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Abstract— A robot in the future may initially has a good
learning capability but an empty library of movements. It
gradually enriches its library of movements through human
demonstrations. Dynamic Movement Primitives (DMPs) has
been proved to be an effective way to represent trajectories.
Trajectories are classified into discrete and rhythmic ones, and
parameters are set for each demonstrated trajectory. However,
what kind of trajectory will be provided by robot users is
sometimes unknown to robot developers, so trajectory pattern
and the parameters can not be determined in advance. It’s
also impossible for non-technical robot users to set these
parameters and determine the pattern of movements they are
going to demonstrate. To make it easier for non-expert robot
users to programme their robots by demonstration, this work
presents an efficient way to deal with these two problems. The
effectiveness of the proposed methodology is proved by teaching
a robot to clean the whiteboard in different ways and stack a
set of cubic boxes in specific order.

I. INTRODUCTION

Intelligent Robots will gradually become an important part
of our work and daily life, making our life easier by helping
us doing all kinds of work, such as cleaning and washing
,taking care of elderly and children, cooperating with human,
etc. It may become common for a human to have several
robotic assistants. One of the main challenges for robots
to autonomously completing these tasks is the capability
of generating required trajectories. As requirements on tra-
jectories vary with tasks and situations, it is impossible to
pre-programme robots for future tasks via traditional motion
planning algorithms. Imitation learning provides a promising
approach to this problem [1]. Within imitation learning, a
control policy is learned from human demonstrations [2].
A robot user can teach a robot how to complete a task
under certain situations via demonstrations, which even a
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Fig. 1: Learning by demonstration with DMPs. Demonstra-
tion is easy, but it is hard for non-technical users to determine
the pattern and set the required parameters

non-technical user is competent. The robot will learn skills
from datasets of demonstrations and gradually create its own
skill library.

How to simply and efficiently represent trajectories is one
of the key issues of imitation learning. DMPs has been
proved to be an effective representation of trajectories for
several advantages, including high robustness and adaptation
to new situations, temporal invariance, etc [3][4]. Both
discrete and rhythmic motions can be represented by DMPs
and generalized to new situations [5][6]. The method has
been providing creative solutions for trajectory learning in
a lot of directions, ranging from mobile manipulation [7] to
exoskeleton robot control [8].

Moreover, in order to autonomously complete similar tasks
in new situations with previously learned skills, a robot has to
create and enlarge its skill repository through demonstrations
provided by human or other robots [1]. S. Niekum et al
present a DMPs-based framework to learn a large library of
skills and multi-step tasks with PR2 mobile manipulator [9].
In [10], researchers build a library of movements by labeling
each recorded movement and teach a robot to perform pick-
and-place operations and water-serving tasks. G. Maeda et
al introduce an active incremental learning algorithm so that
a real robot arm would ask for extra demonstrations if skills
in its repertoire are not enough to complete the commanded
task [11]. F. Meier et al assume the existence of a library of
movement primitives and provide an algorithm to segment
and recognize complex human movement and enlarge the
library when necessary [12].

However, only discrete movement primitives have been
taken into account in the aforementioned research. Since
rhythmic movements exist everywhere in our daily lives
(such as writing [6], wiping [13] and drumming [14]),
an intact library of motions should include both discrete
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and rhythmic movement primitives. According to the re-
search presented in [5][6], discrete and rhythmic movement
primitives should be learned with different models and be
generalized to new situations in different ways. It raises a
problem how to determine whether a movement primitive is
discrete or rhythmic. In [15], researchers manually classify
motions into discrete and periodic ones and match them with
discrete and rhythmic models, respectively. In addition, some
parameters exist in learning models of DMPs vary with tasks
and must be properly set for each trajectory by hand. Never-
theless, what kind of trajectories will be demonstrated in the
future by robot users is unknown. Pattern determination and
parameters setup can not be completed in advance. As shown
in Fig. 1, it is difficult and even impossible for non-technical
users to determine the pattern of demonstrations and set the
required parameters of learning models. To make it easier
for non-technical robot users to perform demonstrations to
their robots, our research presented in this paper will try
to deal with these two issues. Characteristics of trajectories
are numerically analyzed, so the pattern of demonstrations
are determined without known the geometric information
of trajectories. For both discrete and rhythmic movement
primitives, parameters of learning models are obtained via
Bayesian optimization (BO) [16] instead of manual tuning.

The contribution of this paper lies in two aspects. Firstly,
we present a methodology to determine what kind of pattern
of movement primitives should be applied to match an
unknown trajectory provided by robot users. Furthermore,
we provide an algorithm to obtain optimal parameters of
both discrete and rhythmic dynamic movement primitives.
These two contributions together finally build a bridge from
unknown demonstrations to determinant representations of
movement primitives. That is, the only thing left for a robot
user to do is to provide demonstrations.

II. METHODOLOGY

We try to explain our methodology of analyzing the pattern
of an unknown trajectory in this section. The principle
of the proposed methodology can be briefly explained as
follows. The premise for a trajectory to be represented by
rhythmic movement primitives is that the duration of the
demonstration must more than one period, otherwise, its
period can not be determined. Ideally, for every point in the
demonstration, there exists at least one other points that have
the same value. If the trajectory satisfies the requirement,
it will be temporarily treated as a periodic motion for
further consideration. Otherwise, it should be considered as
a discrete motion. Generally, for a periodic movement, all
the maximum values should be almost equivalent, so should
the minimum values. Furthermore, since the chosen model
will be used to generalize to new situations, the effectiveness
must be guaranteed. To verify the effectiveness of the chosen
model, it will be virtually generalized to new situations, such
as new goal positions (discrete model) or new amplitudes
(rhythmic model). DMPs can also be utilized to recognize
and classify movements [4]. If the chosen model matches the
real attributes of the demonstrated trajectory, the generalized

Algorithm 1 Pattern analysis and parameters optimization
of DMPs for known trajectories

Input: Demonstration dataset D = {y1, . . . ,yn}
Output: αz,n f s,Pattern

1: sample a set o f m points SP
2: c← 0
3: for yi ∈ SP AND y j ∈ D do
4: if yi == y j AND i 6= j then
5: c++
6: end if
7: end for
8: if c/m > threshold1 AND EXT REMUMANALY SIS(D)

then
9: Pattern← rhythmic

10: else
11: Pattern← discrete
12: end if
13: DMPs(αz,n f s,wa)← BO(DMPs(αz,n f s))
14: \\ Obtain optimal parameters through BO
15: if Pattern == discrete then
16: DMPs(αz,n f s,wa)← NewGoal(NG)
17: NewTra jectory(NT )← DMPs(αz,n f s,NG)
18: else
19: DMPs(αz,n f s,wa)← NewAmplitude(NA)
20: NewTra jectory(NT )← DMPs(αz,n f s,NA)
21: end if
22: wb← DMPs(αz,n f s,NT )
23: rab← recogntion(wa,wb)
24: if rab > threshold4 then
25: result← true \\ Pattern judgement is verified
26: else
27: α i

z← 0,n f si← 0,result← f alse
28: end if
29: function EXTREMUMANALYSIS(D)
30: MaximumSet(MA)← D,MinimumSet(MI)← D
31: \\ Calculate sets of minimums and maximums
32: if max(MA) − min(MA) < threshold2 AND

max(MI)−min(MI)< threshold3 then
33: return true
34: else
35: return f alse
36: end if
37: end function

trajectory should be recognized by the chosen model. Then,
the chosen model and corresponding parameters will be
stored in the library of motions to represent the demonstrated
movement. As long as the model to match the trajectory is
determined, parameters of the corresponding model should
be properly determined. Then, optimal parameters are ob-
tained through Bayesian optimization. The methodology is
displayed in Algorithm 1 and will be given further expla-
nation in the following subsections. For multi-dimensional
demonstrations, the algorithm will be performed in each
dimension.
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A. Dynamic Movement Primitives

The methodology of representing trajectories with DMPs
was proposed by Ijspeert et al [3][5] and will be briefly
reviewed in this paper. Motions are classified into discrete
and periodic ones. Furthermore, point attractor systems and
limit circle attractor systems are applied to derive control
policies for discrete and rhythmic movement primitives,
respectively [5][6].

For a one dimensional trajectory y(t), the desired attractor
behavior can be achieved by the following formulations,
which are also called the transformation system [4]

τ v̇ = αz(βz(g− y)− v)+ f , (1)

τ ẏ = v, (2)

where αz and βz are positive constants determined by de-
velopers and τ is a timescaling parameter. f is a nonlinear
forcing term which determines the properties of a trajectory
to a very large extent.

For discrete movement primitives, the term g in Eq. 1
denote the target position. The forcing term f can be chosen
as

f (s) =
∑

n f s
i=1 ψi(s)ωi

∑
n f s
i=1 ψi(s)

s(g− y0), (3)

where y0 is the start position, n f s denotes the number of
basis functions and ψi(s) are Gaussian functions expressed
by

ψi(s) = exp(−hi(s− ci)
2), (4)

where the terms hi and ci denote the width and center of the
ith Gaussian function, respectively. The variable s is a phase
term to make the dynamical system temporal invariant and
is driven by the canonical system [4]

τ ṡ =−αss, (5)

where αs is a positive constant.
For rhythmic movement primitives, the term g in Eq. 1 can

be interpreted as an anchor point of a periodic trajectory. The
forcing term f will be replaced by

f (θ ,r) =
∑

n f s
i=1 φi(θ)ωi

∑
n f s
i=1 φi(θ)

r, (6)

where the term r is an amplitude signal which could be
adjusted online, and Gaussian functions are formulated as

φi(θ) = exp(hi(cos(θ − ci)−1)), (7)

where the term θ ∈ [0,2π] denotes the phase angle of the
movement primitive, and the following canonical system is
utilized to replace Eq. 5

τθ̇ = 1, (8)

In the above analysis, weighting factors ωi in both Eq. 3
and Eq. 6 can be learned via a locally weighted regression
(LWR) algorithm [17]. According to [4], the terms ci and
hi in Eq. 4 and Eq. 7 can be determined by the requirement
that the Gaussian functions should be evenly distributed with

respect to time, and the constants αs and βz are related to
αz by βz = αz/4 and αs = αz/3. As a result, the constant
αz and the number of Gaussian functions n f s are left to
be determined, which vary with trajectories and will affect
the learning results. As has been mentioned above, it is
inconvenient and even impossible for non-technical robot
users to determine the appropriate values of these parameters.
In this paper, we try to obtain optimal values of these
parameters automatically.

B. Parameters Optimization

Bayesian optimization [16] has been proved to be an
efficient optimization approach and has been widely utilized
in machine learning [18] and robotics [19], so it is chosen
to obtain optimal parameters in our research.

Usually, positions of several dimensions will be recorded
in a real demonstration process, and each dimension will
be matched with a transformation system. Without losing
generality, we choose an one-dimensional trajectory as an ex-
ample. The demonstration trajectory is denoted by ydemo(t).
Velocity ẏdemo(t) and acceleration ÿdemo(t) are obtained by
taking derivatives with respect to time. The goal of learning is
set to definitely repeat the demonstrated motion. The trajec-
tory learned by DMPs is represented by ydmp(t), ẏdmp(t) and
ÿdmp(t). The correct pattern with optimal parameters should
repeat the goal trajectory with the least deviation, so the cost
function is defined as

ε = k1εp + k2εv + k3εa, (9)

where ki (i = 1,2,3) are positive constants,

εp =
t=tend

∑
t=tstart

(|ydemo(t)− ydmp(t)|), (10)

εv =
t=tend

∑
t=tstart

(|ẏdemo(t)− ẏdmp(t)|), (11)

εa =
t=tend

∑
t=tstart

(|ÿdemo(t)− ÿdmp(t)|), (12)

denote the learning deviations caused by position, velocity
and acceleration, respectively. The values of constants ki
(i = 1,2,3) will be further discussed in section IV. After
the Bayesian optimization process finishes, the least value
of ε and corresponding optimal parameters (αz and n f s) and
weighting factors (w) will be obtained, that is, the DMPs
representation of the demonstration is determined.

C. Pattern Analysis

Discrete movement primitives are used for trajectory learn-
ing of point-to-point reaching movements (such as a pointing
motion), while rhythmic movement primitives are used for
that of periodic tasks (such as drumming tasks). These two
kind motions should be clearly distinguished and fitted by
different models. So it is of great importance to analyze
whether a trajectory should be considered as discrete or
rhythmic.
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Fig. 2: Task of cleaning the whiteboard

As has been mentioned above, two requirements must be
satisfied for a demonstration to be considered as a periodic
movement: (1) all the point values should appear more than
once; (2) all the maximum values and minimum values
should be equivalent or have similar values, respectively.
Moreover, according to the research on DMPs presented in
[4], topologically similar trajectories tend to be fit by similar
weighting vector w, so the set of parameters can be applied
to recognize similar trajectories. The recognition criterion is
calculated by

rab =
wT

a wb

|wa||wb|
, (13)

where wa and wb denote vectors formed by the weight
parameters of the two trajectories.

A learned motion will be generalized to new situations in
future applications. To verify the generalization capability of
the representation in advance, it is ”virtually” generalized to
several new situations. The word ”virtually” here means that
we just obtain generalized trajectories through numerical cal-
culation and will not perform the trajectories with real robots.
Then, the generalized trajectories will be fit to the candidate
model. We assume the vectors formed by weighting factors
of the original and a generalized trajectory are denoted by wo
and wg, respectively. The recognition result rog is calculated
with Eq. 13 using wo and wg. If all the errors between rog
and 1 is smaller than a prescribed value, the candidate model
is definitely considered as the correct model. Furthermore,
the corresponding learning model with optimal parameters
will be applied to represent the demonstrated motion for
future applications. Conversely, the generalization ability of
the representation is not guaranteed and should be given
further consideration.

III. EXPERIMENTS

Two tasks are chosen as examples to illustrate the efficacy
of the proposed method: clean the whiteboard and stack
boxes. All the weighting constrants ki (i = 1,2,3) in Eq.
9 are set to 1 in the two experiments. In order to achieve
better learning result, the original trajectory is smoothed via
a second order Butterworth filter [20]. Demonstration data
is recorded by an Intel RealSense D435 depth camera at a
frequency of 30Hz and is transformed into 1000Hz via spline
interpolation. Limits of parameters for Bayesian optimization
are set as αz ∈ [0.01,50],n f s ∈ [2,200].

Fig. 3: Demonstration of cleaning the whiteboard

1 

2 

x 

y 

O 
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Fig. 4: Ways to wipe words off the whiteboard

A. Clean the Whiteboard

A six-dimensional robot is shown how to wipe the words
off the whiteboard (Fig. 2). An AprilTag visual fiducial
[21] is attached to the eraser used for demonstration, and
the depth camera used to record the position of the eraser
is mounted just on the top of the whiteboard. Since the
orientation and the position along the upright direction of
the eraser almost keep constant during the task, only the
position information along the x-axis and y-axis will be used
for trajectory learning. Another eraser is used for robot oper-
ation. Several demonstrations are performed and screenshots
of one of the demonstration processes are shown in Fig.
3. As shown in Fig. 4, demonstrations can be performed
in two modes, of which the properties are shown in Table
I. Different demonstration modes would lead to different
pattern of movements in the same directions. The area of
words for demonstration is different from that for real robot
operations, so the learned skills must be generalized to new
situations.

In this experiment, 5 demonstrations are performed in
each mode. For the purpose of analysis, starting points of
demonstrations with the same method are transform to the
same position, and the same number of sample points are
extracted from original demonstrations. Table II displays the
pattern analysis results and optimal values of corresponding
parameters in the form ”Pattern(αz,n f s)” (”D” and ”M” are
short for ”Demonstration” and ”Mode”, respectively).

TABLE I: Properties of different demonstration modes
`````````Dimension

Mode Mode1 Mode2

x Discrete Rhythmic
y Rhythmic Discrete
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TABLE II: Pattern analysis results and optimal parameters -
Clean the Whiteboard
PPPPPPD

M Mode1 Mode2

1 x Discrete (3.17, 138) Rhythmic (0.57, 199)
y Rhythmic (23.98, 196) Discrete (4.28, 199)

2 x Discrete (12.38, 200) Rhythmic (0.01, 199)
y Rhythmic (10.15, 178) Discrete (19.86, 157)

3 x Discrete (0.01, 200) Rhythmic (2.63, 199)
y Rhythmic (9.63, 196) Discrete (6.05, 183)

4 x Discrete (14.71, 200) Rhythmic (0.02, 199)
y Rhythmic (5.08, 179) Discrete (3.22, 188)

5 x Discrete (14.84, 199) Rhythmic (12.11, 200)
y Rhythmic (0.01, 200) Discrete (18.32, 199)

The proposed method has successfully learn correct rep-
resentations with proper parameters of all demonstrations.
Take the first demonstration of each mode as examples. The
learned behaviors and generalized movements of the robot
in real situations are displayed in Fig. 5 and Fig. 6 (”App”
stands for information in real applications of experiments).

0.0 0.1 0.2 0.3 0.4-0.5

-0.4

-0.3
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0.0

Y(
m)

X(m)

 Filter
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0.1

0.2
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X(m)

 Filter
 DMP
 App
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Fig. 6: Resultant 2-dimensional trajectories of wiping
demonstrations in different modes. (a) denotes learning tra-
jectories of mode1, (b) represents learning trajectories of
mode2

B. Stack Boxes

In order to further explain the application of the pro-
posed method, the robot is shown how to stack a cubic
box on another (Fig. 7), then it is required to stack four
cubic boxes together in a specific order. As shown in Fig.
8, several demonstrations with different configurations of
starting positions and goal positions are performed, and
each demonstration has been feed to the proposed learning
method. In this experiment, positions of the moving box
along three axes (x, y, z) are recorded and used for trajectory
learning. Motions along all the three axes are judged as
discrete movements and optimal values of parameters are
shown in Table III. Fig. 9 displays screenshots of one of the
experiments.

IV. DISCUSSIONS
A. Pattern Analysis Discussions

This paper presents a method to automatically determine
the pattern of a movement before feeding it to a DMPs-based
learning framework. To discuss the situations where incorrect
patterns have been used to match trajectories, we make two
assumptions which are opposite to situations in the Clean

Fig. 7: Demonstration of stacking boxes

Fig. 8: Initial configurations of demonstrations

the Whiteboard task. Firstly, in the first mode, the trajectory
of the x-dimension is treated as rhythmic while that of the
y-dimension is treated as discrete. Secondly, in the second
mode, the trajectory of the x-dimension is treated as discrete
while that of the y-dimension is treated as rhythmic. The
learning and generalization results are displayed in Fig. 10
and Fig. 11 (”GDMP” denote the trajectories of generalized
trajectory with incorrect pattern of DMPs). The resultant task
trajectories are shown in Fig. 12 (”GT” and ”DT” denote the
generalized trajectory and desired trajectory, respectively).
According to the results, several conclusions could be de-
rived: (1) Even incorrect learning pattern can repeat the
demonstration behavior; (2) The generalized trajectory of
one dimension may look like geometrically similar to the
demonstration more or less, but they are numerically quite
different; (3) The resultant multi-dimensional trajectories are
far away from the desired trajectories for completing the
tasks; (4) Incorrect pattern judgements will result in failures
of tasks in new situations.

B. Cost Function Discussions

In the cost function utilized in Eq. 9, weighting factors
ki (i = 1,2,3) are all set to one. In reality, different values
can be assigned to these constants according to the control
inputs of robots. For position, velocity, and torque controlled
robots, relatively larger values could be assigned to k1, k2,
and k3, respectively.

C. Demonstration Data Discussions

To alleviate the position noise caused by the depth camera,
the input trajectories used in this research are obtained by

Fig. 9: Stack boxes along learned trajectories
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Fig. 5: Learning and real application results of wiping demonstrations in different modes. (a) and (b) denote results of x-
dimension and y-dimension demonstrated in mode1, respectively, (c) and (d) represent results of x-dimension and y-dimension
demonstrated in mode2, respectively
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Fig. 10: Learning results of mode1 matched by incorrect
pattern. (a) x-dimension learned with rhythmic movement
primitives, (b) y-dimension learned with discrete movement
primitives

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Po
siti

on(
m)

Time(s)

 Filter_x
 DMP_x
 GDMP_x

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Po
siti

on(
m)

Time(s)

 Filter_y
 DMP_y
 GDMP_y

(b)

Fig. 11: Learning results of mode2 matched by incorrect
pattern. (a) denotes results of x-dimension learned with
discrete movement primitives, (b) represents results of y-
dimension learned with rhythmic movement primitives

TABLE III: Optimal parameters - Stack Boxes
hhhhhhhhhhhDemonstration

Parameter x y z

1 αz 0.01 7.49 4.00121
n f s 121 200 177

2 αz 0.98 2.71 11.69
n f s 145 124 121

3 αz 3.69 0.01 5.24
n f s 117 105 200

4 αz 0.01 1.40 0.09
n f s 143 134 159

5 αz 0.90 11.50 41.41
n f s 146 199 200

6 αz 1.86 11.64 12.64
n f s 200 199 199

7 αz 8.17 0.01 0.01
n f s 165 179 169

8 αz 2.16 12.81 9.54
n f s 200 199 200

filtering the original data. The original data can also be
directly used as inputs. The value of the cost function is
relatively much larger, but the proposed method can still
make a correct decision of the pattern of the movement and
succeed in learning the skill. In addition, A smooth trajectory
can also be acquired from multiple demonstrations using
Gaussian Mixture Model (GMM) [22].

Trajectories in this paper are either discrete or rhythmic.
Trajectories which are composed of both rhythmic and
discrete parts may not get expected results with the presented
methodology. As for the DMP based recognition method
utilized in this research, which is represented by Eq. 13, the
recognition method based on Hidded Markov Model (HMM)
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Fig. 12: Resultant 2-dimensional trajectories of wiping
demonstrations learned with incorrect pattern. (a) denotes
resultant trajectories of mode1, (b) represents resultant tra-
jectories of mode2

may also be used [23].

V. CONCLUSIONS AND FUTURE WORK

To make it easier for a non-technical robot user to
programme a robot by demonstration, we present a novel
methodology to obtain optimal parameters and pattern in-
formation of DMPs for unknown trajectories. The proposed
method builds a direct bridge from human demonstrations
to robot operations. The only thing left for a robot user to
do is to provide demonstrations. Optimal parameters of both
discrete and rhythmic dynamical systems can be obtained via
Bayesian optimization. To ensure the reliability of learned
model to be generalized to new situations in the future
applications, virtual generalization behaviors are performed.
The efficacy of the method is verified via experiments.
Judging from the experiment results presented in this paper,
the proposed method can obtain optimal parameters of both
discrete and rhythmic DMPs and achieve a high success
rate of pattern judgement. The method can also be used
together with GMM to learn from multiple demonstrations
and with movement segmentation methods [12] to learn
complex tasks. Trajectories in each dimension are analyzed
individually in this paper. Sometimes, more information
is hidden in highly coupled multi-dimensional trajectories,
which will be considered in our future research.
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