∈ R|A|, where each element ati of the vector
corresponds to a measure of how well the effects of a tool
action align with predictions (here we use the coefficient
of determination, r2). Using a learned causal model of an
exemplary tool, a robot can quickly estimate these vectors
from a small number of exploratory actions on an object and
use these estimates for tool selection and usage given some
goal position for the target object.
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V. MATERIALS AND METHODS

In this section we discuss the design and implementation
details of the task used to evaluate our model.

A. The Task

We would like the robot to 1) model the causal process
underlying manipulating objects with tools, and 2) leverage
the learned model to more effectively learn and wield new
tools. Here we take as examples pushing and pulling as
classes of actions the robot can perform. We assume the robot
can observe the random variables corresponding to the initial
position and final position of a manipulated block, pinit and
pfinal, respectively, as well as the movement vector d, which
is defined as the vector that the tool tip travels starting from a
small displacement before or after the block to the terminus
of the push action. While pinit, pfinal, d ∈ R2, we represent
each of their dimensions by their own individual nodes,
which we express with a superscript, for example, pxinit and
pyinit For convenience, when we omit the superscript, we are
referring to both dimensions simultaneously. Additionally,
while d ∈ R2, for simplicity, we limit the push vectors
the robot can enact to 12 evenly spaced vectors around the
unit circle. This requires that for any estimated value of
d, the robot must choose one of these 12 vectors with the
smallest angular distance to d to enact. The robot can take
actions push, pull ∈ A in directions d, though does not at
the outset know the relationship between these two, or any
other variables. Consequently, during inference, d and A are
estimated using classifier networks,while pinit and pfinal are
estimated using regressor networks.

While it is assumed the robot knows how to perform
simple pushes and pulls with each tool, it does not know the
effects that tool use entails, nor in what scenarios a given
tool is appropriate. While the robot only needs to learn the
causal relationships among these 7 variables, the number
of possible DAGs is super-exponential in the number of
variables [16], for a total of approximately 1.1×109 possible
DAG structures, making this structural identification problem
non-trivial.

In addition there are a number of details related to the
implementation of three learning phases that are specific to
this particular task, outlined below.

Observational phase: The robot observed demonstrations
of a block being pushed with a hoe tool (see Figure 3) by a
human, and tracks pinit, pfinal, and d. This observational
data is standardized and passed to a structural learning
algorithm in order to get an initial hypothesis of the causal
structure. For the purposes of this experiment we use the PC
algorithm, a widely used score-based method for for causal
discovery [17].

Validation phase: We allow the robot to directly intervene
on pintial pfinal and d, and limit it only to pushes with the
hoe from the previous phase. Each intervention is treated as
a randomized controlled trial, where the intervened variable
is forced to take on one of two values. Interventions on
pinit and pfinal compare interventional distributions for two
prespecified positions, where as interventions on d compares

the distribution induced by taking a random action vs taking
no action at all. As we wish to limit the assumptions we
make about the underlying distributions of the variables,
we use the Kolmogrov-Smirnoff test to nonparametrically
estimate difference between the two interventional distribu-
tions. Given that these interventions are used to quickly infer
causal relations, and are not themselves rigorous scientific
experiments, the p < .05 significance convention need not
be followed. Here we relax the threshold of significance to
p < .2, though this may be treated as a hyperparamter trades-
off risk of type I errors for data-efficient estimation.

Augmentation phase: During the augmentation phase, the
robot attempts to add the action type A to its causal model.
This proceeds in much the same way as the validation phase,
except we allow the robot to perform pulls as well as pushes.

B. Affordance-based tool selection

We would like the robot to choose the best tool, t̂, and tool
usage d̂ given the circumstances of the environment. Using
desired movement vector d∗, obtained by querying the causal
graph, together with the estimated affordance information atix
for a given tool ti, the robot can make this selection. This
is captured by the heuristic

t̂, d̂ = argmin
ti,dti

(2− atix )(2− cos θdti
d∗) (1)

Here dti is a movement direction a robot is capable of
actuating with tool ti according to its kinematic model. In
essence, this heuristic chooses a tool based on the trade-off
between how well it affords a desired action in general, and
how well it can enact the action in this specific instance.

Fig. 3: The tool set.

C. The workspace

Experiments were performed on a Baxter collaborative
robot (Fig 1)1. Our Baxter model was equipped with a claw
gripper for manipulating the tools, as well as a suction
gripper for picking and placing the block during the self-
supervised learning phases. Informal tests suggested our
model’s end-effector precision was within ±1cm. Figure 3
depicts the contents of the robot’s work space. Actions were

1Source code can be found at https://github.com/ScazLab/crow
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performed on a 5cm3 wooden block. Initially the robot had
access only to a plastic hoe measuring 12.5cm from grip
point to tool tip. Additionally, there were 5 morphologically
distinct tools the robot’s learning was evaluated on. During
the evaluation phase, the robot was tasked with pushing
the block into a small rectangular goal region measuring
approximately, 10cm × 8.5cm. The positions of the tool
tips, the block, and goal region were tracked with a head-
mounted RGB webcam using a blob detector calibrated to the
colors unique to each object. We used the Causal Discovery
Toolbox’s [18] implementation of the PC algorithm, as well
as classifier and regressor neural network implementations
from Scikit-learn [19].

D. Evaluation

With our experiments we wished to see how well a robot
could use a learned causal model to perform affordance-
based reasoning for familiar and unfamiliar tools. In order
to do this, we ran three evaluations: 1) Given 8 samples
with each of the 5 novel tools, we had the robot choose
both the best tool and action to perform given a single fixed
goal location, but arbitrary initial positions of the block; 2)
given 20 training samples per tool, multiple goal regions and
multiple initial block positions, we observed how close could
the robot move the block towards the goal region for each
tool; 3) we looked at how accurately the robot could predict
action effects as a function of training data samples for a
subset of the 6 tools.

VI. RESULTS

Figure 5 depicts the learned causal graph. The structure of
this graph models two important aspects of the task: 1) the
final position of the block is a function of the initial position
of the block and the direction in which it is pushed, and 2)
the type of action, push or pull, effects the push direction,
suggesting the robot has successfully grounded these abstract

A

dx dypxinit pyinit

pxfinal pyfinal

Fig. 5: The learned structure of the SCM.

actions to a concrete sensorimotor effects. The observation
phase consisted of 60 sample demonstrations of a human
pushing a block. During the validation and augmentation
phases, we limited interventions to 20 samples per interven-
tion. During the validation phase the robot performed two
interventions, for a total of 40 samples. The augmentation
phase consisting of one intervention on action type, consisted
of 20 samples.

Figure 4(a) depicts the robot’s performance with each
tool across 5 goal locations with 5 randomly distributed
initial positions per goal location. Remarkably, the top 3 best
performing tools, short hoe (M = 0.04, SD = 0.02), the
hoe (M = 0.5, SD = 0.04), and the rake (M = 0.06, SD =
0.04), came within a few centimeters of the goal on average,
despite relative inaccuracy of the robot and the limited set
of movement directions at the robot’s disposal. The tool
performance roughly track with morphological similarity
with the base tool (the hoe), with the most similar tools
producing the best results (refer to Figure 3). The learning
curve results depicted in (b) tell a similar story, as the tools
that are morphologically most similar to to original tool– the
short hoe, and to a lesser extent, the shovel– benefit much
more from the prior learning than the marker. Interestingly,
the short hoe ultimately performs better than the original
tool, though this is likely due to the fact that the short hoe is
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physically the same tool as the original hoe, but just gripped
closer to the tool tip, producing more consistent pushes and
pulls.

Figure 4(c) depicts how our system chose tools and actions
as a function of the object’s initial position given a fixed
goal location. Here we see action selection in line with
expectations; the robot chose to push the block when the
block was positioned before the goal relative to the robot,
and pulled it when it was positioned beyond the goal,
further supporting supporting the notion that the system
has meaningfully grounded the push and push actions to
sensorimotor effects. Figure 4(a) also helps shed light on the
tools choices in (c). The robot overwhelmingly preferred the
short hoe for pushing and pulling, which makes sense as it
is the tool the robot uses most effectively. On the periphery
of the workspace, the robot begins choosing the rake for
pulling, as the rake is both slightly longer than the short
hoe, and also the robot’s next best tool. The same reasoning
for the choice of shovel on the edges of the workspace; it is
the longest tool available to the robot and thus the only one
capable of completing the desired pull.

VII. DISCUSSION AND CONCLUSION

In this work, we demonstrated a method for a robot
to learn and utilize a causal structural model to rapidly
acquire and reason over tool affordances. The results of
our experiments suggest that the grounding of actions to
effects via the learned causal model enabled the robot to
effectively select and use tools preferentially based on the
conditions of the workspace. We believe there are two
primary advantages of this method over more common
approaches to robot learning: 1) The knowledge acquired
through the learning process is explicitly represented and
hierarchically organized by virtue of the DAG structure of
the SCM; 2) By leveraging this same DAG structure to
construct neural networks, the functional mechanisms of
the SCM can be learned in relatively data-efficient way.
That is, even in a dense causal network, for a given node
of interest, only a subset of the nodes are required to infer
the node’s value, mitigating the effects of the curse of
dimensionality that often plagues machine learning systems.
The transparency of knowledge entailed in 1) is vital in a
robotics context, for example in human–robot collaborative
contexts where shared expectations amongst collaborators
has been demonstrated to be important for team success [20].

Nevertheless, there were some limitations to this
work. There were relatively few causal variables under
consideration, and all of them were assumed to be
observable. Currently, it is not clear how well our method
would scale to learning larger, more complex causal graphs
or graphs with latent causal variables. In addition, aspects
of the interventional experiments conducted by the robot,
including the two initial positions of the block, were hard-
coded. Ideally, the robot should be able to autonomously be
able to generate its own experiments and choose values with
which to force the interventional variables to take on. This

is an important problem, as depending on the generating
distribution underlying the model, some interventions may
be more informative than others for uncovering causal
relationships.
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