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Abstract— This work presents a deep reinforcement learning
framework for interactive navigation in a crowded place. Our
proposed Learning to Balance (L2B) framework enables mobile
robot agents to steer safely towards their destinations by
avoiding collisions with a crowd, while actively clearing a path
by asking nearby pedestrians to make room, if necessary, to
keep their travel efficient. We observe that the safety and
efficiency requirements in crowd-aware navigation have a trade-
off in the presence of social dilemmas between the agent and
the crowd. On the one hand, intervening in pedestrian paths
too much to achieve instant efficiency will result in collapsing a
natural crowd flow and may eventually put everyone, including
the self, at risk of collisions. On the other hand, keeping in
silence to avoid every single collision will lead to the agent’s
inefficient travel. With this observation, our L2B framework
augments the reward function used in learning an interactive
navigation policy to penalize frequent active path clearing and
passive collision avoidance, which substantially improves the
balance of the safety-efficiency trade-off. We evaluate our L2B
framework in a challenging crowd simulation and demonstrate
its superiority, in terms of both navigation success and collision
rate, over a state-of-the-art navigation approach.

I. INTRODUCTION

We envision a future mobile robot system that can navigate

crowded places, such as busy shopping malls and airports, as

naturally as we do. Developing such an intelligent navigation

system would enhance several practical applications includ-

ing automated delivery services [1] and guidance at airports

[2]. As shown in Fig. 1, to achieve this goal, we present

a deep reinforcement learning (RL) framework for crowd-

aware navigation, which enables agents to interact with a

crowd not only by finding a bypass safely but also by actively

clearing a path to arrive at their destinations efficiently.

Typically, it is easy for humans to navigate in congested

environments safely and efficiently. For example, if someone

cuts right in front of us, we simply stop walking to avoid

potential collisions (i.e., safe navigation). Also, if we are

in a hurry to arrive at a destination in time, we typically

call out to nearby people to make room (i.e., efficient nav-

igation). However, learning such advanced navigation skills

from scratch is non-trivial because there exist no optimal

solutions to determine when to avoid collisions passively

or to clear a path actively. In the robotics domain, most

prior works on mobile robot navigation have only focused on

collision avoidance skills [3]–[6]. While they allow robots

to move safely, too much collision avoidance also results

in highly evasive maneuvers [5], [7]. On the other hand,
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Fig. 1: Left: freezing robot problem, where a robot is

struggling to find a bypass and as a result, takes unnecessary

maneuvers. Right: our agent that can interact with a crowd

by actively clearing a path or passively finding a bypath. Our

goal is to enable such agents to balance the safety-efficiency

trade-off in a highly congested environment.

actively addressing nearby people to move away, via sound

notifications [2] or visual signs [8]–[10], would allow the

robots to navigate efficiently by sticking with the original

path plan. However, frequently making room in a crowd

could collapse a natural crowd flow and may even increase

the risk of collisions, especially in the extremely congested

environments. Therefore, there is a trade-off between agent’s

safety and efficiency in crowd-aware navigation, which begs

our key question: “how can agents learn to balance the
safety-efficiency trade-off?”

To address the above question, we develop a deep RL

framework called Learning to Balance (L2B). The proposed

L2B framework enables crowd-aware navigation agents such

as mobile robots to learn a hybrid policy allowing for

choosing to either 1) seek a bypass (to passively avoid

potential collisions with a crowd) or 2) actively address

nearby persons, e.g., by emitting a beeping sound [2] (to

clear a planned path for a safe and efficient navigation).

Our key insight is that the safety-efficiency trade-off may

be viewed as a consequence of social dilemmas between a

robot agent and a crowd. Specifically, they can both move

safely and efficiently if they mutually cooperate and give way

to each other, while doing otherwise will eventually result in

navigation inefficiency (i.e., sucker outcome) or unexpected

collisions (i.e., punishment from mutual defection). With this

insight, we leverage the concept of Sequential Social Dilem-

mas (SSDs) [11] to augment the reward function used in

learning the navigation policy, where the augmented reward

function penalizes the undesirable outcomes and encourages

mutual cooperation to balance travel safety and efficiency.

We evaluate the effectiveness of the L2B framework with
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a simulation for challenging crowd-aware navigation tasks.

Our experimental results demonstrated that the L2B outper-

formed the state-of-the-art SARL [12] navigation method. To

the best of our knowledge, our work is the first to present a

deep RL framework for learning a crowd-aware navigation

policy that not only avoids collisions passively but also clears

the path actively to make agent’s travels safe and efficient.

II. RELATED WORK

This section reviews related work mainly on 1) crowd-

aware robot navigation, 2) modeling of social interactions in

navigation tasks, and 3) modeling of crowd dynamics.

A. Crowd-aware Robot Navigation

A task of navigating robots in a crowd has been addressed

based on reciprocal force models [13]–[15] or imitation

learning [16]–[19]. Recently, deep RL approaches have

achieved promising results in congested scenarios by jointly

performing path planning and collision avoidance [6], [12],

[20], [21]. All of these prior works, however, do not neces-

sarily ensure the efficient travel of robots and can easily get

trapped into a “freezing robot problem” [5], [7]. Specifically,

once the environment surpasses a certain level of congestion,

the planner decides that all forward paths are unsafe, and the

robot freezes in place or takes unnecessary roundabout ways

to avoid collisions. Despite much progress made to resolve

this freezing problem [22], [23], it remains hard to enable

robots to find a proper path in highly congested scenarios.

Our work mitigates this problem by taking into account the

robot’s ability to address surrounding pedestrians to actively

clear a path.

B. Modeling Social Norms

Modeling and learning social norms, to allow robots to

interact with humans properly, is also an active topic that has

been studied in the context of navigation. Some work tried

to learn “social etiquette” from pedestrian trajectories [24],

which is then extended to robot motion planning [20]. Game-

theoretic formulations are also studied widely [25]–[27]

and extended to pedestrian modeling [28]. One important

study that inspired our work is so-called Sequential Social

Dilemmas (SSD) [11], [29], [30], which models how multiple

agents cooperate in a complex pay-off structure with a

Partially Observable Markov Decision Process (POMDP).

Their multi-agent approach is confirmed effective in some

Markov games with complex dilemmas such as the well-

known Tragedy of the Commons [31]. In this work, we

are interested in leveraging their formulation for interactive

navigation tasks, where the key novelty is to design a reward

function that takes into account the dilemma between a robot

agent and a crowd to take a balance between navigation

safety and efficiency.

C. Modeling Crowd Dynamics

Finally, modeling the dynamic behaviors of a crowd

is crucial for both tasks of crowd-aware navigation and

social interaction under crowded situations. Popular ap-

proaches include multi-agent interactions with reciprocal

force model [13], [14] and imitation learning [16]–[18].

These methods have been utilized not only in crowd simula-

tions but also in controlling mobile robots navigating among

people [32]. In our experiment, we will make use of the

Emotional Reciprocal Velocity Obstacles (ERVO) model [33]

for simulating a crowded environment, where each pedestrian

will try to reach designated points or escape to safe places

when they feel threatened by robot’s interventions.

III. BACKGROUND

A. Reinforcement Learning for Navigation

In this work, we consider a task of mobile robot navigation

through a crowd, which we formulate as a sequential decision

making problem with a POMDP. The robot and the crowd in

the environment are regarded as two types of agents, namely

robot agent and crowd agent, which are each driven by

distinct policies π, π̃. Specifically, we regard multiple people

in the environment as a single virtual agent to enable the

modeling of a social dilemma between the robot and the

crowd. This single crowd agent has a policy π̃ that is a

fixed and unknown function. This allows us to formulate

our problem as a standard crowd-aware navigation (same as

[12]), where only robot agent’s policy π is trainable, and the
crowd agent is modeled as a part of the environment.

At each time step t, the state s̃t of the crowd agent is

partially observable for the robot agent depending on its field

of view and hidden goals of each constituent pedestrian in

the crowd. Therefore, we describe the crowd agent’s state as

a tuple s̃t = 〈s̃ot , s̃ht 〉, where s̃o and s̃h are observable (e.g.,
locations of the pedestrian closest to the robot) and hidden

parts of the s̃t respectively. Accordingly, the robot agent

observes a joint state sjnt = 〈st, s̃ot 〉 in each time step, where

st is its own state such as the location of the self. Then the

agent executes an action at based on its policy π, and it will

receive an instant reward R(sjnt ,at) designed to encourage

the robot when reaching a goal and to penalize collisions

with nearby pedestrians. The agent is then transitioned to

the next state sjnt+1 based on the hidden state transition of

crowd agent from 〈s̃ot , s̃ht 〉 to 〈s̃ot+1, s̃
h
t+1〉.

With reinforcement learning, our objective is to obtain an

optimal policy for the robot, π∗ : sjnt �→ at that maximizes

the expectation of discounted total rewards. Following [12],

one can also find the optimal value function V ∗ that encodes

an estimate of the expected return as follows:

V ∗(sjnt ) = E

[
T∑

t′=t

γt′·vprefR
(
sjnt′ , π

∗(sjnt′ )
)]

, (1)

where γ ∈ [0, 1) is a discount factor, and preferred velocity

vpref is used to normalize a term in the discount factor for

numerical stability [6]. With the value iteration method, the

optimal policy π∗(sjnt ) can then be derived as:

π∗(sjnt ) = argmax
at

R(sjnt ,at)+

γΔt·vpref

∫
sjn
t+Δt

T (sjnt , sjnt+Δt|at)V
∗(sjnt+Δt)ds

jn
t+Δt.

(2)
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To better deal with a high-dimensional state space, we ap-

proximate the value function V with a deep neural network.

B. Modeling Social Dilemmas
As we described earlier, we observe that a robot agent

navigating in a crowd involves a type of social dilemmas.

In the context of sequential decision making problems, Se-

quential Social Dilemmas (SSDs) deal with situations where

individual agents are tempted to increase their own payoffs

at the cost of lowering total rewards [11]. Specifically, SSDs

consider a two-player partially observable Markov game with

the joint policy denoted by −→π = (π, π̃). The long-term

payoff V
−→π
i (s0) to player i from t = 0 can be represented as

V
−→π
i (s0) = E

[
T∑

t=0

γt·vprefR (st,
−→π (st))

]
. (3)

Let πc and πd be cooperative and defecting

policies in social dilemma games. In the SSDs, we

consider four possible outcomes 〈R,P,S, T 〉 :=

〈V πc,πc

(s0), V
πd,πd

(s0), V
πc,πd

(s0), V
πd,πc

(s0)〉, where

R is a reward of mutual cooperation, P is a punishment from
mutual defection, S is a sucker outcome for cooperation
with a defecting partner, and T is a temptation outcome
when defecting against a cooperative partner. They satisfy

the following inequalities; a) R > P (mutual cooperation

is better than mutual defection), b) R > S (and is also

better than being exploited), c) T > R (exploiting the other

is preferred to mutual cooperation), and d) 2R > T + S
(unilateral cooperation or defecting at equal probability is

worse than mutual cooperation). In the next section, we

augment our reward function by involving the SSD-like

pay-off structure, which allows us to naturally balance the

safety-efficiency trade-off in interactive navigation tasks.

IV. APPROACH

A. Social Dilemmas in Crowd-aware Navigation
For a robot agent that is capable of clearing a path actively,

it is not necessarily optimal to do so whenever it finds

someone on the path. Such actions can collapse a natural

crowd flow, and may even lead to significant delays in

reaching the goal or unexpected collisions if the place around

the robot agent gets extremely crowded. On the other hand,

keeping silence and avoiding every collision passively, which

is what most of the existing approaches do, is inefficient

especially in crowded scenes [23].
In the SSD’s terminology, πc can be viewed as a passive

policy of one type of agent to avoid collisions by giving way

to the other, whereas πd is the contrary. Then, mutual cooper-

ation R = V π=πc,π̃=πc

holds when robot and crowd agents

give way to each other for making each travel reasonably

safe and efficient. The robot agent suffers from navigation

inefficiency due to frequent passive collision avoidance,

which corresponds to S = V π=πc,π̃=πd

. Although the robot

agent may get close to the goal faster via active path clearing

i.e., T = V π=πd,π̃=πc

, that will eventually result in mutual

defection P = V π=πd,π̃=πd

once the crowd agent is no

longer able to make room for the robot in a collapsed flow.

B. Learning to Balance the Safety-Efficiency Trade-off

With the above insight, we propose to better balance the

navigation safety and efficiency by encouraging the robot

to stay in R while avoiding S and T that leads to P .

To incorporate this SSD structure into RL-based navigation

tasks, we augment the reward function R(sjnt ,at) to take

into account the result of the robot’s active path clearing:

R(sjnt ,at) = Re(s
jn
t ,at) +Rs(s

jn
t ,at), (4)

where Re is the reward from environments, and Rs is that

from the crowd agent. Re is given by:

Re(s
jn
t ,at) =

⎧⎪⎨
⎪⎩
1.0− α t

tlim
if pt = p(g)

−0.25 elseif dt < dmin

0 otherwise,

(5)

where dt is the distance between the robot agent and the

crowd agent (e.g., the closest pedestrian) at time t and tlim
is a time limit for the task completion. pt and p(g) are the

position of the robot at time t and its destination, respectively.

This reward will monotonically decay over time so that the

robot agent will be encouraged to reach the goal as early as

possible.

On the other hand, We define Rs as follows:

Rs(s
jn
t ,at) =

⎧⎪⎨
⎪⎩
β(dt − r(b)) if dt < r(b) ∧ bt = 1

η(dt − ddisc) elseif dt < ddisc

0 otherwise,

(6)

where r(b) is the effective range of active path clearing

actions within which persons in the crowd will get influ-

enced and move away, and ddisc is the minimum discomfort

distance between the robot agent and the crowd agent set

to encourage earlier collision avoidance. A binary vector

bt ∈ {0, 1} is 1 when path clearing action is invoked by

a robot and 0 otherwise. β and η are hyper-parameters that

respectively adjust the influence of active path clearing and

a penalty due to crowd agent’s discomfort. The first term

with β represents the robot’s aggressiveness in path clearing

strategy, where a robot agent is tempted to clear a path

rather than finding a bypass, i.e., the transition from R to T .

However, too much active path clearing will harm the crowd

flow, i.e., the transition from T to P . On the other hand, the

second term with η corresponds to R to S; permitting crowd

agent’s free movements via collision avoidance too much

will make the robot travel inefficient. Moreover, we set β
and η to satisfy η > β; the robot agent will be penalized

more heavily if it gets too close to nearby persons than

actively clearing a path, i.e., T > S . A high return by R
is obtained when the robot agent reaches its destination as

early as possible to increase Re while avoiding T ,S,P by

keeping the effect from Rs as small as possible. Doing so

corresponds to reasonably reducing the frequency of both

crowd avoidance and active path clearing; i.e., balancing the

safety-efficiency trade-off.

With this reward function, the value function can be

trained via a standard V-learning based on a temporal
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difference method with experience replay and fixed target

techniques [34], such as done in [12].

V. SIMULATION

To evaluate the effectiveness of the proposed L2B frame-

work, we develop a simulation environment on top of the

OpenAI Gym [35] for challenging interactive crowd-aware

navigation tasks.

A. Environment Setup

Following [6], [12], we implement circle crossing sce-

narios where N pedestrians and the robot are positioned

randomly on a circle with a certain fixed radius, which will

each walk to their destination set at the opposite side of the

circle (see also Fig. 3). Random noises are added to the initial

locations and destinations to make scenes further diverse.

For the i-th pedestrian, let p
(i)
t ∈ R

2 and v
(i)
t ∈ R

2 be

the location and velocity at time t. Similarly, let pt ∈ R
2

and vt ∈ R
2 be those of the robot agent. We also denote the

sizes of the pedestrian and the robot by r(i), r(c) ∈ R+, and

the distance between the i-th pedestrian and the robot at t

by d
(i)
t = ‖p(i)

t −pt‖ ∈ R+. They are judged to collide with

each other if r(c) + r(i) ≥ d
(i)
t . As for the robot’s ability

to actively clear its own path, let bt ∈ {0, 1} be a binary

vector indicating if an active path clearing action (which we

also refer to as a beep action in our experiment section by

following [2]) is executed at time t, and r(b) ∈ R+ be its

effective range. Finally, let p(g) be the robot’s destination,

d
(g)
t = ‖pt − p(g)‖ be the direct distance from the current

robot’s location to the destination, and vpref ∈ R+ be a

preferred travel speed of the robot.

With the above notations, a state of the robot agent st and

that of the crowd agent s̃ot are defined as follows:

st = [d
(g)
t ,vt, vpref, r

(c), r(b)], (7)

s̃ot = [p̃t, ṽt, d̃t, r̃], (8)

where p̃t = p
(j)
t , j = argmini d

(i)
t , is the location of

pedestrian located closest to the robot at time t, and the

same applies to ṽt, d̃t, r̃. Also, the robot agent’s action at

is defined using vt+1, bt+1 (will be given concretely in the

next section), assuming that the velocity of the robot can be

controlled instantly.

B. Modeling Reactions of Pedestrians

One critical choice of designs for simulating interactive

navigation scenarios is how a crowd reacts to active path

clearing by the robot. In this work, we implement a simplified

version of Emotional Reciprocal Velocity Obstacles (ERVO)

[33], which is an extension of RVO considering a person’s

emotional reaction towards a threat. ERVO simulates how

people in a panic choose their paths to safe places or a

planned goal in a realistic way.

Formally, let Γ(p
(i)
t ) be the degree of influence of active

path clearing for a pedestrian at location p
(i)
t . We represent

r(c)

r(i)

r(b)

Fig. 2: ERVO-based reactive pedestrians. A circle and tri-

angles represent a robot with size r(c) and pedestrians with

size r(i), respectively (Left). When the robot executes an

active path clearing action, all the pedestrians within the half-

circle with radius r(b) (Right) are affected to change their

directions based on Eq. (10).

TABLE I: Quantitative results. Success rate, collision rate,

timeout rate, and average navigation time for the proposed

L2B-SARL and the baseline SARL under different numbers

of pedestrian N in a crowd.

Methods N Success Collision Timeout Time

L2B-SARL
20

0.906 0.094 0.000 13.85

SARL [12] 0.700 0.184 0.116 13.50

L2B-SARL
15

0.880 0.118 0.002 11.60
SARL [12] 0.778 0.064 0.158 12.43

L2B-SARL
10

0.904 0.086 0.004 11.31
SARL [12] 0.922 0.046 0.032 11.91

L2B-SARL
5

0.978 0.020 0.002 10.14

SARL [12] 0.966 0.032 0.002 10.09

L2B-SARL
average

0.917 0.079 0.002 11.72
SARL [12] 0.841 0.081 0.077 11.98

this influence with a Gaussian distribution such as

Γ(p
(i)
t )=

{
1√

2πr(b)
exp(− (p

(i)
t −pt)

2

2r(b)2
) if d

(i)
t <r(b)∧bt=1

0 otherwise.
(9)

Then, the i-th agent will change its velocity v
(i)
t as follows:

v
(i)
t ←

⎧⎨
⎩Γ(p

(i)
t ) · p

(i)
t −pt

d
(i)
t

if d
(i)
t < r(b) ∧ bt = 1

v
(i)
t otherwise.

(10)

As illustrated in Fig. 2, the agents within rb will act to

escape from the path clearing influence that attenuates based

on the Gaussian distribution. On the basis of these funda-

mental principles of ERVO, we extend a collision avoidance

simulation called Optimal Reciprocal Collision Avoidance

(ORCA) [14] to synthesize realistic flows of a crowd.

VI. EVALUATIONS

With the simulation introduced above, we evaluate a

performance of a state-of-the-art crowd-aware navigation

method called SARL [12], and its extended version equipped

with the active path clearing ability trained in the proposed

L2B framework, which we will refer to as L2B-SARL.
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(a) L2B-SARL (N = 5) (b) L2B-SARL (N = 10) (c) L2B-SARL (N = 15) (d) L2B-SARL (N = 20)

(e) SARL (N = 5) (f) SARL (N = 10) (g) SARL (N = 15) (h) SARL (N = 20)

Fig. 3: Qualitative results. (a)-(d) show results of our proposed method L2B-SARL, and (e)-(h) show those of SARL. Gray

points represent human agents, and filled orange circle represents robot agents. Bigger orange circle represent path clearing

beep actions.

(a) APC frequency: high (b) APC frequency: balanced

Fig. 4: Effect of path clearing frequency. (a) When β is set to

be small, too many active path clearing (APC) caused traffic

confusions and increased the possibility of collisions. (b)

Our approach can learn to choose path clearing and collision

avoidance adequately.

A. Experimental Setup

1) Environments: With our simulation, we synthesize

diverse crowd-aware navigation tasks with the number of

pedestrians N ∈ {5, 10, 15, 20}. Kinematics of the robot

agent is assumed to be holonomic, i.e., it can move in

any direction without spin. The velocity of robot, vt, was

discretized in two speeds in {0, vpref} and eight orienta-

tions spaced evenly between [0, 2π). In total, there were 9-

dimensional action spaces for SARL (i.e., moving one of

the eight directions with vpref or standing still), and 17-

dimensional action spaces (eight directions × with/without

path-clearing beeps, and standing still) for the L2B-SARL.

The preffered speed of the agent vpref was set to 1.0m/s.

For the proposed reward function in Section IV-B, we set

discomfort distance ddisc to be 0.2m, the effective range of

path clearing actions r(b) to be 1.0m, and the diameter of

both the robot and the human agents r(c), r(i) to be 0.3m.

The attenuating reward coefficient for reaching a goal α and

discomfort penalty factor η are configured to be 0.1 and

0.5, respectively. For β, we set β = 0.2 unless specified

otherwise. In the simulation, the radius of circle on which

pedestrians and the robot were placed, was set to 4.0m.

2) Training Details: For both L2B-SARL and SARL,

we implemented a value function with the attention-based

network proposed in [12], which allows agents to observe

nearby pedestrians effectively. Intuitively, the network mod-

els pairwise human-robot interactions explicitly while encod-

ing human-human interactions in a coarse-grained feature

map, and aggregates the interactions by a self-attention

mechanism. This value network was first initialized via imita-

tion learning from 3k episodes collected from the ORCA [14]

policy, using the Adam optimizer [36] with the learning rate

of 0.01 for 50 epochs. Then, we train the value network in an

RL loop via the Adam optimizer with learning rate 0.001,

mini-batch of size 100, and discount factor γ = 0.9, for
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0.1 0.2 0.3 0.4
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15

10

5

N
7.91 7.88 7.77 7.38

13.72 12.92 10.78 10.23

6.53 7.56 5.7 7.92

7.3 6.14 6.42 6.1
6

8

10

12

(a) Path clearing frequency [%]

0.1 0.2 0.3 0.4

20

15

10

5

N

90.4 90.6 91.2 92.2

91.0 88.0 89.4 88.2

91.4 90.6 94.8 90.2

92.8 94.4 90.4 95.4

88

89

90

91

92

93

94

95

(b) Success rate [%]

Fig. 5: Effect of β. (a) Frequency of active path-clearing

actions and (b) success rate of episodes for different combi-

nation of penalty factor β and the number of pedestrians in

a crowd N .

20k episodes1. We adopted a standard ε-greedy exploration

scheme where ε decayed linearly from 0.5 to 0.1 in the first

5k episodes and stayed at 0.1 for the rest.

3) Evaluation Scheme: For each environment with the

number of people in crowd N ∈ {5, 10, 15, 20}, we eval-

uated the trained models with 500 random test cases with

the following metrics; “Success”: the rate of robot reaching

its goal without a collision, “Collision”: the rate of robot ter-

minating its navigation due to collisions with other humans,

“Timeout”: the rate of robot unable to reach a goal within

time limit tlim, and “Time”: the average robots navigation

time to reach its goal in seconds. For each evaluation, the

random seed was set to be the same so that each test case

can be evaluated on exactly the same sequence.

B. Results

1) Quantitative Evaluation: Table I summarizes quanti-

tative evaluation results. Overall, we confirmed that L2B-

SARL demonstrated high success rates regardless of the

number of people N , whereas the baseline SARL degraded

its performance as the environment got more crowded. This

is mainly because the baseline agent could only find a

bypass passively when it found someone on its path, resulting

in high timeout rates. On the other hand, the L2B-SARL

provides an extremely low timeout rate thanks to its ability

to actively clear a path, at the small cost of small increases of

collision rates. The average navigation time for the successful

sequences was comparable between L2B-SARL and SARL,

These results show that the proposed L2B framework allows

us to better balance the safety and efficiency trade-off in

crowd-aware navigation tasks.

2) Effect of Active Path Clearing: We further investigated

how the robot learned to actively clear a path adequately

under several different choices of β. Fig. 5 summarizes

frequencies of path clearing actions (a) and success rates

(b) for β ∈ {0.1, 0.2, 0.3, 0.4}. Importantly, there was no

monotonic tendencies for the path clearing frequency for

1Note that SARL performed poorly in environments with N = 20, which
reached only 0.04 success rate. Therefore firstly we trained the policy in
environments with N = 10 for the first 10k episodes and then transferred
to N = 20 environments for the remaining 10k episodes.

any choice of β. The robot is learned to actively clear a

path more frequently as N becomes larger by 5− 15, but in

highly congested scenarios at N = 20, kept its frequency

lower than N = 15. With constantly high success rates

shown in (b), these results indicate that the robot could be

aware that the ideal path clearing frequency maximizes the

cumulative reward would depends on a congestion factor. For

less congested environments at N = 5, 10, the frequency

is preferred to be low because there are enough spaces to

find a bypass as shown in Fig. 3(a). For more congested

environments at N = 15, the success rate increases as β
becomes lower because frequent path clearing allows agents

to reach a goal with a shorter path than when only performing

collision avoidance as shown in Fig. 3(c)(g). However, at

highly congested environments N = 20, the frequency is

preferred to be low again and the success rate decreases as

β becomes lower. One possible interpretation of this result

is, in highly congested scenarios as in Fig. 3(d), too much

active path clearing will also make its travel inefficient or

unsafe in the presence of social dilemmas against the crowd.

C. Qualitative Evaluation

Fig. 3 visualizes some typical results for L2B-SARL

in (a)-(d) and SARL in (e)-(h). We observe that SARL’s

paths became roundabout and inefficient by trying to bypass

crowded regions at the center of the environment in N =
15, 20. In contrast, the L2B-SARL agent was able to navigate

through a crowd by actively clearing its path (denoted by

circles). Moreover, Fig. 4 (a) shows the special case that

the agent is tempted to clear a path frequently and the

episode ended with collision. It indicates that too much path

clearing does harm a robot’s efficient travel, as doing so is not

effective when pedestrians being addressed had little room

to move away. If the path clearing frequency is balanced by

our learnt adaptive policy, the agent can efficiently reach a

goal with the moderate number of times of path clearing as

shown in Fig. 4(b).

VII. CONCLUSION

We have presented a new deep RL framework called L2B

for crowd-aware navigation tasks, which enabled robotic

agents to navigate through a crowd safely and efficiently. The

key idea is to equip the agents with the ability to actively

clear a path as well as passively find a bypath to avoid

collisions. With a reward function that takes into account the

presence of social dilemmas between the robot and a crowd,

the proposed L2B framework allows us to learn a navigation

policy to choose these two actions adequately to take a good

balance between travel safety and efficiency. Our extensive

simulation experiments demonstrated the superiority of the

proposed approach over a state-of-the-art navigation method.

Currently, we limit our study to assume that all the

pedestrians only react passively based on the fixed policy.

One interesting extension of the proposed work is to involve

pedestrians who also try to clear a path actively. That

will make more explicit the presence of a social dilemma
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structure in a crowd flow, also requiring a new technique

for simulating such active pedestrians in a realistic scenario.

Another possible direction for future work is to formulate this

crowd-aware navigation task in a multi-agent RL problem,

where each pedestrian in a crowd also allowed to improve its

policy to better cooperate with the robot. Such a direction is

beneficial for practical robotics applications such as swarm

robotics [37] and multiple vehicle control [38].
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