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Abstract— In this paper, we propose a method for automati-
cally generating object handling actions based on simple action
definitions. The need to replace workers by robots is increasing,
and, in fact, many research projects on robots have worked with
simple motion definitions. Many applications are for mobile
robots such as drones, however, and if such methods are applied
directly to object handling, like a pick and place operation, it
is necessary for humans to give detailed instructions. Hence,
our contribution is to propose a model that simulates the real
world with an augmented hybrid system that includes the states
of objects. Then, it becomes possible to automatically generate
robot motions with simple motion definitions and calculate them
within a reasonable time. We demonstrate through computer
simulation with a dual-arm robot that robot motions can be
generated by simple definitions even if the environment changes
to a certain degree.

I. INTRODUCTION

A. Background

A shortage of workers due to an aging population is a
problem in some countries. In particular, there are significant
labor shortages in urban areas. Meanwhile, workplaces for
human workers are narrower and messier than environments
in factories where industrial robots are used. For typical jobs
like food manipulation in packing lunch boxes and cashiering
at convenience stores, it is difficult for conventional robots
to perform these tasks. This is because it is necessary to
secure a sufficiently large space and prepare the working
environment with jigs. In a convenience store, on the other
hand, the space occupied by a cash register is small and
surrounded by goods. Such environments are very difficult
for operation of conventional robots [1].

Teaching tasks to robots is a major barrier in introducing
them to such environments. If a convenience store wants to
operate robots correctly in the store environment, specific
exceptions must be taken into account, and subtle changes
to the work and so on are likely to occur frequently. It
is not economical, however, to make these exceptions in
accordance with frequent changes. In practice, it is thus
necessary for robots to do tasks with the kinds of simple
directions that workers are given. Otherwise, it would be
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difficult for robots to work like such workers. In addition, it
is important to ensure safety in the work environment.

Fig. 1. System configuration: A high-level planner outputs a 2D high-
level trajectory from the LTL, constraints, and environment settings. The
LTL consists of a description of the task definition itself, such as “objects
are on the goal”, and a description of some rule such as ϕrule. The high-
level trajectory consists of coarse time-series data with position and velocity.
By interpolating in the z-direction and between time steps, the robot is
controlled by a local feedback controller.

B. Formal Planning

One approach that simplifies teaching robots is teaching
by demonstration[2],[3]. Another approach is to apply goal-
oriented action planning (GOAP), which recently has often
been used for creating games [4]-[6]. Though these tech-
niques can teach tasks efficiently and are attractive, they
should also guarantee work safety in advance. In other words,
it is necessary that safety can be verified in advance. One
way to describe tasks is to use linear temporal logic (LTL)
or signal temporal logic (STL) [7],[9]. Also, it is expected
that instructions given in natural language can be translated
into LTL [10],[11].

By using LTL to describe safety rules or handling skills
that are memorized by a robot as “common sense,” it can be
checked in advance whether newly learned “common sense”
rules and given task are consistent with general stored rules
to ensure safety or other common rules. It is generally very
computationally intensive, however, to check such consis-
tency [12]. Therefore, practical applications should use a
special subclass of LTL, such as GR(1) or syntactically co-
safe LTL (scLTL) [11],[13], [14]-[16].

In addition to ensuring security in advance, simple task de-
scription and flexible planning are another important points.
By modeling the real world with a hybrid system and
performing task description in a simple LTL, it is possible
to flexibly deal with some changes in the environment (e.g.,
when the place to carry objects has changed, when robot arm
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does not reach its destination!) and change the behavior of
the robot logically (We see in section V).

C. Issues with Existing Methods

In the proposed methods [7],[15],[17] of defining the
behavior of robots in LTL, the behaviors of a state that can be
directly input are indicated in LTL, as in the case of drones.
If this method is simply applied to handling operations like
the pick and place task, a human must precisely specify
the behavior of the robot’s hands, and the task cannot be
performed with only simple instructions. Another problem
is that the method of defining logical propositions proposed
by [7] cannot be applied to release an object once grasped,
making it unsuitable for modeling robot behavior in the pick
and place task. In addition, there is a problem in that the
number of calculation steps becomes large for the task of
moving an object many times, as in transportation. In the
above method [7],[15], the problem is converted to a mixed
integer linear programming (MILP) formulation, which is a
kind of combinatorial optimization. For the pick and place
task, that approach would not be albe to generate a solution
within a reasonable amount of time on a standard computer.

D. Contributions

In this paper, we show that a planning using LTLs and
hybrid system is effective for pick and place tasks by our
modeling methods and problem relaxation. In this planning,
simple task descriptions are available and logically modifi-
able, and flexible for environmental changes. We consider
the pick and place task with a dual-arm system, which is
similar to the case of handling operations by a person. Then,
we propose algorithms that generate the desired trajectories
by using LTL task specification, as shown in Fig. 1. The
paper has three main contributions:

1) Simple LTL operation definition by a hybrid system:
We propose a method for a robot to perform the pick
and place task with simple instructions by handling not
only the state of the hand but also the states of objects
as the state of the system, and by using LTL to specify
the behavior of the objects’ states.

2) Model of picking behavior:
We propose a new model for pick and place movement
that can release an object once it has been grabbed
by using a secondary effect obtained from [18]. This
effect is related to the determinism of the logical value
of a proposition. By our modeling method, the method
proposed in [7] can be applied to manipulation tasks.

3) Fast calculation by sequential transportation:
The pick and place task involves a large number of
calculation steps, which may take a long time. We
thus propose an algorithm for sequentially transporting
target objects so that the desired trajectories can be
calculated at high speed.

Specifically, we consider the task of having a dual-arm robot
move all objects from a collection site to different designated
goal locations as quickly as possible. Through simulation,
we check whether motion commands are generated in real

time and objects are correctly gripped and released with only
simple task definitions. For the form of the object movement,
we consider two cases, in which the robot arm grips and car-
ries objects and in which the robot slides objects on a table.
As for the structure of the paper, the next section discusses
related work, and then section III gives the preliminaries.
Section IV describes the modeling method, specifications
and algorithms. We show the computer simulation results
in section V and then give the conclusion in section VI.

II. RELATED WORK

A previous research project on defining robot motions with
LTL was presented in [17]. Although it uses LTL, the path
itself is generated by using a planning algorithm like rapidly
expanding random tree (RRT) and selecting the path that
satisfies the LTL specification. Therefore, this approach is
suitable for use in route planning for drones, but it requires
much human assistance for application to the pick and place
task.

In [8], motion planning for workpiece pickup operation
by dual-armed robots is solved by optimization, but the
formulation requires human design (e.g., the variable B,
indicating the place where a workpiece is picked up), as
do the paths of the arms. Then, the timing of the arms (and
B) is obtained. Notions like “place where the workpiece is
picked up” are extremely problem-dependent and abstract
matters requiring human design. In this paper, by modeling
primitive phenomena in the real world, we enable an object
to be moved by grabbing it via a hybrid system. The system
performs motion planning based on language definition while
minimizing the need for human design of problem-dependent
variables and formulation of optimization problems.

In [7], a trajectory is calculated from LTL and a given
system dynamics without the aid of a planning algorithm,
but the example in that paper is the problem of directing the
behavior of a directly controllable state by LTL. In the task
of pick and place, however, the target object is not always
controllable.

In summary, trajectory optimization such as [8] requires
humans to design the details for each individual case, there-
fore we would like to use LTLs to make a simple and flexible
planning. However, existing LTL-based methods [17] and [7]
have problems in application to pick and place. Therefore,
we propose a modeling method to enable the method in [7]
in pick and place task planning. A key feature of this paper
is that a robot is moved only with instructions regarding
the state that cannot be directly controlled, that is, where
an object should be located, without clearly specifying the
logic of how to grasp the object. We propose a method for
achieving this in a reasonable amount of time, following the
paradigm proposed by [7].

III. PRELIMINARIES

A. Notation

We usually use discrete-time instances, so we denote a
set of times as T = {0, 1, . . . , T} ⊂ Z, and the state
at time k as x(k), k ∈ T . We write x(k + 1) as x+
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and the transpose of a matrix M as M ′. For convenience,
we sometimes use notations like x(0 : T ) = 1, which
means that the value of x from time 0 to T is 1. Let
a · o = [a′1o1, . . . , a

′
eoe]

′ for matrices a, o ∈ Rn×e, where
ai, oi are their column vectors. Let * denote any string. A
rectangle consisting of (x1, y1), (x1, y2), (x2, y1), (x2, y2) is
represented as (x1, x2)× (y1, y2). The x position of the arm
i is written as xarmixR. l-dimensional closed-interval [a, b] is
represented as [a, b]l.

B. Modeling Settings

As in section IV, we consider end-effector dynamics xarmi

and object dynamics xobjj because the full-dynamics of the
robot arm is non-linear and difficult to be optimized. We
assume floor-object friction is very small. Actual objects and
arms’ dynamics is in the 3D space but for easy implemen-
tation, we consider 2D dynamics.

C. Mixed Logical Dynamical Systems

Our goal is to generate control inputs that satisfy the
defined motions even in a real environment by a robot itself.
This requires modeling the real world, and the hybrid system
used here provides one such method. It is a dynamic system
that mixes continuous and discrete-valued signals.

A mixed logical dynamical (MLD) system is one represen-
tation of a hybrid system. In this paper, we denote the system
in an augmented form with the time index k omitted:{

x+ = Ax+B1u+B2z +B3δ +B4θ +B5p

Cx+D1u+D2z +D3δ +D4θ +D5p ≤ E,
(1)

where k ∈ T , x(k) ∈ Rn is the state, u(k) ∈ Rm is the
input, z(k) ∈ Rl1 denotes continuous auxiliary variables,
δ(k) ∈ {0, 1}l2 denotes discrete auxiliary variables. A,B1

are the typical system dynamics matrices, B2 is an auxiliary
dynamics matrix, B3 to B5 are just formal ones (actually
0) and C,D∗, E are the system constraints matrices. In
addition, θ(k) ∈ {0, 1}k1 and p(k) ∈ [0 1]k2 are discrete
and continuous logic variables for LTL, respectively. For
convenience, the discrete variables are separated into δ and θ,
the traditional logic variables in MLD and the logic variables
for LTL, respectively.

D. Linear Temporal Logic

1) Preliminaries: To define the behavior of a robot, we
need a language that can express time-varying events. Linear
temporal logic (LTL) is a modal logic that can express
changes in the values of propositions over time.

For example, the proposition “x ∈ H” is true if a vector
x is in a set H . In this situation, we consider only one
context, “a vector x exists in a set H .” To interpret the
proposition “always x ∈ H ,” however, we need a time
series of contexts (i.e., x(k)) from time 0 to +∞. If the
time series includes even one context of “x(k) /∈ H ,” then
the proposition “always x ∈ H” is false. In this example,
a proposition and contexts are given, and the value of the
proposition is explained. In contrast, our goal is to give
a proposition and its value as true, and then have a robot

generate a time series of contexts (i.e., the robot’s behavior).
For details, see [7].

2) LTL Operators: In addition to classical logical
operators(∧,∨,¬,→), LTL has temporal modal operators:
always (□), eventually (♢), next (⃝), and until (U). Usually
LTL syntax is defined in Backus-Naur form [7], but for this
paper, it is sufficient to interpret the following LTL:

ϕ = ♢θ1 ∧□¬θ2, (2)
ϕ = (♢θ1 ∧ ♢θ2) ∨ (♢θ2 ∧ ♢θ3) ∨ (♢θ3 ∧ ♢θ1), (3)
ϕ = □(θ → ⃝θ), (4)
θi = “x ∈ Hi”,

where θ∗ is a time-varying atomic proposition (see III-D.3).
Among these statements, (2) means “x must always avoid
H2 and eventually reach H1,” while (3) means “x eventually
reaches at least two of H1,H2,H3.” The final statement is
more confusing, but the LTL statement “θ → ⃝θ” means
“if θ is true now (time 0), then the next θ is true,” and the
operator □ is then applied. Hence, (4) is equivalent to

θ(k) → θ(k + 1), k ∈ T /{T}.

3) LTL Semantics: We define atomic propositions and
LTL formula.

Definition 4.1: (Atomic propositions, AP ) An atomic
proposition is a declarative sentence on the system state,
which is either True or False. Any atomic proposition
θ ∈ AP is an LTL formula.
In this paper, a variable θ in the MLD system is an atomic
proposition, and it means “the state x of the system exists
in a set H ,” that is, x ∈ H . In practice, the connection
from states to atomic propositions is implemented by linear
inequality constraints. Note that θ ∈ {0, 1}k1 in (1) is the
value of the atomic proposition, while θ ∈ AP above is the
atomic proposition, so they are not exactly the same, but we
express them by using the same θ.

Definition 4.2: (LTL formula) An LTL formula on AP is
a sentence that consists of atomic propositions and operators
of LTL and obeys the grammar of LTL.
Also, the variables p in an MLD system are LTL propositions
that consist of (atomic) propositions. Such p behave like logic
variables but actually are continuous variables [7].

In summary, we use MLD to model the real world and LTL
to define the behaviors of a robot. LTL propositions consist
of atomic propositions, which are like “x ∈ H .” In practice,
we give a system dynamics and an LTL proposition ϕ, where
we let ϕ be true; then, we generate the robot’s behavior. This
is done by mixed integer programming. For details, see [7].

IV. PICK AND PLACE TASK WITH LTL
SPECIFICATIONS

This section describes the equations for modeling a pick-
ing motion, LTL specification and the algorithms for imple-
menting object transportation.
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A. Modeling

In this subsection, we describe the state-augmented hybrid
system, use of atomic propositions, picking model, LTL
formulation, and rules of picking and carrying.

1) Simple LTL by Hybrid System: The most important
point is to have the states of the arms and objects as the state
of the system. This enables definition of simple operations
as shown in Fig. 2.

Then, the state of the system is augmented in the following
way:

x =
[
X ′

a1 X ′
a2 X ′

o1 . . . X ′
ono

]′
,

X ′
ai =

[
x′

armi ẋ′
armi

]
,

X ′
oj =

[
x′

objj ẋ′
objj

]
,

(5)

where the xarm∗, ẋarm∗ are states of the arms, and the
xobj∗, ẋobj∗ are the states of objects. We assume that x∗ is
position and ẋ∗ is velocity. no is the number of the objects
(see sub-subsection IV-B.1).

Fig. 2. Examples of action definition using LTL: In the first drone
example, a simple LTL statement specifies the position of the drone,
which can be directly controllable. Next, in the pick and place example,
the state that can be input directly is the hand state, which requires
a complicated specification. The complete LTL, in that case, is more
complicated and not unique. This is a disadvantage of directly applying
the conventional method. Finally, if the state of the object is also included
in the system state, however, then a simple LTL specification is possible.
Drone by https://www.irasutoya.com.

2) Linear Constraints for Atomic Propositions: The con-
nection from system states to atomic propositions is made by
a linear constraints as defined in [18]. The important point is
that these constraints not only reduce the number of discrete
variables (the main idea in [18]) but also are convenient for
modeling picking because of their secondary effect, as shown
in Fig. 3.

First, we define an m−dimensional convex polytope set
H (m < n) for an atomic proposition θ = “xsub ∈ H”,
where xsub is a part of the state x so xsub ∈ Rm. We assume
H is consists of e hyperplanes. Let the column vectors of
a ∈ Rm×e be normal vectors to the hyperplanes that make
up H , o ∈ Rm×e are offsets from the origin, and x0 ∈ Rm

is the origin. Then, we define H as

H = {xsub ∈ Rm : a′(xsub − x0(k)) ≤ a · o}. (6)

Fig. 3. Difference in atomic proposition between [7] and [18]: This figure
shows the relationship between “x ∈ H” and p, θ, for the state x of any
dimension and the set H . In the definition in [7], the value p for the atomic
proposition x ∈ H is as shown on the left side of the figure, namely,
p = 1 ↔ x ∈ H . In the definition in [18], however, the logical value is
not fixed even if x ∈ H , as shown on the right side, giving θ = 1 →
x ∈ H . This property is useful for modeling picking. Usually the notation
p = “x ∈ H” means p = 1 ↔ x ∈ H , but even for convenience, we also
use θ = “x ∈ H” for θ = 1 → x ∈ H .

Fig. 4. Example of a set H: The ai are normal vectors to the edges, and
the oi are their offsets. x0 is the origin of oi and can move over time.

For example, Fig. 4 shows a rectangle in 2D space.
Next, to connect the system state x to the atomic propo-

sition value θ ∈ {0, 1}, we use linear constraints as defined
in [18]:

a′(xsub − x0) ≤ a · o+M(1− θ)1 ⇔
∵ H̄ = a′(S1x− S2x) for matrices S∗ : Rn → Rm

H̄x ≤ K̄ +M(1− θ)1 ⇔
H̄x+Mθ1 ≤ K̄ +M1,

(7)

where H̄ ∈ Re×n, K̄ ∈ Re, and M ∈ R is a large number.
In practice, typically xsub is xarm∗ or xobj∗. In equation (7),
θ = 0 when a state x is not in set H , but when x is in H ,
the constraint is not broken regardless of whether θ = 0 or
θ = 1. Therefore, the logical value is not fixed as shown
in Fig. 3. This is useful for modeling the behavior “the arm
grabs the object” as described below and illustrated in Fig.
5.

3) Picking Model: Next, we propose a modeling method
for picking. By making the object’s velocity coincide with
that of the arm when the state of the hand is in the object’s
bounding box, we model picking as shown in Fig. 5.
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Fig. 5. Picking model: Let xarm1 and xobj1 be the hand position and
object position, respectively. Let H11 be the bounding box of the object
and proposition η11 be xarm1 ∈ H11. When the hand enters the object area
H11, η11 becomes 1, which activates the velocity constraint of the object,
and causes it to follow the hand. This is the picking model. Note that, even
after the object is gripped (as seen on the bottom right), the hand can release
it for the reason shown in Fig. 3. In practice, the optimizer determines when
to grasp and release.

Let ηij ∈ {0, 1} be a logic input indicating that “hand i
grabs object j”; then, the hybrid system models a picking
motion as a jump behavior:

ηij = 1 → ẋarmi = ẋobjj , (8)

where xarmi is the state of the hand of arm i, and xobjj is the
state of object j.

In the MLD system, changes in dynamics are expressed
in the following way:

x+ = η(AηONx+BηONu) + (1− η)(AηOFFx+BηOFF),

where AηON, BηON are system dynamics when η = 1 and
AηOFF, BηOFF when η = 0. By choosing them, we can
describe the jump behavior in equation (8). For example,
it can be represented in the following form (see Fig. 5):[

x′
obj1 ẋ′

obj1
]′+

=
[
xobj1 +∆T ẋ′

obj1
∑

i ηi1ẋ
′
armi

]
, (9)

where ∆T is the discretization step size, which is 1 in this
paper.

Because picking should be done when the hand is inside
the polytope representing the object, the constraint of ηij

should satisfy the following proposition:

ηij = 1 → “xarmi ∈ Hij”. (10)

Here, Hij is a polytope on the space of xarmi originating xobjj
(so the dimensions of xarmi and xobjj must match), defined
as

Hij = {xarmi ∈ R2 or 3 : a′ij(xarmi − xobjj) ≤ aij · oij}, (11)

where the dimensions of aij and xarmi must match and we
consider 2D or 3D space so the dimension of xarmi is 2 or
3. (10) is described by linear constraints in (7) by treating
η with an atomic proposition. If the ηij are fixed when the
state is in Hij (i.e., ηij = 1 ↔ “xarmi ∈ Hij”), it becomes
impossible to release objects once they are grabbed.

B. Specifications

1) LTL Formulation: Here, in anticipation of section IV-
C.1, we define an LTL formula that means an action to
transport mo objects out of no objects to a destination, where
no is the number of objects to be included in the calculation
and mo is the number of objects to be delivered. The LTL
formula consists of atomic propositions about the objects,
i.e., θj+mono

= xobjj ∈ Hj , for

Hj = {xobjj ∈ R2 or 3 : a′jxobjj ≤ aj · oj}, (12)

which means “object i is in the destination region.” Note that
θ1 to θmono

are the ηij . Hence, “transport mo objects out of
no objects” is equivalents to the LTL formula specifying that
“any mo variables of θ1+mono , . . . , θno+mono are eventually
true.” That is, we have the following:

ϕtask =
∨

cmb∈C

∧
i∈cmb

♢θi+mono
, (13)

where Nno = {1, . . . , no}, and the set of all mo-
combinations of the set Nno

is C =
( Nno

mo

)
⊂ 2Nno [20].

2) System Constraints for Picking and Carrying: It is
difficult for a real robot to grasp multiple objects, and
grasping one object with both arms is not efficient. Moreover,
we must prohibit a robot’s arms from crossing, so we
always incorporate the following as linear constraints of
the system (i.e., C,D∗, E in (1)). Recall here that η =
“hand i grabs object j”.

• Each arm does not grab the same object at the same
time:

2∑
i

ηij(k) ≤ 1 (j = 1, 2, . . . , no, k ∈ T ). (14)

• The arms do not grab other objects at the same time:
no∑
j

ηij(k) ≤ 1 (i = 1, 2, k ∈ T ). (15)

• The x position of the left arm is less than that of the
right arm:

xarm2x + 0.1 < xarm1x (16)
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Fig. 6. Sequential transportation: To reduce the calculation time, the task
of carrying several objects is repeated. Let no be the number of objects
to be included in the calculation and mo be the number of objects to be
delivered (mo = 2 is reasonable for the dual-arm case). Then, θj+mono

is an atomic proposition that “object j is at the goal.” If there are objects
left, choose no and generate an LTL statement like “♢mo objects reach
their destination,” e.g., ϕ = (♢θ1+2no ∧♢θ2+2no ) ∨ . . . ∨ (♢θ2+2no ∧
♢θ3+2no )∨(♢θ2+2no ∧♢θ4+2no )∨. . .∨(♢θno−1+2no ∧♢θno+2no ).
Then, solve the problem repeatedly. The LTL looks complex but can be
generated very systematically.

Up to this point, we have seen the relationship between
the continuous and discrete variables and how to determine
the state of the system. Once the dynamics of the hand and
the object are determined (double integrators in our work) ,
the system matrices A,B∗, C,D∗, E are obtained according
to the typical procedure of an MLD system [19].

C. Algorithms

In this subsection, we describe the sequential transporta-
tion and pruning algorithms. The sequential transportation
algorithm reduces the calculation time for the robot carrying
objects sequentially, while the pruning algorithm reduce the
time required for optimization.

1) Sequential Transportation: We first propose an algo-
rithm that speeds up the computation for transportation. It
takes much time to calculate the optimal solution when
carrying all objects to the destination (i.e., mo = no),
because the numbers of calculation steps (T ) and discrete
variables become large. To solve this problem, we reduce
the number of objects carried at one time (to mo = 2, in
this case) and repeatedly solve the optimization problem, as
shown in Fig. 6.

The algorithm is listed below as Algorithm 1. no can be
equal to the number of all remaining objects, but in that case,
the calculation takes more time.

Algorithm 1 Sequential Transportation
1: while there exist objects to carry do
2: Select no objects from the remaining objects
3: Define the system matrices, variables, and LTL from

no and mo

4: T=predictT(system)
5: check feasibility(system, T )
6: solve(system, T )
7: end while

2) Pruning: In general, because it takes time to solve
a MILP problem, we must reduce the number of discrete
variables as much as possible. As the value of θ∗ can be
predicted to some extent from the initial position of the
objects or hand, it is used to reduce the number of discrete
variables and speed up the calculation.

For ηij , the time taken for hand i to reach object j by linear
movement can be calculated, and for the remaining θj+mono

,
the time required for object j to reach the destination can
be calculated as well. For example, in the case of one arm
and one object, assume that it takes Tη steps to grab object
1 and Tθ steps for the object to reach the destination. Then,
we have θ1(0 : (Tη − 1)) = 0 and θ2(0 : (Tθ − 1)) = 0.
By giving this as a constraint, the calculation time can be
reduced. Tθ may be used to predict the step T .

V. IMPLEMENTATION AND CASE STUDIES

In this section, we apply the proposed algorithms in
two case studies. First, we show that the pick and place
problem can be solved with these algorithms. Second, we
analyze the method’s performance for different rules and
various parameters. All computations were performed on an
Intel R⃝ Xeon

TM
E3-1230, 3.30 GHz. All MILP problems

were solved by using CPLEX[21] with MATLAB R⃝ as an
interface.

Fig. 7. Overall picture: The upper left is the initial state and the lower
right is the end state. In rule 1, grasping continues to the goal. The object
is first gripped and then transported, finally reaching the goal. In rule 2, the
arm does not reach the goal. First, the blue and green objects are gripped,
then released immediately, causing them to slide and be thrown to the
goal. The important point is that the trajectory is automatically obtained
without any instructions from the user, even when the arm does not reach
the goal. Equations (18-20) represent safety instructions and do not indicate
reachability, so we can calculate the trajectory automatically without them.

A. Settings

We consider the task of transporting objects, as mentioned
in section I-D, in a 2D system consisting of two arms, 10
objects, and 3 goals. The colors of the objects and goals
match, as shown at the end of Fig. 7.
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We consider input u as the force applied to the hands,
with the following cost function [22]:

J =
∑
k∈T

(||u1(k)||1 + ||u2(k)||1), u1, u2 ∈ R2. (17)

B. Common Sense Rules of Transporting

As mentioned in section I-B, it is a strength of definition in
LTL that it is possible to describe safety or handling rules and
have them memorized as common sense. Real robots have
difficulty in throwing objects, and sometimes we want robots
to carry fragile objects, so the action of not throwing objects
is considered as common sense. Therefore, we represent this
kind of common sense via the following safety rules written
in LTL (18-20). We then confirm that the robot’s operation
can be changed with these concise LTL expressions.

1) Rule 1: Throwing is not allowed (i.e., arms continue
to grasp objects to the goal region).

ϕnothrow = □(ηij ∧⃝¬ηij → ⃝θj+2no). (18)

This means the following: Always, if grasping (ηij) now
and then releasing (⃝¬ηij), then the object is in the goal
(⃝θj+2no

).
2) Rule 2: Arms can throw objects but we limit some

behaviors.
• No juggling (an arm does not give objects to another

arm):

ϕnojuggle = □((η1j → ⃝¬η2j) ∧ (η2j → ⃝¬η1j)).
(19)

• No swapping (the arm must not grab and release at the
same step):

ϕnoswap = □(ηij →
no∧
l ̸=j

⃝¬ηil). (20)

Here, (20) means the following: Always, if object j is
grasped now, then releasing j and grasping l( ̸= j) simul-
taneously is not allowed.

C. Validation of Proposed Algorithm

For this validation, Table I lists the positions of the arms,
objects, and goals, and the hand movement range. We applied
the limitations described in section V-B.2, because the arms
could not reach the goal regions. The LTL parameters were
mo = 2, no = 6, giving the following LTL specification for
each step:

ϕ = ϕtask ∧ ϕnojuggle ∧ ϕnoswap

ϕtask = ♢“any 2 objs of 6 objs reach destination”,
(21)

where the exact LTL representation of ϕtask followed (13).
We obtained optimal trajectories, and snapshots taken during
the task are shown for Rule 2 in Fig. 7. The calculation times
for each step were 2.38s, 5.76s, 6.07s, 2.22s, and 0.39s.

The significant point is that which object to carry with
which arm and the timing of grasping and releasing were
successfully calculated. Furthermore, as seen in Fig. 7, the
“throw” action was automatically calculated even if the arms

could not reach the goal regions. Actually, the system (V-
B.2) consisted of (19) and (20), which do not directly imply
throwing action, but that action was automatically generated.

As you can see in the attached video, sometimes the
point of release looks not consistent. The point of release
and which object to be grasped, are determined by the
cost function which only includes input u1, u2 and the
states follow the Newton’s law, therefore sometimes it seems
strange. To deal with this, we should use a cost function like
J =

∑
(||u|| + ||x||) but for easy implementation, we use

(17) in our work.

D. Performance Analysis

Object positions were generated via a uniform random
number within [−0.25, 0.25]2. Table I lists the goal regions,
which the arms could reach. We solved the problem for both
rules (V-B.1 and V-B.2) with various parameters mo, no.
Table II lists the average total computational time and cost
function value for runnning the simulation 10 times. The
proposed algorithms were effective even if the no parameters
changed. As mentioned in section IV-C.1, however, mo

becoming close to no made T large and increased the
calculation time.

TABLE I
SETTINGS

Initial positions of hands, objects and arm base
Item Position Item Position
left arm base (−0.3, 0.3) object4 (−0.2, 0.2)
right arm base (0.3, 0.3) object5 (0.0, 0.2)
left hand (−0.1, 0.0) object6 (0.2, 0.2)
right hand (0.1, 0.0) object7 (0.2, 0.0)
object1 (0.1, 0.1) object8 (−0.2, 0.0)
object2 (−0.1, 0.1) object9 (−0.3, 0.1)
object3 (0.0, 0.0) object10 (0.0, 0.4)

Movable range of the hand ((x1, x2)× (y1, y2))
(−0.9, 0.9)× (0, 0.9)

Goals
For V-C

Goal color Range
red (0.225, 0.575)× (1.15, 1.45)
green (−0.175, 0.175)× (1.35, 1.65)
blue −(0.575, 0.225)× (1.15, 1.45)

For V-D
Goal color Range
red (0.225, 0.575)× (0.65, 0.95)
green (−0.175, 0.175)× (0.85, 1.15)
blue −(0.575, 0.225)× (0.65, 0.95)

TABLE II
MEAN SUMS OF COST FUNCTION VALUE AND CALCULATION TIME

(mo,no) Rule 1 Rule 2
cost function time (s) cost function time (s)

(2,5) 9.03 2.52e+00 8.79 1.13e+01
(2,6) 9.70 2.54e+00 9.07 1.17e+01
(2,10) 9.80 2.78e+00 9.04 1.69e+01
(3,5) 12.68 2.70e+03 8.96 1.97e+01
(3,6) 12.51 3.64e+03 8.81 2.64e+01
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VI. CONCLUSIONS
In this paper, we have shown how to automatically gen-

erate pick and place motion commands as an example of
handling operations with abstract motion definition using
LTL. First, by using a hybrid system, it is possible to define
simple LTL operations. Second, by modeling picking, it is
possible to simulate gripping and releasing correctly. Finally,
a sequential transport algorithm enables calculation within a
reasonable time.

It is important that the specifications are indirect. In the
conventional method, the behaviors of controllable states
are indicated by LTL. In this paper, however, by treating a
state of a target object as a system state and configuring
it as a hybrid system, the target of a state that is not
necessarily controllable all the time can be indicated by
simple LTL rules, and the problem is solved by “thinking.”
This method differ from the method in which the hand
coordinates of a manipulator are programmed manually. In
fact, we found that, even when the hands could not reach the
destination area, the action of sliding an object to deliver it
was automatically generated.

As future work, further reduction of the calculation time
will be necessary. In this paper, objects are carried sequen-
tially, but from the viewpoint of overall optimization, it is
better to calculate all trajectories in one calculation. There-
fore, further reduction in the number of discrete variables
will also be required and can be achieved by improving the
model and incorporating learning. In addition, confirmation
of effectiveness of our method in situations where dual-arm
manipulation is more required is included.
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