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Abstract— Dexterous manipulation of objects in virtual envi-
ronments with our bare hands, by using only a depth sensor and
a state-of-the-art 3D hand pose estimator (HPE), is challenging.
While virtual environments are ruled by physics, e.g. object
weights and surface frictions, the absence of force feedback
makes the task challenging, as even slight inaccuracies on finger
tips or contact points from HPE may make the interactions
fail. Prior arts simply generate contact forces in the direction
of the fingers’ closures, when finger joints penetrate virtual
objects. Although useful for simple grasping scenarios, they
cannot be applied to dexterous manipulations such as in-
hand manipulation. Existing reinforcement learning (RL) and
imitation learning (IL) approaches train agents that learn skills
by using task-specific rewards, without considering any online
user input. In this work, we propose to learn a model that maps
noisy input hand poses to target virtual poses, which introduces
the needed contacts to accomplish the tasks on a physics
simulator. The agent is trained in a residual setting by using a
model-free hybrid RL+IL approach. A 3D hand pose estimation
reward is introduced leading to an improvement on HPE
accuracy when the physics-guided corrected target poses are
remapped to the input space. As the model corrects HPE errors
by applying minor but crucial joint displacements for contacts,
this helps to keep the generated motion visually close to the
user input. Since HPE sequences performing successful virtual
interactions do not exist, a data generation scheme to train
and evaluate the system is proposed. We test our framework
in two applications that use hand pose estimates for dexterous
manipulations: hand-object interactions in VR and hand-object
motion reconstruction in-the-wild. Experiments show that the
proposed method outperforms various RL/IL baselines and the
simple prior art of enforcing hand closure, both in task success
and hand pose accuracy.

I. INTRODUCTION

Capturing and transferring human hand motion to an-

thropomorphic hand models in physics-embedded environ-

ments, is the cornerstone of applications that require realistic

interactions in VR/AR. To capture hand motion in such

applications, most previous works resort to expensive and

intrusive motion capture (mocap) systems, such as gloves

[1], exoskeletons and controllers [2]. In this work, we aim

to avoid such systems and explore a solution that allows us

to perform dexterous manipulation actions by only using an

estimate of the human hand pose.

Hand pose estimators (HPEs) typically produce 3D lo-

cations of keypoints of a human hand model. Given the

difference between the human hand and the hand model,

the design of a function mapping an input hand pose to the

model’s parameters is needed, a process known as inverse

kinematics or motion/pose retargeting. Designing a function
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Fig. 1. Mapping an estimated hand pose from a user, to a physically
accurate virtual hand model is challenging. Simple pose retargeting func-
tions fail due to the domain gap, contact physics, pose prediction errors and
noise. Our method observes both the imperfect mapped hand pose from the
user input, middle row, and the state of the simulation and produces a small
residual correction that completes the task. To train our system, we generate
input hand poses, top row, with a new data generation scheme that builds
upon a mocap dataset [1] and a large public hand pose dataset [3]. Note
that the depth camera is pointing to the human hand from the ground. We
invite the reader to watch the attached video.

that produces a visually similar output is relatively straight-

forward, and hand-engineered [4], [5], data-driven [6], [7]

or hybrid [5], [8] solutions are available. However, when

interacting with the simulated physical environment, visual

resemblance between input and target is not enough, given

that one needs to consider both contact physics between

the hand and object and input noise coming from the hand

pose estimator as shown in Fig. 1. Commercial solutions [4],

[9] circumvent these problems simply by ignoring physics

laws and ‘attracting’ the hand towards the object. Other

approaches model the underlying contact physics by es-

tablishing relationships between the virtual penetration of

the hand on the object [10]. Such solutions, despite being

effective for some simple grasping actions, do not produce

physically realistic motion in the target domain. Also, the

inferred contact force will depend directly on the noisy pose

estimate, making it difficult to apply the precise forces and

subtle movements required in some dexterous tasks.

Related to our work, [11], [12] track and reconstruct

3D hand-object interactions using simple physics constraints

such as contact and mesh penetration. In contrast, we gen-

erate complete physics-aware sequences using a physics

simulator, which can actually succeed in the task of interest.

Related to us, and aiming to generate physically plausible

sequences from vision, [13], [14] use RL for full body
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poses. Different to [13], which aims to teach an agent to

autonomously perform by observing a single reconstructed

and filtered video, our work aims to correct noisy user

hand poses ‘as they come’, and assist the user in a similar

setting to shared autonomy [15]. In contrast to [14], which

aims to estimate the ego-pose of the humanoid by indirectly

observing from their character point of view, we directly

observe user’s hand motion and assist in achieving the task

while generating virtual poses similar to the visual input.

We propose a system, illustrated in Fig. 2, that observes an

imperfect user input and refines it in order to accomplish the

manipulation task. We define the user input, Section III-A,

as an estimated hand pose mapped by an inverse kinematics

or pose retargeting function. To achieve this, we introduce a

residual agent that acts on top of the user input in Section

III-B. We assume that the user input is similar to the optimal

action –modern HPEs present average joint errors in the

range of 7 to 15 mm [16]– and only require a correcting stage

to produce the correct kinematics. In order to automatically

learn this correction without making any assumptions on the

underlying contact physics, we train the residual agent using

reinforcement learning (RL) in a model-free setting [17], [18]

within an accurate physics simulator [19]. To avoid unnatural

motion typically present under RL framework [1], our system

builds upon recent work in adversarial imitation learning (IL)

[20], [21], that uses a discriminator to encourage the policy to

produce actions similar to trajectories from a dataset captured

using a mocap glove [1]. Unlike prior arts [4], [9], [10],

our method enables dexterous manipulations e.g. in-hand

pen manipulation or picking a coin. The proposed residual

agent is also learned by the 3D hand pose estimation reward,

improving HPE accuracy when the physics-guided corrected

target poses are re-mapped to input space. These objectives

are presented in Section III-B.1.

To train such a framework, we need continuous intended

action sequences of noisy estimated hand poses, as well as

some successful manipulation actions obtained by mocap

data. It is difficult to collect such HPE sequences in an

online fashion, because users tend to stop their motions in

the middle of the tasks when they fail. We first explore

generating noisy input sequences by adding random noise

to the ground-truth mocap data. To circumvent the gap

between the synthetic noise and the real structured noise

coming from HPE, we propose, in Section III-C, a data

generation approach which, given a dataset of successful

manipulation sequences in the virtual space [1], finds a

ground-truth hand pose and depth image that is most likely

to have generated such action, by querying a public large

scale hand pose dataset [3]. Using this pipeline we conduct

experiments on two potential applications of our framework.

The first one, Experiment A, appears in Section IV-A and

it studies a typical VR scenario where the user interacts

with the environment with their bare hands in mid-air and

a hand pose estimator. In the second one, Experiment B in

Section IV-B, we aim to reconstruct in a physics simulator

hand-object RGBD sequences captured in-the-wild with the

use estimated hand poses and initial object pose estimates.

In various experiments, our proposed method outperforms

RL/IL baselines, and some relevant arts.

II. RELATED WORK

3D hand pose estimation consists of estimating the 3D

locations of hand keypoints given an image. A main part of

the success in the field comes from the use of depth sensors

[6], [22], [23] and deep learning [24], [25], [16], while

recent successful approaches exploit single RGB images as

input [26], [27]. Note that most current hand pose estimators

only output 3D joint locations than angles, making the

mapping between locations and angles not trivial; however

there is some promising work on estimating 3D hand meshes

that could make this problem easier [28], [29].

Vision-based teleoperation. Traditionally, teleoperation

has been limited to mapping the human hand to the (physical

or virtual) robot hand by using contact devices such as

tracking sensors [30], exoskeletons [31] and gloves [32].

Some vision-based approaches exist [33], [34], [35], [5], [8],

[36] but are limited to simple grasping actions. [5] proposes

a retargeting method between depth images and a robotic

hand model, however the mapping function is purely based

on hand appearance ignoring objects. [8] combines inverse

kinematics with a PSO function that encourages contact

between object and hand surfaces. We share with [8] the

aim of achieving realistic interactions, but simply forcing

contact is not enough for dexterous actions such as in-hand

manipulation. [36] introduces a HPE tailored to a robot

hand model. Given that our framework is HPE-agnostic,

both works are complementary and could to produce a solid

system if combined. In the VR and graphics community,

perhaps the simplest approach for tackling such problems,

and as adopted by commercial products such as Leap Mo-

tion [4] or Hololens [9], is to recognize the ongoing hand

gesture, e.g. swipe or pinch, and then trigger a prerecorded

output [37], [38], [39]. However, such approaches produce

artificial motion that often deviates significantly from the

user input. Similarly, the interaction engine by Leap Mo-

tion [4] recognizes the gesture and ‘attracts’ the object to

the hand producing an artificial ‘sticking’ effect. Our method

corrects the user input slightly, but only enough to achieve

the task, and importantly it respects the laws of physics.

Other works use a priori information about the hand and the

scene, by synthesizing a grasp from a predefined database

[40], [41], [42], [43], [44], limited to a specific set of objects

and interactions, and very sensitive to uncertainty about

the environment. Some works attempt to model the contact

physics [45], [46], [47], [48], [49], [10] to infer contact forces

between the hand and objects, by measuring, for example, the

penetration of the user hand into the object mesh. The main

problem of such approaches is that the computed contact

force relies on high-precision hand pose estimation, and the

method tends to apply forces that do not necessarily transfer

to the real world without unexpected consequences.

Physics-based pose estimation. [11] uses a physics simu-

lator within an optimization framework to refine hand poses,

following earlier generative and discriminative model fitting

work [50], [51], [52], [53]. [12] presents an end-to-end

deep learning model that exploits a contact loss and mesh

penetration penalty similar to [54], [51], [11], [55], for

plausible hand-object mesh reconstruction. These estimators

are subject to simple physical constraints such as contact and
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mesh penetration and deal with single-shot images. In [14],

physically-valid body poses are estimated and forecasted

from egocentric videos using RL. Their aim is to estimate

the ego-pose of the humanoid by indirectly observing from

their character point of view using similar rewards as [13],

discussed below.

Motion retargeting and reinforcement learning. Our

problem shares similarities with full body motion retargeting

[56], particularly with methods that consider accurate physics

on the target space and train control policies using RL [57],

[58], [59], [60], [13]. [58], [59], [60] propose an RL approach

to learn skills from a reference mocap motion. [13] extends

such work to deal with reference motion from a body pose

estimation step that is cleaned and post-processed to mimic

the motions, as in [58]. The main difference of our work is

that we perform online predictions given a noisy user input

instead of learning to mimic a skill in an offline fashion.

For this reason, we embrace the noisy nature of our problem

and propose the residual learning guided by the hand pose

estimation reward and the noisy data generation scheme.

Robot dexterous manipulation and reinforcement

learning. For attempting to learn robotic manipulation skills

without user input, and using both RL and IL, we highlight

three recent works [21], [1], [18]. We share with [21] a

similar adversarial hybrid loss, however our model has signif-

icantly more degrees of freedom.We build upon [1]’s simula-

tion framework, using their dataset of glove demonstrations,

and extend the environments to deal with vision-based hand

pose estimation. We share with [18] the ambition of learning

physically accurate dexterous hand manipulations, but more

in physics embedded VR space using user’s hand via state-

of-the-art hand pose estimator.

Residual policy learning. We discuss two recent papers

proposing a similar residual policy idea [61], [62]. We

share with these works the residual nature of our policy

and the idea that improving an action, instead of learning

from scratch, significantly helps the exploration problem of

RL and tends to produce more robust policies. The main

difference from our work is that our residual action works

on top of a user input instead of a pre-trained policy, i.e. our

policy observes the action taken by the user and the world

and then acts accordingly, instead of just observing the state

of the world, which could lead to a discrepancy between the

user’s intention and the agent. Other differences include the

nature of the problem, the complexity of the action space,

the combination with adversarial IL, and a problem setting

similar to shared autonomy [15].

III. PROPOSED FRAMEWORK

A. Inverse kinematics: from human hand pose to virtual pose

Given the user’s estimated hand pose xt, which consists of

the 3D locations of 21 joints of a human hand [3] on a given

visual representation φt at time step t, we aim to obtain a

visually similar hand posture zt in our virtual model. This

requires estimating parameters at, defined as the actuators or

actions of the virtual hand model which determine the target

angle between hand joints with the help of PID controllers.

Inverse kinematics (IK) refers to the task of computing

rotations at such that the virtual hand pose zt is equivalent

to the user’s hand pose xt. Note that zt belongs to a different

domain to xt, but it can be measured by carefully placing

sensors in the virtual hand model. This mapping from pose

to rotations, κ, can be manually designed or automatically

learned, for example with a supervised neural network when

input-output pairs are available, and can be written as:

at = κ(xt(φt)). (1)

For simplicity, we often refer to κ(xt(φt)), in the action

space, as the user input, in contrast to user’s estimated hand

pose xt, in the pose space. IK is inherently an ill-posed

problem, since depending on how different the virtual and

human models are, the target pose zt can potentially be

reached by multiple at’s, or there may not be a solution

at all. This problem becomes even more aggravated when

the input xt is noisy, which is the nature of a hand pose

estimator. We describe our residual approach to deal with

this imperfect input next.

B. Residual Hand Agent

We now describe how to train the residual controller,

which acts upon the output of the above IK function. Due to

both the imperfect mapping between the human kinematics

and virtual kinematics, and the noise introduced by the hand

pose estimator, we assume that the user input κ(xt(φt))
produces actions that are close to optimal, but not sufficiently

good to succeed in the task of interest. As an additional

requirement for optimal action predictions, the temporal

nature of our sequences means that a small early mistake can

later have a catastrophic effect due to compounding errors

that propagate to subsequent simulation stages. The residual

controller introduces a residual action ft, which is a function

of κ(xt(φt)), the current simulation state st and the visual

representation φt, which can be either an image or extracted

visual features. Those terms are combined as follows:

at = κ(xt(φt))− ft(st, κ(xt(φt)), φt). (2)

In order to not deviate from the user input significantly,

we limit the residual action f to be within a certain zero-

centered interval. We formulate the learning of the residual

policy as a RL problem, where an agent interacts with a

simulated environment by following a policy πθ(f |s, κ, φ)
parametrized by θ, which in our case is a neural network.

The state s includes the current information tailored to

every task of the simulation environment, such as the relative

positions between the target object and the virtual hand

model, the model’s velocity, etc. At each time step t the

agent observes st, κ(xt(φt) and φt, samples an action ft
from πθ, and an action at is applied to the environment.

The environment moves to the next state st+1 sampled

from the environment dynamics, which we assume to be

unknown. A scalar reward rt quantifies how good or bad

this transition was, and thus our goal is to find an optimal

policy that maximizes the expected return, defined as J(θ) =

Eτ∼pθ(θ)

[

∑T

t=0 γ
trt

]

, where pθ(τ) is the distribution over

all possible trajectories τ = (s0, κ(x0), φ0, f0, s1, ...) follow-

ing the policy πθ. The term
∑T

t=0 γ
trt represents the total

return of a trajectory for a horizon of T time steps and a

discount factor γ ∈ [0, 1]. In our problem, T is variable
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Fig. 2. Framework training overview. During training, the residual agent performs actions that aim to correct the user input, and receives feedback
from both the simulator and a discriminator. The discriminator indicates how much the actions resemble expert human actions from a mocap dataset [1],
whilst the simulator allows us to generate several samples of rich physics simulation and to measure the resemblance between input and virtual poses. To
train our framework in the absence of ground-truth pairs hand poses and actions, we can generate estimated hand poses by finding images on a large hand
pose dataset [3] that are likely to have generated the actions from the mocap dataset. Once we find these samples, we pass them through a hand pose
estimator and an inverse kinematics or pose retargeting function to generate user input.

depending on the length of the hand pose input sequence.

State and rewards details can be found in the Appendix.
To optimize θ several methods can be used, however in this

work we focus on a popular policy gradient approach proxi-

mal policy optimization (PPO) [17] due to its recent success

on learning dexterous policies without user input [18]. This

approach optimizes J over θ to maximize the return. The

gradient of the expected return ∇θJ(θ) is estimated with

trajectories sampled by following the policy, and learns both

a policy network and a value function, which estimates the

expected return when following the policy.
1) Reward function: The total reward function rt that

guides the framework learning process is defined as:

rt = ωtaskrtaskt + ωilrilt + ωposer
pose
t , (3)

where ωtask, ωil and ωpose are weighting factors.
a) Task-oriented reward: rtaskt : it is tailored for each

environment and guides the policy towards desirable be-

haviours in terms of task accomplishment, with short-term

rewards such as getting close to the object of interest, and

long-term rewards such as opening the door (see Appendix).
b) Imitation learning reward: rilt : Policies learned with

only RL tend to produce unnatural behavior: they are effec-

tive to accomplish the task of interest, but produce actions

that a human would never do [1]. To encourage action

sequences that more closely resemble expert data, we add

the following adversarial IL reward function similar to [21]:

rilt = (1− λ) log(1−Dψ(st, at)), (4)

where Dψ is a score quantifying how good an action is,

given by a discriminator with parameters ψ. To include this

objective in our framework, we use a min-max objective [20]:

min
θ

max
ψ

EπE
[logDψ(s, a)] +Eπθ

[log(1−Dψ(s, a))], (5)

where πE denotes an expert policy generated from demon-

stration trajectories. This objective encourages the policy πθ
to produce actions ft that correct the user input κ(xt(φt)),
generating pairs of (st, at) that are similar to those of an

expert. In our framework, we obtain D = (si, ai)i=1...N from

[1], which used a data glove and a tracking system [32] to

capture noise-free sequences.

c) 3D hand pose estimation reward: rpose: The reward

terms introduced above can lead to virtual poses zt, that

diverge from the pose depicted on the user input image,

particularly if the hand pose estimator fails due to object

occlusion. If we have access to annotated ground-truth hand

poses x̄t during training, we can introduce an additional

reward that encourages the policy network to produce actions

that visually resemble the user pose and is defined as:

r
pose
t = −

21
∑

j

||zjt − x̄
j
t ||2, (6)

where z
j
t and x̄

j
t denote the 3D position of the j-th joint of

the human and model respectively.

C. Data generation scheme

If we examine Eq. 2 we observe that, to train our residual

policy, we need a dataset of estimated hand poses {xt} de-

picting natural hand motion that would produce a successful

interaction if the system was perfect. We could think of

recording hand pose sequences by asking users to perform

the action ‘as if it was successful’, but given the temporal

dependency of the problem we would be acquiring data

somewhat different from the true distribution.

Our idea consists of using a mocap dataset which contains

successful sequences of state-action pairs and find hand

images that could have produced these actions by querying

a 3D hand pose dataset. For this approach to work, a

dense and exhaustive 3D hand pose dataset in terms of

articulations and relative camera-hand viewpoints is needed.

We use BigHand2.2M [3] as hand pose dataset and the

dataset introduced in Rajeswaran et al. [1] as mocap dataset.

We first measure the virtual poses {zt} generated by the

actions by placing virtual sensors and a virtual camera.

Given the sequences of virtual poses, we retrieve the closest

ground-truth poses in a 3D hand pose dataset. We tried

different representations and query functions for retrieval,

but got the best results by retrieving similar viewpoints and

later refining by the distance of aligned and palm-normalised

joint coordinates. Once the matches are found, we retrieve

their associated image and compute estimated hand poses by

passing the images through a 3D hand pose estimator.
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Fig. 3. Training curves on ‘opening door’ for our approach and baselines (a). (b) Qualitative ablation study on reward function (top) Our agent with
only task reward rtask

t
and (bottom) adding ril

t
on the same input sequence with equal weights. (c) Resulting contact forces for in-hand manipulation, ‘give

coin’ and ‘pour juice’. For in-hand manipulation, approaches maximizing contact cannot accomplish the task.

IV. EXPERIMENTS1

A. Performing dexterous manipulations in a virtual space

with estimated hand poses in mid-air

In this experiment we evaluate our framework when we

have access to a glove-recorded mocap dataset [1] with

successful expert trajectories and we use our data generation

scheme. As HPE we use [63] and to train and retrieve images

with particular poses we use BigHand2.2M dataset [3], which

was designed to densely capture articulation and viewpoint

spaces in mid-air and in an object-free setup. Because of

the absence of object occlusions in BigHand2.2M, we drop

rpose and do not feed visual features to the policy network.

We first evaluate our framework in a controlled setting where

we add synthetic noise to expert demonstrations and then we

evaluate it with real structured hand pose estimation noise.

Hand model: We use the ADROIT anthropomorphic plat-

form [1], consisting of 24 degrees-of-freedom (DoF) joint

angle rotations of Shadow dexterous hand, plus 6 DoF

defining the 3D position and orientation of the hand.

Simulator and tasks: We use the MuJoCo physics simulator

[19] and the four dexterous manipulation scenarios defined in

[1]: door opening, in-hand manipulation, tool use and object

relocation. In ‘door opening’ the task is to undo the latch

and swing the door open. In ‘in-hand manipulation’ the task

is reposition a blue pen to match the orientation of a target

pose (green pen). ‘Tool use’: the task consists of picking up a

hammer and drive the nail into a board. ‘Object relocation’

aims to move a blue ball to a green target location. Each

task is considered successful if the target is achieved with a

certain tolerance. There are about 24 mocap trajectories per

task and we split them in equal training-test sets.

Policy network: π is a (64, 64) MLP and the residual

policy is limited to 20% of the action space. The action

is modeled as Gaussian distribution with a state-dependent

mean and a fixed diagonal covariance matrix. We use the

same architecture for value function and discriminator.

Baselines. In this experiment we evaluate the following:

Inverse kinematics (IK): The action applied is based solely

on user’s input and we specify below its nature.

Reinforcement learning (RL): The agent observes both the

user input and the state in a non-residual way [17] without

1An Appendix with more results and implementation details can be found
in the project page: https://sites.google.com/view/dexres

access to demonstrations. Two versions: ‘RL - no user’ with

only task reward and ‘RL + user reward’ with additional

reward term encouraging following the user input.

Imitation learning (IL): The agent observes both the user

input and the state and it has access to demonstrations during

the adversarial learning process based on GAIL [20].

Hybrid learning: We combine the above baselines in a

similar way to our proposed algorithm without residual.

Implementation details, states and rewards definitions, and

training parameters can be found in the Appendix.

1) Overcoming random noise on demonstrations: The aim

of this experiment is to verify whether our framework can

deal with noisy observations and produce useful residual

actions. In this scenario we have total control on the amount

and nature of the noise allowing us to dissect the results. In

this experiment the user inputs are the expert successful ac-

tions recorded using a mocap glove from [1] on the ‘opening

door’ environment, thus we can assume they are free of noise.

We synthesize noise by adding a zero-mean Gaussian noise

with standard deviation σ radians to each actuator, on top of

the user input in both training and test trajectories. Note that

errors in a single actuator propagate through the linked joints

by forward kinematics. After training a policy for a certain

σ, we show its generalization to other values of noise on test

sequences in Table I. We observe that our residual agent is

able to recover meaningful motion up to a σtest of 0.20 rad

when similar magnitudes have also been observed in training.

The noisy user input can succeed a significant amount of

times alone provided that small changes, or changes in the

right direction, may not affect the overall success.

TABLE I

OUR APPROACH FOR DIFFERENT NOISE LEVELS IN TRAINING/TEST
σtest

σtrain 0.00 0.01 0.05 0.10 0.15 0.20

0.01 71.00 70.00 52.00 26.00 9.00 1.00
0.05 100.0 90.00 83.00 50.00 24.00 4.00
0.10 91.00 89.00 87.00 87.00 56.00 26.00
0.15 100.0 96.00 92.00 80.00 57.00 19.00
0.20 71.00 74.00 75.00 71.00 47.00 20.00

User input: 80.00 86.30 74.00 33.80 9.20 2.70

In Table II we show the performance of different baselines

for a fixed σ value of 0.05 rad for each environment. Two

results are reported: the task success on noisy sequences
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TABLE II

BASELINES FOR A FIXED AMOUNT OF NOISE ON TOP OF USER INPUT.

Door opening Tool use In-hand man. Object rel.

Method Train Test Train Test Train Test Train Test

IK 64.00 74.00 50.00 56.00 67.67 69.92 77.00 83.00
RL-no user 75.00 59.00 51.00 44.00 43.61 38.34 0.00 0.00
IL-no user 0.00 0.00 0.00 0.00 4.00 6.77 0.00 0.00
Hybrid-no res. 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00
RL+user reward 69.92 62.40 6.01 9.02 48.12 27.81 0.00 0.00
Hybrid+user rew. 0.00 0.00 56.39 33.08 9.02 7.51 0.00 0.00

Ours 81.33 83.00 61.00 58.00 90.97 87.21 49.62 16.54

generated from demonstration sequences that are only seen

during training, and the accuracy on an independent test

set. Some of the baselines do not succeed on some envi-

ronments, being consistent with the results reported by [1].

Furthermore, when training our residual policy, it converges

significantly faster than other baselines (see Fig. 3 (a)). For

instance, our policy converges after 3.8M and 5.2M samples

for door opening and in-hand manipulation, compared to

7.9M and 13.8M for RL baseline. In our RL framework

for our approach and baselines, 5M samples with network

updates are generated in about 12 hours on a single core

machine with a GTX 1080Ti, while RL alone baselines

require only. The reason for this faster convergence is the

help in exploration that the user input brings to the learning

process [62]. For the last scenario, ‘object relocation’, none

of our baselines nor our approach is able to correct the user

input and degrade its performance. We hypothesize that the

low result of PPO propagates to our algorithm and using

other optimization could help to recover the user input [1].

To conclude this experiment we perform an ablation study

to evaluate the impact of each RL and IL components of our

approach. Combining both leads to accomplishing the task

while keeping a motion that resembles the human experts

more closely (see Fig. 3 (b) and video). In terms of task

success, RL alone achieves 75.9% while IL alone 36.5%.

2) Overcoming structured hand pose estimation and map-

ping errors: In this experiment, we aim to verify that our

algorithm can also deal with the structured noise injected

via the hand pose estimator and the mapping function. We

generate the training data using our strategy described in

Section III-C. After creating the dataset, we also need to

design a mapping function from the hand pose to the virtual

model. Leveraging our data sampling strategy, we create

pairs of data (xt, at). Other settings remain the same.

Supervised IK baseline: We use these pairs to train a

function κ(xt) in a supervised setting. Our IK network is

a (64, 64) MLP trained with a regression loss. In Table III

we observe that this function alone is not enough although it

can achieve moderate success on the ‘door opening’ scenario

when ground-truth (GT, not noisy) poses are used.

In Table III the results of both the best performing

baselines in the previous experiment and our algorithm are

depicted. We show results for both ground-truth poses and

estimated (Est.) hand poses passed through IK. We observe

that our approach can achieve the task even when the

IK output is poor (‘in-hand’) and offers solid performance

when we observe better inputs (door). Using RL with user-

augmented reward improves the IK baseline on ‘in-hand’,

however it struggles when noise from hand pose estimator is

TABLE III

BASELINE ON STRUCTURED HAND POSE ERROR ON GROUND-TRUTH

(GT) AND ESTIMATED HAND POSES (EST.)

Door opening In-hand man.

Method (Training set) GT Est. GT. Est.

IK 49.62 27.81 0.00 20.30
RL - no user (GT) 98.49 76.69 13.53 25.56
RL - no user (Est.) 66.16 71.42 13.53 0.00
RL + user reward (GT) 0.00 0.00 45.86 32.33
RL + user reward (Est.) 0.00 0.00 0.00 12.03

Ours (Experiment A) 57.14 38.34 10.52 0.00
Ours (GT poses) 83.45 42.10 10.52 32.33
Ours (Est. poses) 85.95 70.67 20.33 57.14

added. ‘RL-no user’ performs well on ‘door-op’, however in

this baseline the virtual hand does not follow the user input

and acts independently, similarly to triggering a prerecorded

sequence. In Fig. 4 we show qualitative results on ‘in-

hand’ and in Fig. 3 (c) generated contact forces. Applying

our models trained on the previous experiment did not

perform well due to the different noise nature between both

experiments, motivating our data generation scheme.

Fig. 4. Qualitative results on ‘in-hand manipulation task’. (Middle)
estimated hand pose (Top) IK result (Bottom) Our result. Depth images
are retrieved using our data generation scheme.

B. Physics-based hand-object sequence reconstruction

In this experiment we test our framework on the challeng-

ing task of transferring hand-object interactions from the real

visual domain to a physically accurate simulation space. As

a testbed, we use the First-Person Hand Action Benchmark

(F-PHAB) [64], providing hand-object interaction sequences

with hand and object pose annotations. We select two differ-

ent manipulation tasks covering two extreme cases of power

and precision grasps: ‘pour juice from a carton to a glass’ and

‘give coin to other person’. Each task contains 24 annotated

video sequences from 6 different users and we use the 1:1

split of [64] for train-test data partition.

We recreate the real environment on the virtual space

by placing a virtual object that we initialise with the 6D

ground-truth pose. For the coin environment, we also place

a target box that simulates ‘the hand of the other person’. We

build the environments on MuJoCo and use the MPL hand

model that consists of 23 DoF + 6 DoF [32] and ωpose value

of 0.01. As 3D hand pose estimator we use DeepPrior++

[65], extracting visual features φt ∈ R
1024 from the FC2

layer; and trained on the full dataset following the same 1:1

protocol which yields an average test joint error of 14.54

mm. Note that in this setup we do not have access to expert

demonstrations, thus we cannot compute ril nor use our data
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(a) (b) (c) (d) (e)

Fig. 5. Qualitative results. Top row: a frame belonging to ‘pouring juice’ action from F-PHAB dataset and its reconstruction for different methods from
a fixed camera viewpoint. (a) RGB/depth image and estimated 3D hand pose. (b) IK function κ [8] on HPE. (c) Closing hand baseline on top of κ. (d)
Our approach without visual features and pose reward. (e) Our full approach, it produces a hand posture closer to the one depicted by the reference visual
hand motion. Bottom row: Qualitative result on a ‘give coin’ sequence. The task is achieved when the coin is placed on the other person’s hand (red box).

generation scheme. The rest of network architectures and

parameters are the same as in previous experiment.

Baselines: In this experiment we implement two baselines,

an IK function κ following [8] and a ‘closing’ baseline that

acts on top of κ and attempts to tighten the grasp or generate

more contact forces similar to [10].

Metrics: We use three different criteria to measure per-

formance. First, ‘task success’ measures the percentage of

the times that the interaction is successful on test sequences.

Epose measures the 3D hand pose error, in mm, by repro-

jecting zt to the input RGBD image space and comparing

to ground-truth annotations, which gives us a notion on how

similar the virtual posture looks compared to the actual visual

pose. T̄ measures the average length (in percentage over the

total length) of the sequence before the simulation becomes

unstable and the task is not completed successfully.

In Table IV we show quantitative results on ‘pour juice’

and ‘give coin’ actions. We observe that our approach is able

to accomplish the task while keeping a hand posture similar

to the visual input (qualitative results are shown in Fig. 5) and

perform better than all baselines at train and test time. We

observe that introducing the pose reward encourages a virtual

pose closer to the visual input. Note that the virtual model is

fixed in terms of bone lengths and kinematics and thus the

reprojected pose will have an error offset even if the mapping

was perfect. We show a successful example with generated

contact forces in Fig. 3 (c)). We observe a significant gap

between training and test results that is even more severe in

the ‘give coin’ scenario where all the baselines show poor

results in both training and test sets. Slight inaccuracies make

the light and thin coin fall and thus failing in the task. We

suspect that there are two main reasons for this. First, hand

pose estimation errors are more severe than in the previous

experiment and propagate through the hand model. Second

the small number of training sequences may lead our network

to overfit to the training set to some extent. This effect

could be relieved by recording more training data or some

data/trajectory augmentation technique. Note that the results

on training sequences are still meaningful in the problem of

offline motion reconstruction [13].

TABLE IV

HAND-OBJECT RECONSTRUCTION OF SEQUENCES IN-THE-WILD

Training Test

Method (Pour Juice) T̄ ↑ Epose ↓ Success ↑ T̄ ↑ Epose ↓ Success ↑

IK [8] 18.0 26.95 16.0 24.8 33.22 5.0
Closing hand 85.4 24.78 55.0 47.0 35.46 38.0
Ours w/o pose reward 97.4 26.82 84.0 52.0 37.88 47.0

Ours 98.2 25.43 93.0 59.6 33.15 65.0

Method (Give coin) T̄ ↑ Epose ↓ Success ↑ T̄ ↑ Epose ↓ Success ↑

IK [8] 9.2 24.90 0.0 11.5 25.93 0.0
Closing hand 55.4 28.44 25.0 70.2 33.70 28.57

Ours 95.5 24.3 80.0 92.1 25.30 83.3

V. CONCLUSION AND FUTURE WORK

We presented a framework that can perform dexterous

manipulation skills by simply using a hand pose estimator

without the need of any costly hardware. A residual agent

learns within a physics simulator how to improve the user

input to achieve a task while keeping the motion close to

the input and expert recorded trajectories. We showed that

our approach can be applied on two applications that require

accurate hand-object motion while using noisy input poses.

We believe this paper can inspire future work and it can

be extended in several different ways. For instance, making

the full framework end-to-end, where the gradients propagate

from the simulator to the hand pose estimator, is a promising

direction for physics-based pose estimation. For the second

application, it would also be interesting to add a 6D object

pose estimator in the loop [66]. Besides, generating synthetic

data to close the training loop has also potential, for instance

by fitting a realistic hand model in a similar way as in

[67] on top of mocap data or already trained policies [1].

This could also help to narrow, to some extent, the training-

test gap found in our experiments and make possible the

deployment of the system to receive poses in a stream in a

VR system and may prompt additional challenges. The study

of RL generalization to both in-the-wild scenarios and other

tasks is an open research problem. New results in these areas

would benefit the present work, because how to scale up the

number of tasks in the current framework is not clear.
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