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Abstract— We propose a deep learning model for a robot to
wipe 3D-objects. Wiping of 3D-objects requires recognizing the
shapes of objects and planning the motor angle adjustments
for tracing the objects. Unlike previous research, our learning
model does not require pre-designed computational models of
target objects. The robot is able to wipe the objects to be placed
by using image, force, and arm joint information. We evaluate
the generalization ability of the model by confirming that the
robot handles untrained cube and bowl shaped-objects. We also
find that it is necessary to use both image and force information
to recognize the shape of and wipe 3D objects consistently by
comparing changes in the input sensor data to the model. To our
knowledge, this is the first work enabling a robot to use learning
sensorimotor information alone to trace various unknown 3D-
shape.

I. INTRODUCTION

Robots capable of working alongside humans and per-
forming daily tasks automatically is becoming an increas-
ingly important focus of research in the field of robotics
[1]. In a study by Cakmak et al. [2], household tasks were
classified and it was shown that cleaning tasks accounted
for 49.8% of all chore tasks. Here, we focus on the task
of wiping objects, which is one of the most basic cleaning
tasks.

There are many objects that need to be wiped in our daily
lives, such as tableware, light bulbs, shelves, bathtubs, and
statues. Features such as shape, deformations, and hardness
differ among various objects. In addition, there is a nearly
infinite number of possible objects, and it is difficult to trace
objects of arbitrary shape. Here, we present as a first step of
research into wiping various types of furniture.

Wiping is a task that consists of interacting with objects.
Robots need to consider ”the wiping method” depending on
the shape of the target object. For example, as shown in
Fig. 1, if the target has a round shape, it is better to wipe
continuously. However, if the target has a cuboid shape, then
it is necessary to plan changes in angle of 90 degrees to
wipe according to the surface. In addition, the directions

*This research was partially supported by the JSPS Grant-in-Aid for
Scientific Research (A) No. 19H01130, and Research Institute for Science
and Engineering of Waseda University.

1Namiko Saito, Danyang Wang and Shigeki Sugano are with
Department of Modern Mechanical Engineering, Waseda University,
Tokyo, Japan n saito@sugano.mech.waseda.ac.jp,
d wang@suganos.mech.waseda.ac.jp,
Sugano@waseda.jp

2 Tetsuya Ogata is with the Department of Intermedia Art and Science,
Waseda University, Tokyo, Japan, and National Institute of Advanced
Science and Technology, Tokyo, Japan ogata@waseda.jp

3 Hiroki Mori is with the Future Robotics Organization, Waseda Univer-
sity, Tokyo, Japan mori@idr.ias.sci.waseda.ac.jp

Fig. 1. The robot needs to wipe continuously if the target has a round
shape, but needs to change the angle by 90 degrees along the surface if the
target has a cuboid shape.

of the wiping motions need to be decided according to
the inclination of the surfaces. Therefore, a robot needs to
recognize the shape, plan an appropriate wiping method, and
adjust its movements accordingly.

One of the most difficult problems faced by current robots
is adaptability to target objects. This is because most robots
are designed to repeat the same specific motions for certain
specific objects. When it becomes necessary to handle a
new object, the control system or the computational model
needs to be redesigned. We therefore propose a model which
can adjust to unknown objects by using only the sensor
information available at the time.

We will realize robot wiping 3D-objects with our deep
neural network (DNN) model. The model comprises two
modules: a convolutional autoencoder (CAE) [3] and a
multiple timescales recurrent neural network (MTRNN) [4].
The CAE compresses the raw image and generalizes the
untrained images while the MTRNN estimates the shape of
the object and generates the appropriate wipe actions based
on real-time sensorimotor feedback. The model is tested on
the Torobo robot arm developed by Tokyo Robotics [5]. For
evaluation, we use untrained 3D objects and confirm whether
the robot can wipe them in order to show the generalization
ability of the DNN model. We also analyze the role of image
and force information for wiping by comparing the success
rate as the combination of input sensorimotor data is varied.

Our contributions are as follows.

• The robot enables planning that considers ”the wiping
method” depending on the shape of a 3D object, and
wipes the object based on image, force, and joint
information.

• The model does not require a pre-designed model of
the target objects, and the robot can handle unknown
objects on the spot.
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II. RELATED WORKS

Several studies have investigated the planning of wiping
trajectories by robots. Leidner et al. [6] developed a system
for a robot to wipe a desk according to a computational
model. The wiping motions were separated into three cate-
gories according to the dirt type (absorbing, collecting, and
skimming), and the system planned the Cartesian trajectories.
Cauli et al. [7] and Martı́nez et al [8] controlled a robot
to clean the dirt on a specific table. Cauli et al. used an
overhead camera and the robot’s eye camera, and Martı́nez
et al used an RGBD camera to find the locations of dirt.
Their system planned the wiping trajectory of the robots’
arm. However, that research used only image information
and wiped a specific flat target. In addition, they were unable
to wipe 3D objects.

There have also been several studies which used force
feedback to wipe targets. Sato et al. [9] presented a robot
system for cleaning a whiteboard. The robot was trained
by imitation learning using hybrid position/force control and
executed wiping of the whiteboard. Gams et al. [10] also
used force feedback to learn dynamic motions, and ensured
the robot maintained contact and applied the desired force to
the target. Gams et al. enabled the robot to wipe not only a
flat table but also a raised surface. However, the robot could
handle only simple objects that could be wiped continuously
with one motion without switchbacks, and was not able to
recognize and conduct the suitable ”wiping method,” or adapt
to more complex objects.

Some studies have tackled wiping 3D objects. Hess et al.
[11] proposed an algorithm to cover a region of a 3D surface
using a Kinect sensor to obtain a point cloud and generate
an explicit model of the surface. That system calculated the
optimal trajectory to cover the scanned surface. Nagata et
al. [12] presented a position/force controller implementation
for a polishing robot that used a CAD model of the surface.
However, those studies required some procedures before new
objects could be wiped because they required 3D surface
scanning or a 3D model of the object in advance.

In our research, we propose a learning model for generat-
ing joint angles for 3D object wiping motions according to
the shape of the object without computational models, using
both force and image feedback from touching the object.

III. METHOD

We use the direct teaching method to control the robot
for wiping and obtaining training data. In the direct teaching
method, the robot arm is moved directly by the experimenter.
We then collect the sensorimotor data as training data while
replaying the movement of the direct teaching. If we had used
the data obtained by direct teaching for training, the model
would mix the feedback from the experimenter and from
the target object because the force data includes the force
produced by the experimenter and the image data would also
include the arm of the experimenter. We therefore collect the
training data during the replay.

The collected data is then used to train the two deep
learning modules. The model learns to recognize the shapes

Fig. 2. Overview of the DNN model consisting of a CAE that extracts
image features and MTRNN that generates next step motion.

TABLE I
SETTING OF MTRNN NODES

Nodes Time constant Number of nodes
Cs 50 13
Cf 5 160
IO 2 34 (Joint(7)+Tactile(12)+Image(15))

TABLE II
SETTING OF FEEDBACK RATE α

Situation Data Value of α

Training All sensorimotor data 0.9
Evaluation Joint angle 1.0

Experiments Image feature & tactile sensor data 0.2

of objects and generate wiping motions by the robot itself.
Finally, we evaluate the wipe-motion generalization ability
of the DNN model using untrained objects.

IV. DEEP LEARNING MODEL

Figure 2 shows an overview of the model, which consists
of two components: a CAE and MTRNN. This model is
taken from a previous study [13].

A. Image feature extraction by CAE

CAE has an hourglass-like structure that learns to make
the output data the same as the input data. In this way, the
raw image can be compressed, and the features of the image
can be extracted from the intermediate layer while using a
lower number of dimensions.

The construction of the CAE is shown in Fig. 3. We used
the ReLU function for the activation function. Although the
raw camera images initially have 36,864 dimensions [128
(width) × 96 (height) × 3 (channels)], the data is compressed
into 15-dimensional image features. The picture on the right
in Fig. 3 is the output image, which is reconstructed to
resemble the input picture on the left in Fig. 3. The model
performs well at compressing the essential information into
image features for subsequent restoration.

B. Motion generation by MTRNN

MTRNN is a type of recurrent neural network that can
predict and generate the next step when given the current
state. Unlike a conventional RNN, the MTRNN comprises
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Fig. 3. Construction of CAE. The network compresses large dimensional image data into 15 dimensional image features.

three types of nodes with different time constants, which
are slow context (Cs) nodes, fast context (Cf) nodes, and
input/output (IO) nodes. Because of their large time constant,
Cs nodes are expected to learn the data sequence, whereas
Cf nodes with their small time constant are expected to learn
the detailed motion primitives. This enables learning of the
long-term dynamics of time-series data.

We set the time constants and the number of each node
as shown in table I. We tried using a number of Cs nodes in
the range of 10 to 20, time constant of Cs nodes in the range
of 30 to 60 steps, and Cf node in the range of 100 to 200
steps in steps of 10. We adopted the best combination for
the best training. If these numbers are too small, complex
information cannot be learned, and if they are too large, the
model is overtrained. The time constant of Cf did not have
much effect even when it was changed to around 5.

In the forward calculation of the MTRNN, the output
values are calculated as follows. First, the internal value ui
of the neuron i at step t is calculated as

ui(t) =
(

1− 1
τi

)
ui(t−1)+

1
τi

[
∑
j∈N

wi jx j(t)

]
, (1)

where N is the number of neurons connected to neuron i, τi
is the time constant of neuron i, wi j is the weight value from
neuron j to neuron i, and x j(t) is the input value of neuron
i from neuron j. The output value is then calculated using
the tangent hyperbolic function as the activation function as

yi(t) = tanh(ui(t)) . (2)

The value of yi(t) is used as the next input value as

xi(t +1) =

 α× yi(t)+(1−α)×Ti(t +1) i ∈ IO

yi(t) otherwise
,

(3)
where Ti(t) is the input datum i, which is training data
during model training or real-time data during evaluation
experiments. If neuron i is an IO node, the input value
xi(t) is calculated by multiplying the output of the preceding
step yi(t − 1) and the datum Ti(t) by the feedback rate α

(0 ≤ α ≤ 1). We can adjust the input data by means of the
feedback rate α .

We set the value of α as shown in table II. During training,
the model can be trained efficiently by setting α to 0.9, that
is, combining the predicted data 90 % and training data 10 %.
We tried setting α to 0.8, 0.9, and 1.0, and finally adopted 0.9

Fig. 4. The robot hand which is
attached 3 tactile sensors. Fig. 5. Table setting.

which gave the best training. When we evaluate the model,
the next position of the motor angle needs to be decided
based on the previous position. Thus, we set the value to
1.0 to generate motor data according to the predicted data.
In contrast, we use the value to 0.2 for image feature and
tactile sensor data so that the model mixes real time data
with the previous prediction in order to make it possible to
adapt to each individual circumstances.

In the backward calculation, we use the back propagation
through time (BPTT) algorithm [14] to minimize the training
error given by Eq. 4, and update the weight using Eq. 5

E = ∑
i

∑
i∈IO

(yi(t−1)−Ti(t))
2 (4)

wn+1
i j = wn

i j−η
∂E

∂wn
i j

(5)

where η(= 0.0001) is the learning rate and n is the number
of iterations.

V. EXPERIMENTAL SETUP

A. System design

We use a Torobo arm which has 7 degrees of freedom
and tactile sensors [15] which contain 4 sensing points per
module. We attach 3 modules to the robot hand as shown
in Fig. 4. We then cover the hand with thin cloth tape not
to damage or break the sensors. In addition, although the
sensors has a cylindrical shape, the surface of the hand can
be flattened by applying a tape so that the robot can wipe
objects smoothly. Further, the detection range of contact can
be expanded. We put the tape gently and cover over the
sensors so that to make the sensor value zero when the hand
is not touching anything. Because the tape is thin enough,
the force on the hand is applied directly to the sensor and
the tape does not effect the recorded tactile sensor data.
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TABLE III
SIZE OF OBJECTS

objects bottom upper height
width width

Training Big cube 268 [mm] 217 [mm] 113 [mm]
Small cube 165 165 130
Big bowl 300 150 94

Small bowl 218 91 99
Evaluation Untrained 1 270 250 125

experiments Untrained 2 202 - 142
Untrained 3 270 125 105
Untrained 4 268 150 101

Fig. 6. Objects for training
Fig. 7. Objects for evaluation ex-
periments

We put a desk in front of the robot and place a USB
camera and objects as shown in Fig. 5. We place the objects
so that the center is always at the same position, and arrange
the largest surface parallel to the USB camera.

We record robot arm joint angle data (7 dim) and image
features from the camera (15 dim) every 0.2 [sec]. We record
tactile data (3 sensors × 4 dim) every 0.05 [sec] and average
the sensor values over 4 steps and sample every 4 steps. The
sampling frequency of all the sensorimotor data is then 5
[Hz]. The length of all wiping motions is 21.6 [sec], and
thus they are 108 steps in every motion. The values of all
sensorimotor data are normalized to [-0.9, 0.9] before input
to the model.

B. Object used

Figure 6 shows the 4 objects used for training. We
prepared 2 sizes of cubes and bowls. Figure 7 shows the
4 objects used for the evaluation experiments. We prepared
different sizes and shapes of objects. The sizes of the objects
are shown in Table III. In order not to distinguish the
characteristics of the objects by their color, we painted all
the objects the same shade of blue.

C. Task design

The robot starts every motion from a specific home
position. The robot then wipes by moving from the bottom
to the top of the left side of the object. Next, it wipes the
upper side from left to right, and then from the top to the
bottom of the right side.

We define the ”wipe rule” as ”when more than 0.1 [N]
force is applied to the hand, it is regarded as wiping.” This
is checked by the tactile sensors. We determine the success of

TABLE IV
RESULT OF EXPERIMENT 1

object Left side Upper side Right side
Untrained object 1 100% 100% 100%

2 100 0 100
3 100 100 100
4 100 100 100

wiping as a criterion of whether more than two thirds of each
side meets the wipe rule. We check if the robot recognize
the method of wipe and conduct it considering the necessity
of switchbacks, thus we do not care the amount of the force
to be applied.

D. Training setup

The training data consists of a total of 32 (4 objects × 8
times) sets of time-series data.

We train the CNN module for 1000 iterations and the
MTRNN modules for 20,000 iterations. In the final iteration,
the training loss calculated by eq. 4 completely converged to
a small value.

E. Evaluation experiments

1) Experiment 1: We control the robot such that it wipes
the 4 untrained objects to check the generalization ability of
the DNN model. We perform the test 3 times each. We also
conduct principle component analysis (PCA) on the internal
state of the MTRNN to evaluate if the robot can recognize
the shape of the untrained objects. We perform the analysis
at the 20th step of the Cs nodes because the 20th step is the
time the robot has just started to touch the objects, and the
distribution of the internal state of Cs also expands according
to the way the wipe is performed.

2) Experiment 2: We check the contribution of image
information and force information by changing the input data
of MTRNN according to the following combinations. We
compare the success rate of wiping with 4 training objects.
We perform the test 6 times each.
• Image feature + Tactile sensor data + Joint angle (Pro-

posal)
• Image feature + Joint angle
• Tactile sensor data + Joint angle

VI. RESULTS AND DISCUSSION

A. Experiment 1

Figure 8 shows the PCA results for the internal state at step
20 of the Cs nodes. We plotted the state of the training data
as circles. The plots are colored according to the shape of the
object being wiped. It can be seen that the different wiping
methods are separated and similar methods are clustered.
This shows that the DNN model could self-organize the
shape of the objects as well as the wiping method.

We also plotted untrained objects in Fig. 8 as stars. The
correspondence between plot colors and object shapes is as
shown in Fig. 7. As shown in Fig. 8, the results for untrained
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TABLE V
RESULTS OF EXPERIMENT 2, SUCCESS RATE OF EACH INPUT

Input Big cube Small cube Big bowl Small bowl
Left side Upper side Right side L U R L U R L U R

Image + Tactile + Joint 100% 100% 100% 50% 83.3% 100% 100% 100% 50% 100% 100% 100%
Image + Joint 50 16.7 0 50 33.3 33.3 100 33.3 16.7 100 33.3 0
Tactile + Joint 0 0 0 0 0 0 100 16.7 100 100 16.7 0

Fig. 8. Principal component analysis on the internal state of Cs nodes.

object 1 are near the region of trained big cube. Therefore,
we assume that the robot predicted this object to be similar
to a big cube. In the same way, we can assume that the robot
predicted untrained object 2 as similar to small cubes, and
the untrained object 3 and 4 as similar to big cubes.

Figure 9 shows how the robot generated wipe motions for
untrained objects 1 and 4. When wiping untrained object
1, the robot switched the wiping direction according to the
surface. The robot adjusted the wiping angle as the way to
wipe cubes. When wiping untrained object 4, the robot used
a continuous wipe as the way to wipe bowls.

We show the trajectory of motor angles during wiping
of untrained objects 1 and 4 in Fig. 10. Each joint angle
is normalized to [-0.9, 0.9]. The dotted lines indicate the
training data when the large box was wiped in the upper
figure, and the large bowl was wiped in the lower figure.
The solid lines show the motion generation results when
untrained objects 1 and 4 were wiped. Although both of the
solid lines are close to the training data, it can be seen that
the angles were adjusted flexibly according to the situation.

We also show the tactile sensor data recorded during
wiping untrained object 1 and 4 in Fig. 11. As shown in
the upper figure, when the robot wiped untrained object 1,
there were three peaks in the trajectory. In addition, the force
values between the two peaks were 0 [N]. This result shows
that switchback was done to wipe the cube. In contrast,
although there were also some peaks in the force when the
robot wiped untrained object 4, at least one sensor recorded
0.1 [N] or more at all times. This result shows that the robot
wiped the object continuously.

We conducted the experiments using other untrained ob-
jects in the same way, and the results are summarized in
Table IV. The success rate was calculated according to the

wipe rule. Unfortunately, when the robot wiped untrained
object 2, which has a triangular shape, the robot only touched
the top of the object. Everything else was successfully wiped.

B. Experiment 2

We used trained objects to test changing the input data.
As shown in Table V, the rate of the proposed input (i.e.,
Motor angle + Image feature + Tactile sensor data) was the
highest.

When we input the motor angle and image features to the
model, the success rate of wiping the upper and right sides
in particular was low. In many of the failed cases, once the
robot hand left the object, it could not measure the distance
and instead floated above the surface. This shows that force
feedback is important making contact with the surface and
wiping constantly.

When the inputs were motor angle and tactile sensor data,
the success rate of wiping the left and right sides of the
big bowl and the left side of the small bowl were high,
but others were extremely low. This is because the model
was over-trained for only bowls. In fact, almost all the
generated motions were similar to the bowl wiping method.
Therefore, we can say that image information is necessary
for recognizing the shape of the objects.

VII. CONCLUSION

In this research we proposed a DNN model for a robot
to wipe 3D objects, considering ”the wiping method.” Pre-
vious research was limited to handling only 2D objects or
needed computational models of the target in advance. We
constructed a DNN model which consists of a CAE, which
extract low-dimensional image features, and a MTRNN,
which learns sensorimotor data dynamics. By using this
model, the robot automatically recognizes the shape of an
object and wipes it according to image and force information
that are sensed in real time. We confirmed that the robot
could generate wiping motions on untrained objects. In
addition, we confirmed that both image and force information
were necessary for recognizing and the objects to be wiped.

To our knowledge, this is the first work that uses only
learning image, force, and arm joint information to enable a
robot to trace unknown 3D shapes. It is the first step toward
realizing a robot capable of wiping various objects.

In terms of wiping, thinking ”where to wipe” is important.
In future work, we will update our model to recognize
the location of dirt on objects and plan efficient wiping
trajectories. We will also update it to consider the amount of
the force to apply according to the hardness of the dirt.
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Fig. 9. The robot generates motions by the DNN model and wipes untrained objects.

Fig. 10. Arm angle trajectory during wiping the untrained objects

Fig. 11. Tactile sensor data during wiping the untrained objects
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