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Abstract— This paper presents a trajectory planning algo-
rithm for person following that is more comprehensive than
existing algorithms. This algorithm is tailored for a front-wheel-
steered vehicle, is designed to follow a person while avoiding
collisions with both static and moving obstacles, simultaneously
optimizing speed and steering, and minimizing control effort.
This algorithm uses nonlinear model predictive control, where
the underling trajectory optimization problem is approximated
using a simultaneous method. Results collected in an unknown
environment show that the proposed planning algorithm works
well with a perception algorithm to follow a person in uneven
grass near obstacles and over ditches and curbs, and on asphalt
over train-tracks and near buildings and cars. Overall, the
results indicate that the proposed algorithm can safely follow
a person in unknown, dynamic environments.

I. INTRODUCTION

An important use-case for robotic platforms is transporting
heavy or otherwise difficult or dangerous payloads. Using a
person following algorithm as a control mechanism enables
an operator to intuitively guide the robot, hands-free, as
they themselves navigate through unknown dynamic envi-
ronments. To satisfy the terrain and payload requirements,
we select an autonomous all-terrain vehicle (AATV) as our
robotic platform (see Figure 1). To ensure the safe and
efficient behavior of this platform in unknown, dynamic
environments, the person following algorithm should have
all of the specifications listed in Table I and run in real-time.

Person following has been researched on a wide variety of
robotic platforms [1], including wheelchairs [2,3], unmanned
aerial vehicles [4], legged robots [5], and skid-steer platforms
[6]. While many of the person following algorithms tailored
for these platforms include subsets of the specifications in
Table I, an algorithm that includes all of them does not
currently exist.

The core functionality we desire is a person following
behavior (S1, Table I), but is not, by itself, sufficient for
safety in most realistic environments. There are examples
that demonstrate the effectiveness of PID controllers and
other tracking algorithms in relatively controlled environ-
ments like office buildings [7], but our use-cases demand
an ability to operate in locations with clutter and even
moving obstacles (S2, Table I). There is a need to handle
moving obstacles, because people or other vehicles may cut
in between the operator and the robot — assuming a static
environment would result in a miscalculation of the available
open space and potentially even a collision.

For safety, in addition to obstacle avoidance, it is also
necessary for our planning algorithm to be suitable for a
front-wheel steered vehicle (S3, Table I), like the ATV
platform selected for this research. Differential-drive vehicles

Fig. 1: Autonomous all-terrain vehicle (AATV) This
platform was used to collect all of the experimental results
provided in this paper.

are by far the most studied vehicle model for person follow-
ing [2, 3, 7–9]. However, unlike differential-drive vehicles,
front-wheel-steered vehicles do not have an ability to turn
in place and are instead bound by stricter, non-holonomic
constraints. These more complicated kinematics limit the
maneuverability of the robot, making it more difficult to
follow the person’s trajectory. Together, these considerations
motivate the need to generate vehicle-specific trajectories.

Developing a planning algorithm with S1-S3 would be a
step forward for person following algorithms. However, the
behavior of the vehicle controlled with such an algorithm
may not be safe or efficient. For safety, the vehicle may
unnecessarily collide with an obstacle if speed and steering
are not simultaneously optimized (S4, Table I). When speed
and steering are simultaneously optimized, the system can
reduce its speed to make tighter turns and is therefore more
responsive to obstacles [10, 11]. For efficiency, the control
system is likely to cause the vehicle to use excessive fuel and
induce excessive mechanical wear if the planning algorithm
does not incorporate these considerations, which can be
accomplished by including a term that minimizes the control

TABLE I: Planner Specifications

Specification Description
S1 person following behavior
S2 static and moving obstacle avoidance
S3 suitable for a front-wheel steered vehicle
S4 optimization of speed and steering
S5 minimum control effort
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Fig. 2: System Architecture. A diagram of information flow through our system.

effort (S5, Table I) [12–15].
The ultimate goal of this research is to develop a trajectory

planning algorithm with all of the specifications listed in
Table I. This paper uses a nonlinear model predictive con-
trol (NMPC)-based trajectory planner, which is a popular
approach for developing comprehensive trajectory planners
[10, 10, 13–17].

This paper makes the following contributions:
• Introduce an NMPC-based person following algorithm

with S1-S5.
• Evaluate the limits of the developed algorithm to control

the AATV in Figure 1 in a known, dynamic environ-
ment.

• Evaluate the developed algorithm to control the AATV
in an unknown environment.

The controller is one component of a larger system. This
paper starts by describing the system architecture (Section
II) to frame the context of the controller. Then, in Section
III, the mathematical formulation is described. Section IV
describes the experimental procedure used to evaluate the
system, and Section V discusses the results. Finally, Section
VI provides the conclusion.

II. SYSTEM ARCHITECTURE

The main contribution of this paper is a novel trajectory
planning algorithm, which is described in detail in Section
III. However, to enable testing of this planning algorithm
in an unknown environment, it must be combined with
perception, localization, and low level control algorithms,
as depicted in Figure 2. Perception algorithms process data
from sensors to generate estimates for the obstacles in the
environment and the goal (i.e., the person). At the same

Fig. 3: Perception Architecture. Perception combines
camera-based person detection with a LIDAR-based dynamic
occupancy map.

time, the localization algorithm uses data from the steering
and speed encoders to estimate the vehicles state using
an odometry-based estimate. Odometry-based estimation of
the state is subject to drift in the (x, y) position of the
vehicle, but since the optimal control problem is formulated
in local coordinates, this simplified estimation does not affect
safety and performance. Together, the output from both the
perception and localization algorithms establish the data
needed to solve the trajectory planning problem. The output
of the trajectory planner is the desired steering angle and
speed, which gets fed to low-level PID controllers. These
controllers are responsible for controlling the voltage of the
vehicle’s steering and throttle actuators.

While, the localization and low-level algorithms are well
established methods, the perception algorithm is novel and
merits a more thorough treatment. The remainder of this
section gives an overview of the perception algorithm that
was developed to enable operation of the AATV in an
unknown environment1.

A. Perception

The task of the perception module is to (1) accurately
estimate the position and velocity of the person to be
followed (e.g., operator) and (2) detect and determine the
location and shape of any obstacle in the robot’s surrounding
area. To achieve these tasks, a top-mounted LIDAR, a front-
facing LIDAR, and a front-facing monocular camera are
used. Section IV describes these sensors in greater detail, this
section provides the details of the algorithms that process the
data generated from these sensors.

Figure 3 illustrates the architecture of the perception
subsystem; objects of interest are detected using two inde-
pendent modules. The first module is a camera-based person
detector that detects any pedestrian in the camera’s field
of view. This detector is a region-proposal based object
detector, which has a similar structure to Faster-RCNN [18].
We trained the detector on a proprietary data-set. Images in
the dataset were hand-labelled, and collected from diverse
sources. The detector’s output consists of bounding box
locations of detected pedestrians as well as a rough estimated
distance to these pedestrians The second module is the

1A full analysis and evaluation of the perception algorithm will be the
subject of a future publication.
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Fig. 4: Sensor Fusion Architecture. Diagram of the sensor
fusion pipeline.

Dynamic Occupancy Map (DOM) [19], which uses the two
LIDAR sensors on the robot to detect any obstacle within
a certain distance to the robot. LIDAR scans are filtered
to a max distance of 25 m and obstacles are defined as
any object with a height of over 0.7 m above ground. The
output of DOM is a list of convex hulls and each convex hull
describes an obstacle’s spatial dimensions. The outputs of the
person detector and DOM cannot be directly utilized by the
controller because camera detection lacks position accuracy
while DOM lacks object category. Therefore, a module is
needed to fuse the two detection results. In addition, since
missed or false detections are always possible, the fusion
module should provide some tolerance to noisy detection
inputs.

The fusion module’s architecture is shown in Figure 4.
We first perform a matching between incoming detections
and existing trackers using bipartite matching (the Hungarian
algorithm). For this algorithm to function, we define a cost
function between a detection and tracker as follows

a) LIDAR detections: The Euclidean distance between
detection and tracker centers as the cost.

b) Camera detections: The pixel distance between the
projection of the tracker onto the image plane and bounding
box center as the cost. The matching yields three types of
outcomes. For a matched detection and tracker, we use the
detection to update the tracker. For unmatched trackers, we
update them with negative (e.g., empty) detection. For un-
matched detections, we allow them to generate new trackers.

In order to seamlessly fuse the two types of detections,
we choose to model the existence probability Pexist of each
tracked object. Regardless of the source of detections, each
positive (e.g., matched) detection increases the probability
of the tracker, while each negative detection decreases it. By
applying Bayes’ Rule, we can explicitly calculate the exis-
tence probability from inverse sensor model, P (existence |
measurement). We adopt a simple inverse sensor model by
assuming certain false positive and false negative rates for
each detection module. For objects outside a sensor’s field
of view, their Pexist does not change.

The Pexist is used to create new trackers and delete obso-
lete trackers. A tracker is created whenever its Pexist exceeds
a particular high threshold. This tracker is then deleted when
its Pexist drops below a particular low threshold. Then, the
position and velocity of every pedestrian is estimated using

a Kalman filter with a constant velocity model.
It is noted that, for initial person acquisition, the person

must be detected simultaneously by the camera and the
LIDAR. Afterward, the person continues to be tracked, even
if they leave the field of view of one of these sensors.

III. TRAJECTORY PLANNER

At the heart of and NMPC problem lies an trajectory
optimization problem (e.g., optimal control problem). This
section describes the optimal control problem that is formu-
lated in this work to incorporate the planner specifications
listed in Table I. This entire formulation fits into a single-
phase, continuous-time, optimal control problem in a Bolza
form [20] tailored for NMPC given in Eqn. 1 - Eqn. 8 as

minimize
ξ(t),ζ(t),ξ0s,ξf s, tf

J =M(ξ(t0), t0, ξ(tf ), tf )

+

∫ tf

t0

L(ξ(t), ζ(t), t) dt

+ws0ξ0s +wsfξf s (1)

subject to
dξ

dt
(t)− f(ξ(t), ζ(t), t) = 0 (2)

C(ξ(t), ζ(t), t) ≤ 0 (3)
ξ0 − ξ0tol ≤ ξ(t0) ≤ ξ0 + ξ0tol (4)
ξf − ξf tol ≤ ξ(tf ) ≤ ξf + ξf tol (5)
ξmin ≤ ξ(t) ≤ ξmax (6)
ζmin ≤ ζ(t) ≤ ζmax (7)
tfmin

≤ tf ≤ tfmax
(8)

where t0 is the constant initial time, tf is the variable final
time, ξ(t) ∈ Rnst is the state and nst is the number of states
ζ(t) ∈ Rnctr is the control and nctr is the number of controls,
ξ0 is the desired initial state vector, ξ0tol is the initial state
tolerance vector, ξf is the desired final state vector, ξf tol is
the final state tolerance vector, ξ0s and ξf s are arrays of slack
variables on the initial and terminal states, respectively, and
ws0 and wsf are arrays of weights. The remainder of this
section describes the details of Eqn. 1, Eqn. 2, and Eqn. 3.

A. Cost Functional

First, the cost functional in Eqn. 1 is given in Eqn. 9 as

J = wttf

+ wg

(
x(tf )− xg

)2
+
(
y(tf )− yg

)2
(
x(t0)− xg

)2
+
(
y(t0)− yg

)2
+ ε

+ whaf

∫ tf

t0

[sin(ψg)(x− xg)− cos(ψg)(y − yg)]2dt

+ wce

∫ tf

t0

[wδf δf (t)
2 + wsrsr(t)

2 + waxax(t)
2]dt

+ wux

∫ tf

t0

1

ux(t)2 + ε
dt

+ws0ξ0s +wsfξf s (9)
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where, wt, wg, whaf , wce, wδf , wγ , wax , wux
,ws0,wsf are

constant weight terms, x(t) and y(t) are the vehicle’s po-
sition coordinates, xg and yg are the goal’s coordinates, ε is
a small number set to 0.01 to avoid singularities, ψg is the
desired final heading angle, δf (t) and sr(t) steering angle
and rate, respectively, ux(t) is the longitudinal speed, and
ax(t) is the longitudinal acceleration.

There are six terms in Eqn. 9. The first term minimizes
the final time, which is commonly seen in racing applications
[21,22], where speed is a primary objective. However, even
in a person following system, if the vehicle travels too slowly,
then the system performance will be poor. Additionally, if the
planner is updating quickly and the changes in the control
signals are very small during the execution horizon, the vehi-
cle may not move. Thus, adding a minimum final time term
makes the planner calculate more aggressive trajectories,
which make the vehicle likely to move. The second term
pushes the final position of the vehicle closer to the goal.
The third term helps the vehicle travel toward the goal in a
particular orientation. To accomplish this, the area between
a line passing through the goal point xg, yg at the desired
goal angle ψg and the vehicle’s x, y trajectory is minimized
[10]. The fourth term minimizes the control effort and the
fifth term maximizes speed, which along with minimizing the
final time, helps ensure that the vehicle moves. Finally, the
sixth term adds slack constraints on the initial and terminal
conditions to help avoid finding solutions that are nearly
infeasible [23].

B. Dynamic constraints

The vehicle is modeled using a nonlinear kinematic ground
vehicle model [24,25]. The kinematic model is used because,
the vehicle moves at slow speeds, so vehicle dynamics are not
expected to significantly affect the vehicle’s motion. Also,
comparisons between the kinematic and the dynamic bicycle
model [26] provide additional support for the decision to
chose the kinematic model for automated driving algorithms
over the dynamic model. In these comparisons, the kinematic
model performs similarly well to a dynamic model, while
being less computationally expensive [26]. The dynamic
constraints in Eqn. 2 are defined using the kinematic vehicle
in Eqn. 10 as

ẋ(t) = ux(t) cos

(
ψ(t) + tan

(
la tan(δf (t))

la + lb

)−1
)

ẏ(t) = ux(t) sin

(
ψ(t) + tan

(
la tan(δf (t))

la + lb

)−1
)

ψ̇(t) =

ux(t) sin

(
tan

(
la tan(δf (t))

la+lb

)−1
)

lb
u̇x(t) = ax(t)

(10)

where, ψ(t) is the yaw angle, la = 0.6 m and lb = 0.6 m
are the wheelbase distances.

C. Path constraints

To avoid collisions with static and dynamic obstacles,
time-varying hard constraints on the vehicles trajectory are
used to ensure that the vehicle’s planned trajectory does not
intersect with the obstacles’ predicted trajectories [16, 27];
the path constraints in Eqn. 3 are given in Eqn. 11 as(

x(t)− (x0obs[i] + vxt)

aobs[i] + sm(t)

)2

+(
y(t)− (y0obs[i] + vyt)

bobs[i] + sm(t)

)2

> 1, for i ∈ 1 : Q (11)

where sm(t) = 0.45 + 0.7−0.45
tf

t describes the time-varying
safety margin. The parameters in sm(t) are chosen based
off of the size of the vehicle then tuned as needed. x0obs[i]
and x0obs[i] describe the position of the center of the ith
obstacle at time t, aobs and bobs are arrays of semi-major
and semi-minor obstacles’ axes, and Q is the number of
obstacles.

IV. EXPERIMENT DESCRIPTION

This section describes the experimental platform (Figure
1), the conditions under which the tests are performed, and
the software configuration that the tests are conducted with.

A. Experimental Platform

Our robotic platform is a Honda Foreman Rubicon that
is modified to receive autonomous command messages over
a CAN bus. For perception, there is a front mounted ZED
stereo camera, and 2 Velodyne LIDARSs mounted on the top
(HDL-32) and front (VLP-16). All results in this paper are
produced using an MSI GS65 Stealth 666 laptop computer
running Ubuntu 16.04 and ROS Kinetic with an Intel Core
i9− 9880H CPU @2.3GHz× 16, and 31.3GB of RAM.

a) Known Environment: In a known environment, both
the goal and obstacle data are simulated and provided directly
to the planner. Thus, the perception problem is eliminated
when the environment is assumed to be known. The purpose
of the tests conducted in this environment is to evaluate the
bounds of the system’s maneuverability.

The right-hand trace of Figure 6 depicts the parametric
scenario that is used to collect all the results in the known
environment. In this scenario, a goal is placed 20 m in front
of the vehicle and travels straight ahead at a speed of 1 m

s
for 25 s. So, the final position x of goal is 45 m. This goal
has a radius of 4 m, which is green in color and surrounds an
obstacle (i.e., simulated operator) with a radius of 0.75 m,
which is red in color. The position of the goal at various time-
stamped positions can be seen in Figure 6. Additionally, there
is an obstacle, denoted as O1, moving directly towards the
vehicle starting from an x position of 25 m. This scenario
is parameterized by the radius (i.e., size) and speed of O1.

b) Unknown Environment: In the unknown environ-
ment, the goal and obstacle data need to be estimated. To
make this estimation, the data collected from the perception
sensors (i.e., ZED camera, top LIDAR, and front LIDAR)
is processed using the perception algorithm described in
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Section II-A to enable estimation of the goal and obstacle
data. Fourteen tests are conducted in an unknown off-road
environment, where the vehicle must avoid collisions with
obstacles, drive through ditches, and operate on uneven
terrain. The tests start when the person is either beside or
in front of the vehicle. During the tests, the person walks to
random locations and randomly stops several times.

B. Software Configuration

The literature shows that it is difficult to solve comprehen-
sive trajectory planning algorithms fast enough for various
on-line applications [10, 16, 28, 29]. Fortunately, together,
the recent advances in programming languages [30], opti-
mization modeling languages [31], automatic differentiation
tools [32, 33], and optimal control software [34] make it
possible to solve comprehensive problems in real-time. For
instance [11] uses these advances to shown that the trajectory
optimization problems developed in [10, 16] can be solved
in real-time2. In this paper NLOptControl 0.1.6+ [34] is
used in conjunction with the trapezoidal method [35] and
the KNITRO 10.3 NLP solver. For safety, if the solution to
the NLP problem is not optimal then the vehicle is stopped,
which is the case when the vehicle travels too closely to an
obstacle.

V. RESULTS

A. Moving Obstacle Avoidance in a Known Environment

Figure 5 shows that the vehicle attains the goal in sixteen
out of the twenty tests conducted in the known, dynamic
environment. The speed and the size of the obstacle moving
towards the vehicle realize each of these tests, where a faster
and larger obstacle is harder to avoid. For the cases tested,
1.83 m

s is the fastest obstacle our system can handle, where
the obstacle has a radius of 0.28 m. On the other hand,
to avoid an obstacle with a radius of 0.78 m, the speed is
reduced to 1.48 m

s . We will now consider in detail two of
these twenty tests; the first being a successful trial and the
second being a failure, where there vehicle crashes into the
obstacle.

Figure 6 shows a successful trial selected from the collec-
tion of tests plotted in Figure 5. As seen in the right hand
trace, the vehicle moves out of the way of an obstacle that has
a radius of 0.68 m and is moving directly toward it at 1.2 m

s .
After safely avoiding this obstacle, the vehicle continues to
follow the goal until it is eventually attained at 28.5 s. In the
top left hand trace, it is seen that the planning algorithm is
solved in real-time, with an average solve-time of 0.107 s.
In the bottom two traces on the left, it can be seen that the
vehicle has relatively smooth trajectories for both steering
and speed.

Figure 7a shows one of the four cases in Figure 5 where
the vehicle is not able to avoid a collision with the obstacle.
In this case, where obstacle’s radius is 0.39 m and its speed
is 1.7 m

s , the vehicle does not move quickly enough to get

2Previously these problems where solved up to thirty times slower than
real-time [10, 16].

C. Software Configuration

The literature shows that it is difficult to solve comprehen-
sive trajectory planning algorithms fast enough for various
on-line applications [1, 9, 10, 21]. Fortunately, together, the
recent advances in programming languages [3], optimiza-
tion modeling languages [6], automatic differentiation tools
[12,29], and optimal control software [7] make it possible to
solve comprehensive problems in real-time. For instance [8]
uses these advances to shown that the trajectory optimization
problems developed in [9, 21] can be solved in real-time1.

In this paper NLOptControl 0.1.6+ [7] is used in
conjunction with the trapezoidal method [2] and the KNITRO
10.3 NLP solver.

We monitor the behavior of the system via a control
monitor shown in Figure 5. The top left window shows a
bird’s-eye view of the scene with obstacles shown in red,
the goal is shown in green, the target trajectory in cyan,
and the traversed history of our robot is shown in black. An
camera image is inlaid to help ground the diagram.

The bottom left window shows the solve-time of our
solver. The solve-time is variable, but tends to run at about
10 Hz. The gap at 14 s corresponds to the robot being
stopped at the goal, waiting for the person to move. The
right side of the figure monitors sent, actual, and planned
traces for steering, speed, acceleration, and orientation.

Fig. 5: Control monitor Our system diagnostic information
display.

V. RESULTS

A. Moving Obstacle Avoidance in a Known Environment

Figure 6 shows that the vehicle attains the goal in sixteen
out of the twenty tests conducted in the known, dynamic
environment. The speed and the size of the obstacle moving
towards the vehicle realize each of these tests, where a faster
and larger obstacle is harder to avoid. For the cases tested,

1Previously these problems where solved up to thirty times slower than
real-time [9, 21].
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Fig. 6: Effect of obstacle size and speed on attaining the
goal.

1.83 m
s is the fastest obstacle our system can handle, where

the obstacle has a radius of 0.28 m. On the other hand,
to avoid an obstacle with a radius of 0.78 m, the speed is
reduced to 1.48 m

s . We will now consider in detail two of
these twenty tests; the first being a successful trial and the
second being a failure where there vehicle crashes into the
obstacle.

Figure 7 shows a successful trial selected from the collec-
tion of tests plotted in Figure 6. As seen in the right hand
trace, the vehicle moves out of the way of an obstacle that has
a radius of 0.68 m and is moving directly toward it at 1.2 m

s .
After safely avoiding the obstacle, the vehicle continues to
follow the goal until it is eventually attained at 28.5 s. In the
top left hand trace, it is seen that the the planning algorithm
is solved in real-time, with an average solve-time of 0.107 s.
In the bottom two traces on the left, it can be seen that the
vehicle has relatively smooth trajectories for both steering
and speed.

Figure 8 shows one of the four cases in Figure 6 where the
vehicle was not able to avoid a collision with the obstacle.
In this case, where obstacle’s radius is 0.39 m and its speed
is 1.7 m

s , the vehicle does not move quickly enough to get
out of the obstacle’s way and it crashes into the obstacle just
before 11.5 s.

B. Person Following in an Unknown Environment

Fourteen experiments are run in an unknown environment
to test the ability of the complete system shown in Figure 2,
Table II shows the meta-data that was collected from these
fourteen tests. These experiments are conducted on uneven
grass near obstacles and over ditches and curbs, and on
asphalt over train-tracks and near buildings and cars.

The remainder of this section provides detailed results of
two of the fourteen tests cases. These results are shown in
Figure 9 and Figure 10. Unfortunately, the dynamic nature
of the obstacle data in an unknown environment makes it is
difficult to plot; for instance, see Figure 5 for a snapshot of
this dynamic data. So, for simplicity, the obstacles in Figure
9 and Figure 10 are omitted, except for the obstacle on top
of the person that is being followed.

In both cases, the system controls the vehicle to success-
fully attain the final goal area. Throughout each of these tests,

Fig. 5: The effect of obstacle size and speed.

out of the obstacle’s way and it subsequently crashes into
the obstacle just before 11.5 s.

B. Person Following in an Unknown Environment

Fourteen experiments are run in an unknown environment
to test the ability of the complete system shown in Figure 2.
Table II shows the meta-data that was collected from these
fourteen tests. These experiments are conducted on uneven
grass near obstacles and over ditches and curbs, and on
asphalt over train-tracks and near buildings and cars.

The remainder of this section provides detailed results of
two of the fourteen tests cases. These results are shown in
Figure 7b and Figure 7c. So, for simplicity, the obstacles in
Figure 7b and Figure 7c are omitted, except for the obstacle
on top of the person that is being followed.

Throughout each of these tests, the perception algorithm
described in Section II-A provides accurate obstacle and
person data to the trajectory planning algorithm. Given this
data, trajectory planning problems are solved to generate the
actual vehicle trajectories for speed and steering (see Figure
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Fig. 7: A case with a larger obstacle traveling at moderate
speeds, where the goal is attained.
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Fig. 8: A case with a medium-sized obstacle traveling at
moderately-high speeds, where the obstacle crashes into the
vehicle.

TABLE II: Meta-Data Collected in an Unknown Environ-
ment

Parameter Average Value
Distance 60.7 m
Total Time 69.5 s
Speed 1.41 m

s
Acceleration 0.0884 m

s2

Solve time 0.123 s
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Fig. 9: A case where the person starts in front of the vehicle
and walks forward across a ditch, then stops at 55 s and then
turns left and walks across another ditch and then up a hill.

the perception algorithm described in Section II-A provides
accurate obstacle and person data to the trajectory planning
algorithm. Given this data, trajectory planning problems are
solved to generate the actual vehicle trajectories for speed
and steering (see Figure 9 and Figure 10). The vehicle only
stops when it gets within a 4 m range of the target person.
Finally, despite the additional challenge of solving these
trajectory planning problems in an unknown environment [8],
the average solve times for each case are about 0.106 s. This
shows that our algorithm can handle a considerable increase
in the number of obstacles without having a large impact on
computation time.

VI. CONCLUSION

This paper introduces an NMPC-based trajectory planning
algorithm for a person following AATV. This algorithm (1)
simultaneously optimizes speed and steering, (2) minimizes
control effort, and (3) avoids collisions with both static

Fig. 6: A case with a larger obstacle traveling at moderate
speeds, where the goal is attained. Blue indicates the au-
tonomous vehicle, red indicates an obstacle, green indicates
the goal region.
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the perception algorithm described in Section II-A provides
accurate obstacle and person data to the trajectory planning
algorithm. Given this data, trajectory planning problems are
solved to generate the actual vehicle trajectories for speed
and steering (see Figure 9 and Figure 10). The vehicle only
stops when it gets within a 4 m range of the target person.
Finally, despite the additional challenge of solving these
trajectory planning problems in an unknown environment [8],
the average solve times for each case are about 0.106 s. This
shows that our algorithm can handle a considerable increase
in the number of obstacles without having a large impact on
computation time.

VI. CONCLUSION

This paper introduces an NMPC-based trajectory planning
algorithm for a person following AATV. This algorithm (1)
simultaneously optimizes speed and steering, (2) minimizes
control effort, and (3) avoids collisions with both static
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the perception algorithm described in Section II-A provides
accurate obstacle and person data to the trajectory planning
algorithm. Given this data, trajectory planning problems are
solved to generate the actual vehicle trajectories for speed
and steering (see Figure 9 and Figure 10). The vehicle only
stops when it gets within a 4 m range of the target person.
Finally, despite the additional challenge of solving these
trajectory planning problems in an unknown environment [8],
the average solve times for each case are about 0.106 s. This
shows that our algorithm can handle a considerable increase
in the number of obstacles without having a large impact on
computation time.

VI. CONCLUSION

This paper introduces an NMPC-based trajectory planning
algorithm for a person following AATV. This algorithm (1)
simultaneously optimizes speed and steering, (2) minimizes
control effort, and (3) avoids collisions with both static
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Fig. 10: A case where the person starts beside the vehicle
and walks across an uneven grassy field that eventually slops
downwards to the right at roughly 15 degrees.

and dynamic obstacles. Experimental tests evaluate safety in
both known and unknown environments. Results from these
experiments show that

• the algorithm is solved in real-time (i.e., around 10 Hz)
in both known and unknown environments,

• the algorithm helps the vehicle avoid obstacles that have
a radius of less than 0.8 m traveling at speeds less than
1.5 m

s in a known environment, the algorithm is robust
to disturbances such as ditches and curbs and

• the perception algorithm enables the planning algorithm
to safely follow a person in an unknown environment.

Therefore, the proposed trajectory planning algorithm is
found to be suitable for controlling a medium-sized, front-
wheel-steered vehicle to safely follow a person in off-road,
unknown, dynamic environments.
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7b and Figure 7c). Finally, despite the additional challenge
of solving these trajectory planning problems in an unknown
environment [23], the average solve-times for each case are
about 0.106 s. This shows that our algorithm can handle a
considerable increase in the number of obstacles3 without
having a large impact on computation time.

VI. CONCLUSION

This paper introduces an NMPC-based trajectory planning
algorithm for a person following AATV. This algorithm (1)
simultaneously optimizes speed and steering, (2) minimizes
control effort, and (3) avoids collisions with both static
and dynamic obstacles. Experimental tests evaluate safety in
both known and unknown environments. Results from these
experiments show that

• the algorithm is solved in real-time (i.e., around 10 Hz)
in both known and unknown environments,

• the algorithm helps the vehicle avoid obstacles that have
a radius of less than 0.8 m traveling at speeds less than
1.5 m

s in a known, dynamic environment,
• the algorithm is robust to disturbances such as ditches

and curbs and

3It was common to observe approximately 20 obstacles at a give time.

• the perception algorithm enables the planning algorithm
to safely follow a person in an unknown environment.

Therefore, the proposed trajectory planning algorithm is
found to be suitable for controlling a medium-sized, front-
wheel-steered vehicle to safely follow a person in off-road,
unknown, dynamic environments.
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