
Online Localization with Imprecise Floor Space Maps using Stochastic
Gradient Descent

Zhikai Li1, Marcelo H. Ang Jr.2 and Daniela Rus3

Abstract— Many indoor spaces have constantly changing
layouts and may not be mapped by an autonomous vehicle, yet
maps such as floor plans or evacuation maps of these places
are common. We propose a method for an autonomous robot
to localize itself on such maps with inconsistent scale using
Stochastic Gradient Descent (SGD) with scan matching using a
2D LiDAR. We also introduce a new scale state in 2D localiza-
tion to manage the possible inconsistent scale of the input map.
Experiments are conducted in an indoor corridor using three
different input maps - a point cloud, a floor plan, and a hand-
drawn map. The SGD localization algorithm is bench-marked
to Adaptive Monte Carlo Localization (AMCL). In a point cloud
mapped environment, our algorithm achieves 0.264m and 5.26◦

average position and heading error respectively. On the hand-
drawn map, our SGD localization algorithm remains robust
while AMCL fails. The role of the scale state in our SGD
localization algorithm is demonstrated in poorly scaled maps.

I. INTRODUCTION

Most autonomous robots must map their environment
before they can localize on it. Simultaneous Localization
and Mapping (SLAM) with LiDAR [1], [2] or vision [3],
[4] is often used to achieve this. However, in new operating
environments, such maps may not be available. Furthermore,
in dynamic environments such as shopping malls with fre-
quent renovations or cordoned off event areas, re-mapping
the environment is needed and is extremely time consuming.

Research exploring alternative maps are uncommon. For
indoor spaces, GLFP [5] is proposed for floor plans, but
uses hand-picked features. Intention-Net [6] and Nav-Net
[7] explores floor plans as well, but does not guarantee
generalization of its neural network used to all environments.

In this paper, we use imprecise floor space maps (also
referred to as ‘improper maps’) as a replacement to point
cloud maps for indoor 2D localization by utilizing Stochastic
Gradient Descent (SGD). These floor space maps can include
floor plans, fire escape maps or shopping directories. As
opposed to point cloud maps, these maps are targeted at
people rather than robots. As a result, they pose a challenge
during localization as they may not be drawn accurately,
and can be locally distorted at certain portions. Yet, using
these maps has advantages. Firstly, no prior sensor mapping
with LiDAR or vision is required. The robot can travel
from its start to endpoint without exploring the environment.
Secondly, for highly dynamic environments, one can easily

1Zhikai Li is with the Singapore-MIT Alliance for Research and Tech-
nology (SMART) Centre, Singapore e0004076@u.nus.edu

2Marcelo H. Ang Jr. is with the National University of Singapore,
Singapore mpeangh@nus.edu.sg

3Daniela Rus is with the Massachusetts Institute of Technology, Cam-
bridge, MA, USA rus@csail.mit.edu

Fig. 1. SGD state trajectory with different input maps.

update these maps as map accuracy is not required. This
method can hence be applied on cleaning robots in malls
and homes, or automated food serving robots in restaurants.

The goal of the SGD localizer is to track the robot’s
state and produce a sensible state trajectory when given an
improper map, while maintaining localization accuracy in a
properly scaled point cloud map, as shown in Figure 1.

Through this paper, we make the following contributions:
• Propose a method of state tracking using SGD that

avoids hand-picked features.
• Introduce scale as a state of the agent to handle distorted

maps and experimentally show its effects.
The SGD algorithm is also tested on real-world data,

demonstrating the robustness of the method.

II. BACKGROUND AND RELATED WORK

Autonomous mobile robots can map their environment
by performing SLAM or depending on a reliable source
of odometry, such as LOAM [8] or V-LOAM [9], which
uses LiDAR and LiDAR-Vision sensor fusion respectively,
to track its own state and map its environment. To localize,
some methods include using Extended Kalman Filters [10]
or using a Monte Carlo approach to approximate the belief
posterior [11]. Mono vision with a feature detector [12] or
Stereo vision generating a particle swarm [13] can be used
for localization as well.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8571

Fig. 2. Architecture of the SGD state tracking algorithm. The state from the previous timestep (in light blue) is first updated to a current state (in red)
using odometry measurements. A sub-segment of the global map is cropped with the robot in the middle is scaled up to 500 by 500 pixels and the LiDAR
scan is projected onto this local map (in green). Each green LiDAR point is associated with its nearest black pixel (Indicated by blue dots), allowing a
cost function to be optimized to minimize the distance between them. One iteration of gradient descent is applied to update the four state components -
x, y, θ, s to obtain a corrected state. Through passing the corrected state to the next iteration, the process can be repeated.

Without pre-mapping the environment, a way to navigate
the environment is to perform online SLAM. For LiDAR
SLAM, a Kalman filter was proposed to localize the agent
onto past observations and map out new landmarks [1]. This
method is then improved in FastSLAM [2], [14] where k-d
trees were used to increase the efficiency of the algorithm.
For vision SLAM, Mono-SLAM was proposed to build a
map of persistent static obstacles [3]. ORB-SLAM later used
the ORB feature detector for the SLAM algorithm to be more
robust to motion clutter [4]. SLAM methods work well in
exploring new environments and also outputs a map of it.
However, in goal-directed applications, one cannot specify a
goal position to the robot without a prior map. Loop closures,
required for SLAM, is also undesirable when the robot is to
travel to the target location as fast as possible. In this paper,
an improper map drawn by a person can be given to the
robot operating in a foreign environment, thereby avoiding
the shortfalls SLAM has in goal-directed operations.

Several works have also explored the use of alternative
maps for localization. In [15], a route with multiple check-
points is planned on a rural road. The autonomous car repeat-
edly steers towards the next checkpoint while constrained to
drivable terrain. In [16], a neural network is used to bridge
raw sensor input to steering output, using road topology
to form a probability distribution over viable movements.
These methods are suited for structured road environments,
with a road directory used as the alternative map. Intention-
Net [6] and Nav-Net [7] have been proposed in unstructured
environments. Both methods use deep learning, by first doing
motion planning on a floor plan, then take the local intention
on the floor plan with camera vision as inputs to a neural
network to output local steering controls. In [5], a floor plan
was used for localization using pre-defined features on the
floor plan. Whilst this approach is feasible, we would like to
avoid the use of hand-picked features.

For localization, gradient descent methods are used in [17]
and [18] to optimize the motion model to make it more
compliant to the robot’s motion constraints. In [19], the
gradient descent method is applied to particles on a particle
filter to optimize the sub-sampled belief states to better
match its observations, so that fewer particles are required for
the same quality of localization. We apply SGD to directly
correct a single tracked state to match its observations. A
scale state is also introduced and optimized so that the
approach remains robust in distorted maps.

III. STATE TRACKING ON FLOOR SPACE MAPS
USING STOCHASTIC GRADIENT DESCENT

In this paper, a modified 2D state tracking problem will
be tackled. Given any map, the goal is to find Xt, a four-
dimensional state X = [x, y, θ, s], at time t, where x, y, θ
are the global coordinates and heading of the robot on the
map respectively, while s is scale of map. The robot knows
all previous states, control actions, and observations.

As the floor space map can be locally distorted, the
robot’s state contains s, a scale (also commonly known as
resolution) which the robot should use for the observation to
be consistent with the map. Allowing s to change allows the
state tracker to adapt to the varying scale of the map.

A. Architecture of the State Tracker using Stochastic Gradi-
ent Descent

The architecture of our approach is summarised in Figure
2. The system accepts the following inputs - an image as the
map, a previously known state, Xt−1, basic odometry, and
the most recent LiDAR sweep of the surroundings. Using
this information, the system outputs the most recent state
Xt. The process can be repeated by passing the corrected
state as the ‘previous state’ for the next iteration to perform
a full online state tracking.

8572

Fig. 3. Local map and frame reference.

In each iteration, the robot first takes the previous state
on the global map image and measured changes from the
odometry to update the state. A local map centered around
the robot’s current state is extracted using a sub-segment of
the global map. The local map serves as a translated local
frame. LiDAR sweep points are then projected on the local
map, and the nearest black pixel is associated with each
LiDAR point. A cost function is then computed and used
to update the four states - x, y, θ, s.

The following subsections describe each component of the
architecture in more detail as indicated in Figure 2.

B. Translation onto Local Frame

A Cartesian frame is defined as the global frame with
origin is the bottom left corner of the map image.

In Figure 2, the system uses the previous state and basic
odometry to obtain a rough estimate of the current state on
the map. A sub-segment (size depending on LiDAR max
range and current scale, s) of the map is cropped and scaled
into a 500 by 500 pixel local map, with the robot placed in
the center. The center of the local map is defined to be the
origin of the local frame. No rotation transformation is made.
The local frame is oriented the same as the global frame,
while the LiDAR points are rotated and projected onto the
local frame instead. This is to simplify the derivation of the
cost function and its derivatives.

The local map is often scaled up when turned into a 500
by 500-pixel image. This increases the local map resolution,
preventing LiDAR depth readings from being scaled-down
and forced to conform to a low-resolution global map.

C. Nearest Neighbour Association

Black pixels on the map indicate obstacles. LiDAR points
are associated with their nearest black pixel as shown in 2.

With reference to Figure 3, denote (xi, yi) as the coor-
dinates of the i-th LiDAR point of the sweep in the local
frame and (xn,i, yn,i) for its nearest associated black pixel.
di and dn,i are the distances of the i-th LiDAR point and its
associated black pixel from the local origin respectively. θn,i
is the angle of the associated pixel from the horizontal and
θswp,i is the angle of the i-th LiDAR point taken from the
current heading of the robot. Finally, (xloc, yloc) is a variable

denoting the position of the robot in the local frame ((0,0)
before update) and θ is the heading of the robot.

If we also denote Dn,i to be the distance of the i-th
associated pixel from the robot in the global frame, then
(xi, yi) is be dependent on xloc, yloc and θ as denoted in
Equations 1 and 2, while (xn,i, yn,i) will be dependent on
the scale used, s, as denoted in Equations 3 and 4.

xi = di cos (θswp,i + θ) + xloc (1)

yi = di sin (θswp,i + θ) + yloc (2)

xn,i = sDn,i cos θn,i (3)

yn,i = sDn,i sin θn,i (4)

D. Stochastic Gradient Descent for States

The cost function is the sum of squared distances between
the LiDAR points and its associated point in Equation 5,
where N is the number of LiDAR points in one sweep.
Ideally, the cost function should refer to associated distances
in a properly scaled map. However, due to random distortions
on the floor space map used, each sweep is instead treated
as a random observation of the cost function, hence the
stochastic nature.

Cost, C =

N∑
i=1

[(xi − xn,i)2 + (yi − yn,i)2] (5)

(xi, yi) and (xn,i, yn,i) collectively depends on xloc, yloc,
θ and s. To perform gradient descent, the partial derivatives
of the cost function with respect to each of the four state
dependencies is taken to obtain Equations 6 to 9.

∂C

∂xloc
= 2

N∑
i=1

xi − xn,i (6)

∂C

∂yloc
= 2

N∑
i=1

yi − yn,i (7)

∂C

∂θ
=2

N∑
i=1

(xn,i − xi)(di sin(θswp,i + θ))

+2

N∑
i=1

(yi − yn,i)(di cos(θswp,i + θ))

(8)

∂C

∂s
=2

N∑
i=1

(xi − xn,i)(Dn,i sin θn,i)

+2

N∑
i=1

(yi − yn,i)(Dn,i cos θn,i)

(9)

Equation 10 shows s being updated, while x, y and θ are
updated with similar equations. x, y are directly updated in
the global frame as changes to x, y are preserved between

8573

Fig. 4. State trajectories of AMCL and SGD on a point cloud input map. State trajectories produced by our SGD state tracking algorithm is consistent
with AMCL.

Algorithm 1: SGD State Tracking
Inputs : map, initial state = [x, y, θ, s], learn rates

= (pos lr, angle lr, scale lr)
Output: State Trajectory on Input Map

1 trajectory ← [];
2 prev state ← initial state;
3 while robot is running() do
4 odom reading ← read from encoder();
5 lidar sweep ← read from lidar();
6 uncorr state ← prev state + odom reading;
7 subsegment ← crop(map, uncorr state);
8 local map ← rescale(subsegment, (500, 500));
9 lidar points ← project to local map(lidar sweep);

10 assoc points ← nearest obstacle(lidar points,
local map);

11 grads ← get partial derivs(lidar points,
assoc points);

12 corrected state ← uncorr state - learn rates ×
gradients;

13 trajectory ← trajectory.append(corrected state);
14 prev state ← corrected state;
15 end
16 return trajectory

the global and local frame by a factor of s. The output after
update is the corrected state as in Figure 2.

st = st−1 − ηs
∂C

∂s
(10)

ηs is the learn rate. The learn rates for each state com-
ponent can be tuned individually. In our approach, the same
learn rate is used for both x and y as a positional learn rate,
while two different smaller learn rates are set for θ and s. An
analysis of the learning rates will be discussed in the results.

E. Algorithmic Flow of SGD Localization

Algorithm 1 shows the iterative flow of the SGD state
tracker. Starting with a given initial state, the robot iter-
ates the state tracking process while the robot is running.
Every iteration, odometry and LiDAR readings are read
from the respective sensors. The odometry reading is first
used to update the previous state to an estimate of the
current state, uncorr state. A local map is cropped and
rescaled into a 500 by 500-pixel local map for the input
map centered around uncorr state. The LiDAR readings are
then projected to this local map, giving a lidar points list
of coordinates on the local map. Another list, assoc points
is used to represent the nearest obstacle on the local map to
each entry of lidar points. Using both lists, grads, a vector
of the partial derivatives of cost with respect to x, y, θ and
s is computed using Equations 6 to 9. The partial deriva-
tives are used to update uncorr state to corrected state
using the update equation shown in Equation 10. Finally,
corrected state is added to the state trajectory and also
passed to the next iteration as the ‘previous state’.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Hardware and Set-up

Experiments were conducted on a wheelchair equipped
with a front-facing TIM551 2D LiDAR with a 270◦ field
of view. Motor encoders are used for odometry. The Robot
Operating System (ROS) is used to facilitate the collection
of data and replaying the data under different test conditions.

In the experiment, the wheelchair is driven around an
indoor corridor at about 1m/s. 10 bags of data were collected,
with the wheelchair performing a different maneuver in each
bag. The bags recorded include observing passers-by, moving
on a straight corridor, U-turn, reversing, 3-point turn, zig-zag
motion, passing back-and-forth a door, spinning on the spot,
and traveling at a higher speed of 2m/s.

Localization is performed on the 10 bags of data using
both our SGD localization algorithm and Adaptive Monte

8574

Fig. 5. State trajectories of AMCL and SGD on a floor plan as input map. State trajectory produced by both SGD state tracker and AMCL are still
relatively consistent despite minor perspective distortion.

TABLE I
POINT CLOUD MAP LOCALIZATION ERROR

Test Condition SGD Avg. dist. error/m SGD Avg. θ error/◦

Bag 1 0.316 4.58
Bag 2 0.232 2.53
Bag 3 0.271 2.75
Bag 4 0.336 2.77
Bag 5 0.193 2.57
Bag 6 0.161 11.26
Bag 7 0.156 5.04
Bag 8 0.141 11.80
Bag 9 0.264 5.55
Bag 10 0.417 5.48

On Average 0.264 5.26

Carlo Localization (AMCL) [20]. Both SGD and AMCL
algorithms are challenged to localize the 10 bags of data
on three different input maps - a point cloud map generated
by SLAM, an image of a floor plan, and a hand-drawn map.

B. Localization on a Point Cloud Map

Figure 4 shows the trajectories formed by the states
tracked via both SGD (blue) and AMCL (red) when a point
cloud map generated by SLAM is used as the input map.
This map is to scale with a resolution of 0.05m/px. Under
this input, the SGD Algorithm is set to have a x, y learn rate
of 5, θ learn rate of 1× 10−3 and s learn rate of 3× 10−7.

In this map, AMCL localization works extremely well and
is taken as the ground truth in localization. Table I shows the
position and heading errors of the SGD algorithm compared
to AMCL.

Comparing this result with a visual inspection of Figure
4, our proposed SGD algorithm works well in a point cloud
input map with an average positional error of 0.264m and
heading error of 5.26◦, performing better than GLFP that has
an average positional error of 0.4m. The abnormally large
heading error stands out in Bags 6 and 8, but is explained
by the robot rapidly spinning or turning in both bags.

Fig. 6. End states of AMCL and SGD on bag 9 using a floor plan. Green
pixels represent LiDAR points of SGD while the red dots are the LiDAR
points for AMCL.

C. Localization on a Minorly Skewed Floor Plan

The state trajectories of both SGD and AMCL using an
image of a floor plan as an input map is shown in Figure 5.
This floor plan is displayed in the lobby and a picture is taken
of it. The image has perspective distortion, skewing the floor
plan, causing the bottom to appear slightly larger. As AMCL
only accepts a fixed scale, a resolution of 0.0175m/px is
used. The SGD Algorithm is set to have a x, y learn rate of
15, θ learn rate of 2× 10−3 and s learn rate of 3× 10−7.

In the floor plan, AMCL still works decently as details
such as bumps in the wall are still present and the severity
of the perspective distortion is small. The trajectories in
Figure 5 between AMCL and SGD are relatively consistent.
However, comparing the end states between both algorithms
in bag 9 as shown in Figure 6, the LiDAR scan of AMCL
in bag 9 is less consistent with the floor plan than that
of our SGD algorithm. This is likely because the AMCL
state trajectory has overshot the true endpoint due to the
perspective distortion, causing the true resolution of the top
portion of the map to be larger than the 0.0175m/px used.

In Table II, the states tracked by SGD and AMCL are less
consistent than in a point cloud map. The average positional

8575

Fig. 7. State trajectories of AMCL and SGD on a hand-drawn input map. SGD state tracker still has a sensible state trajectory albeit jittery. AMCL loses
localization in bag 4 and runs into walls in bags 9 and 10.

TABLE II
FLOOR PLAN LOCALIZATION DIFFERENCE

Test Condition SGD Avg. dist. diff./m SGD Avg. θ diff./◦

Bag 1 0.590 6.05
Bag 2 0.403 3.94
Bag 3 0.539 3.82
Bag 4 0.256 2.85
Bag 5 0.467 8.49
Bag 6 0.516 12.28
Bag 7 0.584 5.98
Bag 8 0.747 13.69
Bag 9 0.735 9.21
Bag 10 1.03 8.62

On Average 0.598 6.88

and heading differences are larger at 0.598m and 6.88◦

respectively, as the map is no longer well suited for AMCL.

D. Localization on a Hand-Drawn Map

Figure 7 shows the state trajectories of SGD and AMCL
on a hand-drawn map of the same environment. Although a
human can easily tell that the hand-drawn map represents the
same area as the previous maps, many localization algorithms
find this challenging as the map is now poorly scaled with
many features missing. The corridors are either drawn too
long/short/narrow/wide and the small area at the top end of
the corridor is also drawn with the wrong shape. Despite
these major imperfections, we would still want a sensible
state trajectory on the hand-drawn map. For this input map,
the AMCL is set to a resolution of 0.08m/px while our SGD
algorithm is tuned to have a x, y learn rate of 5, θ learn rate
of 1× 10−3 and s learn rate of 5× 10−6.

From Figure 7, AMCL often fails in such a map. This is
most apparent in Bag 4, where AMCL has completely lost
its localization and is attempting to constantly re-localize.
In bags 9 and 10, AMCL has traveled into forbidden areas.
On the other hand, our SGD algorithm faithfully follows the
topology of the hand-drawn map. However, it is not without
flaws. When the corridor on the map suddenly changes and

Fig. 8. Scale against time on point cloud map with bag 9. Scale remains
relatively constant in a scaled point cloud map.

appears too wide, our SGD algorithm tends to produce a
jittery trajectory while it learns the new scale of the corridor.
This can be observed in bags 2, 4 and 9. In bag 8, a false
trajectory also appears while the robot is spinning. While
these flaws can potentially cause problems to motion plan-
ners in autonomous vehicles, the SGD algorithm eventually
learns and recovers from them. Furthermore, these shortfalls
can also be mitigated by imposing a motion constraint on
the robot to smoothen these trajectories.

E. Impact of Varying Scale

A main contributing factor for the success of our SGD
algorithm in remaining resilient in improper maps is its scale
state, which allows it to adapt to local distortions in the scale
of the map.

Figures 8 and 9 shows how the scale of our SGD localiza-
tion algorithm changes against time when running bag 9 on
the point cloud map and the hand-drawn map respectively.
When running on a point cloud map which is to scale,
Figure 8 shows that our SGD algorithm indeed kept its scale
relatively constant to navigate the accurate map.

8576

Fig. 9. Scale against time on hand-drawn map with bag 9. Scale increases
around time step 30 to compensate a narrowly drawn corridor and falls after
time step 70 when the robot turns into a corridor drawn too wide.

Fig. 10. SGD Bag 9 state trajectory with different x, y learn rates.
Trajectory is not properly corrected with low x, y learn rate and becomes
extremely jittery when set too high.

For the hand-drawn map, the scale is expected to vary
widely along with the inconsistent scale of the map, as seen
in Figure 9. At around time step 30, the robot performs its
first right turn and travels into a set of two corridors that
are drawn too narrow. As such, the scale increases sharply
so that each pixel in the narrow corridor represents a larger
area to make it consistent with what is observed in reality. At
about time step 70, the opposite happens, the robot performs
a left turn to the corridor that is drawn too wide, and hence
the scale sharply decreases to compensate.

F. Analysis of Learn Rates

As part of our SGD algorithm, three learn rates, the x, y
learn rate, θ learn rate and s learn rate must be tuned for
every new input map. A grid-search approach is used to
identify the best combination of learning rates to use. This
section describes the observations made that help fine-tune
the learning rate by demonstrating on the hand-drawn map.

The optimal learn rates for the hand-drawn map was x, y
learn rate of 5, θ learn rate of 1× 10−3 and s learn rate of

Fig. 11. SGD Bag 9 State Trajectory with Different θ Learn Rates. State
tracker loses localization if θ learn rate is set too high. When θ learn rate
is set lower, the trajectory appears fine, but there is lack in angular learning
as shown in Figure 12.

Fig. 12. SGD Bag 9 End State comparison between a small and the optimal
θ Learn Rate. The green pixels represent the LiDAR scan when projected
onto the local frame.

5× 10−6. Figure 10 shows the state trajectories of the SGD
algorithm on Bag 9, using the optimal, small, and large x, y
learning rates. When the x, y learn rate is set to 1, there is not
enough positional correction to allow the SGD algorithm to
conform to the input map. The state trajectory runs into the
wall before the algorithm can correct itself. When the x, y
learn rate is set too high at 10, major corrections occur even
for minor inconsistencies, resulting in an extremely jittery
trajectory that also runs into the walls.

When θ learn rate is set too large in Figure 11, the SGD
state tracker loses localization the instant it turns the corridor
as θ changes too drastically. When θ learn rate is set too
small, an illusion of better state trajectory with less jittering is
observed. However, the quality of the LiDAR scan matching
is compromised as shown in Figure 12, a small θ learn rate
could not properly correct its heading effectively. Instead,
the smooth trajectory is a result of the algorithm correcting
its position to compensate for the poor angular learning.

As for scale, as seen in Figure 13, if s learn rate is set
too low, the algorithm responds very slowly to corridors that
suddenly appears too big or small, resulting in persistent

8577

Fig. 13. SGD state trajectory with different s Learn Rates. Low s learn
rates cause persistent jittering, high learn rates can cause loss in localization.

jittering that diminishes very slowly over time, as opposed
to the optimal θ learn rate where the jittering diminishes
quickly as the tracker adapts to the new scale more quickly.
However, setting θ learn rate too large can cause s to change
drastically when a new corridor is observed, resulting in the
temporary loss of localization seen in Figure 13.

V. CONCLUSION

We proposed an SGD state tracking algorithm that is
robust to poorly scaled maps and do not use pre-indicated
features. The algorithm uses the sum of squared distances
between LiDAR scan points and its associated obstacles
as a cost function and performs one iteration of descent
with every new LiDAR scan. Experimental results show
good consistency of the SGD state tracker with AMCL
with 0.264m and 5.26◦ average position and heading error
respectively in a scaled point cloud map. In a hand-drawn
map, SGD state tracking remained robust while AMCL often
fails to produce a sensible state trajectory.

The SGD state tracker can be improved in the future.
Although it is robustness to few dynamic obstacles, the
algorithm is unsuitable for crowded environments. The learn
rates needs to be re-tuned if the operating environments
drastically changes. Finally, the algorithm also currently
cannot re-localize, and hence uncorrected state estimates
cannot stray too far from the true state.

ACKNOWLEDGMENT

This research was supported by the National Research
Foundation, Prime Minister’s Office, Singapore, under its
CREATE programme, Singapore-MIT Alliance for Research
and Technology (SMART) Future Urban Mobility (FM) IRG.
We also gratefully acknowledge the technical support of
Nvidia Corporation through the Memorandum of Under-
standing with the Advanced Robotics Centre of the National
University of Singapore on autonomous system technologies.

REFERENCES

[1] M. W. M. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and
map building (SLAM) problem,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 3, pp. 229–241, June 2001.

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
a factored solution to the simultaneous localization and mapping
problem,” in Eighteenth national conference on Artificial Intelligence,
Edmonton, Alberta, Canada, July 2002, pp. 593–598.

[3] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, June
2007.

[4] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[5] X. Wang, R. J. Marcotte, and E. Olson, “GLFP: Global localization
from a floor plan,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, Nov. 2019, pp. 1627–1632.

[6] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian, “Intention-
Net: Integrating planning and deep learning for goal-directed au-
tonomous navigation,” in 1st Annual Conference on Robot Learning,
CoRL 2017, Mountain View, California, USA, Nov. 2017, pp. 185–
194.

[7] P. Karkus, D. Hsu, and W. S. Lee, “Integrating algorithmic planning
and deep learning for partially observable navigation,” ArXiv, vol.
abs/1807.06696, July 2018.

[8] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems Conference (RSS), July 2014.

[9] ——, “Visual-lidar odometry and mapping: low-drift, robust, and fast,”
in IEEE International Conference on Robotics and Automation (ICRA),
Seattle, Washington, USA, May 2015, pp. 2174–2181.

[10] M. E. E. Najjar and P. Bonnifait, “A road-matching method for
precise vehicle localization using belief theory and kalman filtering,”
Autonomous Robots, vol. 19, no. 2, pp. 173–191, Oct. 2005.

[11] S. Thrun, W. B. D. Fox, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2001.

[12] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, pp. 1004–1020, Aug. 2018.

[13] V. John, Z. Liu, S. Mita, and Y. Xu, “Stereo vision-based vehicle
localization in point cloud maps using multiswarm particle swarm
optimization,” Signal, Image and Video Processing, vol. 13, no. 4,
pp. 805–812, 2019.

[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM
2.0: An improved particle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges,” in IJCAI’03 Proceedings
of the 18th international joint conference on Artificial intelligence,
Acapulco, Mexico, Aug. 2003, pp. 1151–1156.

[15] T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in
rural environments without detailed prior maps,” in IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, Australia,
May 2018, pp. 2040–2047.

[16] A. Amini, G. Rosman, S. Karaman, and D. Rus, “Variational end-
to-end navigation and localization,” in IEEE International Conference
on Robotics and Automation (ICRA), Montreal, Quebec, Canada, May
2019, pp. 8958–8964.

[17] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” Robotics: Science and Systems, 2007.

[18] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in IEEE International Conference
on Robotics and Automation (ICRA), Orlando, Florida, USA, May
2006, pp. 2262–2269.

[19] J. Biswas, B. Coltin, and M. Veloso, “Corrective gradient refinement
for mobile robot localization,” in IEEE/RSJ International Conference
on Robotics and Automation (ICRA), Shanghai, China, May 2011, pp.
73–78.

[20] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, pp.
99–141, 05 2001.

8578

