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Abstract— In semantic mapping, which connects semantic
information to an environment map, it is a challenging task
for robots to deal with both local and global information of
environments. In addition, it is important to estimate seman-
tic information of unobserved areas from already acquired
partial observations in a newly visited environment. On the
other hand, previous studies on spatial concept formation
enabled a robot to relate multiple words to places from
bottom-up observations even when the vocabulary was not
provided beforehand. However, the robot could not transfer
global information related to the room arrangement between
semantic maps from other environments. In this paper, we
propose SpCoMapGAN, which generates the semantic map in
a newly visited environment by training an inference model
using previously estimated semantic maps. SpCoMapGAN uses
generative adversarial networks (GANs) to transfer semantic
information based on room arrangements to a newly visited
environment. Our proposed method assigns semantics to the
map of an unknown environment using the prior distribution
of the map trained in known environments and the multimodal
observations made in the unknown environment. We experi-
mentally show in simulation that SpCoMapGAN can use global
information for estimating the semantic map and is superior
to previous methods. Finally, we also demonstrate in a real
environment that SpCoMapGAN can accurately 1) deal with
local information, and 2) acquire the semantic information of
real places.

I. INTRODUCTION

In the field of autonomous mobile robots, such as cleaning
robots that operate in human living environments by esti-
mating the meaning of vocabulary related to places included
in human utterances, semantic mapping connects semantic
information to an environment map [1]. For example, for a
cleaning robot to execute the command “Clean kitchen and
John’s room” given by a user, the robot needs to understand
both where “kitchen” is, which is global information existing
in many common environments, and where “John’s room”
is, which is local information existing only in specific
environments. Therefore, accurate understanding of word
meanings is important for robots to perform tasks triggered
by communication with humans.
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Fig. 1. Overview the proposed semantic mapping method: SpCoMapGAN.

When performing semantic mapping, it is therefore better
for robots to deal with both of local and global information.
SpCoMapping, proposed in [2], defined clusters of multi-
modal information that a robot acquires as spatial concepts,
and was a spatial concept formation method that integrates
a Markov random field (MRF) for estimating the seman-
tic map and vocabulary representing places simultaneously.
However, SpCoMapping could not use global information
already acquired in other environments. In previous studies
which use global information, methods were proposed for
performing semantic mapping in newly visited environments
using neural networks trained with a large amount of data
related to places [3], [4], [5]. However, these above methods
could not deal with local information and faced the problem
that the vocabulary representing the places is determined
by the labels included in the training dataset. In addition,
previous studies could not deal with global information
related to the room arrangement in semantic maps. Therefore,
the robots could not estimate labels from the relationships
among regions.

In this study, our proposed method models the joint
distribution of the semantic map using previously estimated
semantic maps by the robot, and generates the semantic map
using that joint distribution in a newly visited environment.
The joint distribution of the semantic map is the joint distri-
bution of the class in each cell of the semantic map. However,
this joint distribution is difficult to model because of the high
number of dimensions. Therefore, we approximate it by an
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inference model.
In this regard, generative adversarial networks (GANs) [6],

which is a type of generative model, can approximate a real
data distribution using adversarial learning. A related study
on GANs, pix2pix [7], proposed a method that learns the
relationship between a pair of images using U-net [8] in the
generator part to enable line drawing coloring and image
completion. The semantic mapping task can be similarly
solved in the pix2pix framework by coloring the occupancy
grid map as a line drawing.

Hence, we propose a novel spatial concept formation-
based semantic mapping with GANs (SpCoMapGAN) which
estimates the semantic map by training an inference model in
the pix2pix framework using previously estimated semantic
maps and integrating it with SpCoMapping. Fig. 1 shows an
overview of our approach for semantic mapping combining
bottom-up spatial concepts with global knowledge.

The main contributions of this work are as follows:
1) We propose SpCoMapGAN that uses already estimated

semantic maps to model the joint distribution of the
semantic map, and applies that model to improve
the accuracy of semantic mapping in newly visited
environments.

2) We show that the joint distribution of each cell class,
which is difficult to model, can be approximated by an
inference model trained in the pix2pix framework.

II. RELATED WORK

A. Spatial concept formation and semantic mapping

SpCoMapping is an extended method of spatial concept
formation [9], [10], [11], [12], using a Markov random field
(MRF) for semantic mapping [2]. SpCoMapping learns the
vocabulary representing a place and a region simultaneously,
taking into account the shapes of the environment and
obstacles. Therefore, the robot associates multiple words to
places using local information, even if the vocabulary is not
provided beforehand. In this case, there is no need to provide
the vocabulary to the robot in advance, and the robot can deal
with words used by humans in the local environment. How-
ever, SpCoMapping cannot use global information already
acquired in other environments. It means that SpCoMapping
requires observation to estimate the vocabulary representing
the places, and the estimation accuracy of the labels of
regions without observation is lower than that of the regions
with observation.

In previous studies which uses global information, meth-
ods were proposed for performing semantic mapping in
newly visited environments using a network trained with a
large amount of data related to places [3], [4], [13], [14],
[15], [5]. These methods enable online semantic mapping
in newly visited environments by the mean of transfer
learning. Pal et al. proposed DEDUCE [5] which obtains
the semantic labels of regions from image features using
CNN and YOLO [16]. Because DEDUCE uses YOLO and
a CNN trained with Places365 [17], which is a large dataset
of place images, robots can obtain the semantic labels

without environment-specific training even in unknown en-
vironments. However, these methods cannot deal with local
information like “John’s room” and face the problem that
the vocabulary representing the place is determined by the
labels of the dataset used for the training.

Moreover, the global knowledge included in the semantic
maps previously estimated by the robot, such as the rela-
tionships among regions, cannot be transferred to a new
environment with these approaches. Therefore, our proposed
SpCoMapGAN method models the joint distribution of the
semantic map using already estimated maps by the robot,
and samples the semantic map using that joint distribution
in a newly visited environment.

B. Coloring line drawing with GANs

When performing semantic mapping, we want the robot
to maintain some features from the observation to the se-
mantic map, such as the occupancy grid, unobserved areas,
and semantic labels estimated from the observations in the
occupancy grid map. Therefore, semantic mapping can be
solved in the pix2pix [7] framework, which is one approach
of GANs [6], by considering the similar task of coloring
the occupancy grid map as a line drawing. Indeed pix2pix,
which learns the relationship between a pair of images
using U-net [8] in the generator part, enables line drawing
coloring and image completion. The pix2pix generator has
skip connections to extract the features of the original image
at the encoder by using the image as input and adding these
features at the decoder to the output of the generator.

More specifically, Mirza et al. proposed conditional GAN
(CGAN), which is a GANs method using conditional infor-
mation, to learn the relationships between the training and
condition data [18]. pix2pix is a method based on the CGAN
framework. Moreover, GANs face the problem of difficult
convergence, because two networks are trained simultane-
ously [19]. In this regard, Miyata et al. proposed spectral
normalization GAN (SNGAN) with improved performance
using spectral normalization as the discriminator weight [20].

III. SPCOMAPGAN: SPATIAL CONCEPT
FORMATION-BASED SEMANTIC MAPPING WITH GANS

We propose a novel spatial concept formation-based se-
mantic mapping with GANs (SpCoMapGAN) which esti-
mates the semantic map by training an inference model in
the pix2pix framework using previously estimated semantic
maps, and integrating it with SpCoMapping.

First, Section III-A introduces the overview of SpCoMap-
GAN. Next, Section III-B introduces an alternative simple
model for the spatial concept formation. Section III-C de-
scribes the training of the semantic map inference model in
the pix2pix framework. Finally, Section III-D describes the
semantic map estimation by SpCoMapGAN.

A. Overview

Fig. 2 presents the overview of the approximation of the
joint distribution of semantic map. SpCoMapGAN performs
semantic mapping according to the following procedure:
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Fig. 2. Overview of the approximation of the joint distribution of each
cell class in the semantic map. The joint distribution of each cell class of
the semantic map is high-dimensional and difficult to model. Therefore,
this joint distribution is approximated by an inference model trained in the
pix2pix framework.

1) We prepare a large number of sets of the semantic
maps CT and the spatial concepts Ctmp previously
estimated by robots.

2) An inference model of the semantic map is trained in
the pix2pix framework using CT as the training data
and Ctmp as the condition.

3) The robot estimates the spatial concepts Ctmp using
the observations made in a newly visited environment.

4) The semantic map of the newly visited environment
is generated by SpCoMapGAN using the spatial con-
cepts Ctmp and the inference model trained with the
previously estimated semantic maps.

In this method, two types of probabilistic generative model
of spatial concept formation are used according to the situa-
tion, namely SpCoMapGAN and an alternative simple model
of the spatial concept formation. The alternative simple
model of the spatial concept formation generates Ctmp which
is used as the condition when training the inference model in
the pix2pix framework. SpCoMapGAN trains the inference
model in the pix2pix framework using already estimated
semantic maps, and integrates it with the alternative simple
model of the spatial concept formation.

The graphical model of SpCoMapGAN is presented in
Fig. 3, and its variables are defined in Table I. Eq. (1)-(5)
describe the generative model of the proposed method where
Dir() represents the Dirichlet distribution and Mult() the
multinomial distribution.

C ∼ p(C | m, γ) (1)
θl ∼ Dir(χ) (2)
wl ∼ Dir(β) (3)
ft ∼ Mult(xt, θCi,j ) (4)
st ∼ Mult(xt, wCi,j ) (5)
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Fig. 3. Graphical model of SpCoMapGAN where gray nodes indicate
observation variables, and white nodes unobserved variables.

TABLE I
DEFINITIONS OF THE VARIABLES OF THE GRAPHICAL MODEL.

Symbol Definition
m Environment map
xt Robot self-position
ut Control data
zt Distance data
C Semantic map of the environment
γ Parameter of the prior distribution of the semantic map
ft Image features
st Word features (bag-of-words)
θl Parameter of the multinomial distribution for ft
wl Parameter of the multinomial distribution for st

α, β, χ Hyperparameters of prior distributions

B. Alternative simple model for spatial concept formation

The alternative simple model of the spatial concept forma-
tion used in SpCoMapGAN is the method for forming the
spatial concept Ctmp used as condition when training the
inference model with the pix2pix framework in the newly
visited environment. Any existing methods for spatial con-
cept formation can be used for the alternative simple model.
In this study, we use a simple spatial concept formation
model excluding the dependencies between the cells of the
semantic map.

The model parameters cn,i, π, θl, and wl are estimated by
Gibbs sampling, where cn,i represents the semantic labels of
the i-th cell on the semantic map of the n-th environment,
and π the parameter of the multinomial distribution for
cn,i. The parameters cn,i, π, θl, and wl are sampled by the
following equations:

t′ = {t | Cconvert(xn,t) = l, t ∈ (1 : T )}, (6)

cn,i ∼
∏
t′

Mult(fn,t′ | xn,t′ , θl=cn,i
)

Mult(sn,t′ | xn,t′ , wl=cn,i)Mult(cn,i | π), (7)

π ∼
∏

i∈Sfree

Mult(cn,i | π)Dir(π | α), (8)

θl ∼
∏
t′

Mult(fn,t′ | θl=cn,i
, xn,t′)Dir(θl | χ), (9)

wl ∼
∏
t′

Mult(sn,t′ | wl=cn,i
, xt‘)Dir(wl | β), (10)

where Sfree represents the number of cells gi of p(gi) > 0.5.
In this case, the occupancy grid map is 2D, i.e., xt is a vari-

able with xy coordinates represented by xt = (xt,x, xt,y).
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The semantic map has semantic labels on the unoccupied
area in the occupancy grid map. Both coordinate systems
are transformed by the following equation:

convert(xt) = Uxt,x + xt,y (11)

where U represents the width of the occupancy grid map.

C. Training the inference model

To train the inference model of the semantic map in the
pix2pix framework, a set of the semantic maps CT and the
spatial concepts Ctmp is used. CT and Ctmp are evaluated by
the robot in environments where semantic maps are already
estimated.

When the cell of the occupancy grid map with the index
i is defined as gi, the occupancy grid map m is represented
by m = {gi}, where (i ∈ S) and S represents the number
of cells in the occupancy grid map. Each gi is assigned
a binary occupancy value: gi = 1 if the cell is occupied
and gi = 0 if not. The semantic map is the occupancy grid
map with semantic labels in the unoccupied area, and can
be expressed by C = {cn,i}, where n is the index of the
training environment, and i the index of Sfree. Each cn,i has
a semantic label.

When training the networks with pix2pix, the input is a
semantic map in a 2D tensor of size height × width of
the map. The image data of the semantic map used for the
networks input are expressed as Cimage = {cimage,i}, where
cimage,i is a vector representation of the class labels of each
cell in the semantic map. Cimage is represented by L + 3
dimensions: the class type labels L plus three labels for the
occupancy grid, unobserved area, and unoccupied area. In
this representation, the occupancy grid, unobserved area, and
unoccupied area are expressed as one-hot vectors, whereas
the class labels are expressed as a categorical distribution.
This implementation makes the inference model training
easier to converge. The values of the occupancy grid and
unobserved area are not updated by the inference model, but
their information is used as an input to deal with the room
shapes in the semantic map. The function for converting the
spatial concept C into the input data format is defined by
the following equation:

Cimage = I(m, {xt}, C). (12)

When training the inference model of the semantic map in
the pix2pix framework, the objective function is expressed
as follows:

V (G) ∝ JSD(pdata(Cimage | σ) ‖ pg(Cimage | σ)), (13)

where JSD(A‖B) is the Jensen-Shannon divergence (JSD)
between distributions A and B, σ the condition, pdata(x) the
training data distribution, and pg(x) the distribution of the
data generated by the generator. CGAN is trained to estimate
the pg(Cimage | σ) that minimizes this objective function.

The output of the inference model is represented by
C ′

image = {c′image,i}. The values of the occupancy grid
and unobserved area are overwritten by the values used for
the inference model input because the environment map is

known. In cells that are either unoccupied area or class labels
in the input data, the index that is the largest in the output
vector is used to estimate the semantic label.

D. Semantic map estimation using Gibbs sampling

SpCoMapGAN estimates C, θl, and wl by Gibbs sam-
pling. First, the sampling equations for θl and wl are the
same as the model presented in Section III-B.

Next, the equation for sampling C is:

C ∼ p(C | m, γ, {ft}, {st}, {xt},Θ,W ), (14)

where

Ctmp = I(m, {xt}, argmax
C

p(C | π, {ft}, {st},Θ,W )).

(15)

It is necessary to determine π for the alternative simple
model. The number of cells is counted for each class from
the sampling result of C in the previous cycle to obtain the
multinomial distribution, and a pseudo π is calculated from
the Dirichlet distribution. Eq. (14) used for sampling the
spatial concept C is approximated by the inference model
described in Section III-C and can be written as follows:

C ∼ p(C|π,m, γ, {ft}, {st}, {xt},Θ,W )

≈ p(C|Ctmp, γ). (16)

Finally, Eq. (16) is expressed by the generator trained in
Eq. (13) approximately as follows:

p(C | Ctmp, γ) ≈ pg(Cimage | σ = Ctmp). (17)

IV. EXPERIMENTS

We verify the validity of the proposed method in simula-
tion and real environments.

A. Experimental dataset

We used the HouseExpo dataset [21], which is a large-
scale image dataset of 2D indoor layouts generated from the
SUNCG dataset [22]. It includes 25 types of class labels. We
used 5,000 images as training data, 200 images as model
validation data, and 100 images as test data. We used the
validation data to determine the parameters of the model.
As the observation obtained by the robot could be mixed
with noise, we prepared a noisy dataset to reproduce the
observation noise in addition to the normal dataset.

In the dataset, as the spatial concepts Ctmp estimated by
the robot could not be prepared, we randomly extracted la-
bels from the dataset to use them as the spatial concepts Ctmp

acquired by the robot. The percentage of labels extracted is
the assignment rate. The assignment rate of the training data
used for training was set to 10%. As pseudo observations, we
used place images from Places365 [17] and Google image
searches, and the word information from the place labels
in the dataset. Moreover, considering the noise when the
robot operates in the real environment, we prepared noisy
data in which wrong labels were mixed with labels randomly
extracted. These noisy data were used for both the training
and test data, and contained 10% of wrong labels.
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Fig. 4. A Gazebo simulation environment used in the experiment.

B. Training networks

We trained the semantic map inference model in the
pix2pix framework. The network structure used U-net [8] for
the generator, similarly to pix2pix [7]. For the semantic map-
ping, we want to maintain some features from the encoder to
the decoder, such as the occupancy grid, unobserved areas,
and semantic labels estimated from the observations in the
occupancy grid map. Therefore, we used skip connections in
the generator to retain the information.

We used SNGAN as the discriminator [20]. This spectral
normalization approach helps the convergence of GANs that
are difficult to train. Moreover, the spectral normalization
can improve the generator accuracy [23]. Therefore, we also
used spectral normalization in the generator.

The networks training time was 86.5 h for 20,000 epochs
when using an Intel Core i9 7980XE CPU combined with
a Nvidia Quadro GV100 GPU. The implementation was
realized on Keras and TensorFlow, the optimizer was Adam,
and the learning rate was 0.0002. The inference network
structure is shown in Fig. 2.

C. Experiment I: Semantic mapping in simulation

We conducted an experiment with the robot performing
semantic mapping in a simulation environment and compared
the accuracy with the results of previous studies.

1) Conditions: We constructed 10 environments with
Gazebo [24], randomly selected from the test data, to be used
as the simulation environments. In addition, we used a virtual
model of the Toyota Human Support Robot (HSR) [25].
Fig. 4 shows an example of our simulation environment. The
comparison included the following:

(A) SpCoMapGAN (proposed)
(B) SpCoMapping [2]
(C) SpCoA [11]
In the experiment, a human first moved the robot in

the simulation environment while it collected images and
positions. The words were sent directly to the robot using
Robot Operating System (ROS) [26] topics, assuming a state
in which speech recognition could be performed reliably.

We used accuracy and adjusted Rand index (ARI) in the
evaluation methods. We compared two types of accuracy:
word accuracy, which was the probability that the correct
place name would be obtained for each cell, and class
accuracy, which was the probability that the correct region
of the class was estimated for the place name. Moreover, the
precision and recall were obtained for the class estimation
results, and the f-measures were compared.

Furthermore, because we intended to demonstrate that it
was possible to estimate the information of the unobserved
region from the information of the observed region with the
proposed method using transfer learning, we performed the
experiment while deleting some of the label information of
the test data. We defined the time at which humans provided
the observation to the robot in the environment as T , and
the missing experimental data consisted of the observation
up to time T/2. T was the time took by the robot to visit
all rooms and generate a map in the environment.

2) Results: Fig. 5 shows examples of the estimated se-
mantic map for each method. Table II shows the evaluation
results of the experiments, where Acc. means accuracy.
Under both experimental conditions, the proposed method
obtained superior results in terms of word accuracy and ARI
compared to previous methods. As the word accuracy was
the probability that the correct place name was obtained for
each cell, the proposed method could accurately estimate the
name of the robot self-position in the entire environment
map, including pixels without observation, compared to
previous methods. In addition, the ARI indicated that each
pixel could be clustered correctly. Therefore, these results
demonstrate that the proposed method can estimate the shape
of spatial concepts more accurately than previous methods.
Furthermore, when comparing the experimental conditions
with and without missing observation, the differences in the
ARI were remarkable with missing observation. This result
indicates that SpCoMapGAN can improve the clustering
accuracy in the unobserved regions by using the information
of the observed regions.

In the experimental condition with no missing observa-
tion, the previous methods exhibited superior class accuracy.
However, the accuracy of the proposed method was superior
to that of previous methods under the missing observation.
This indicates that the proposed method can also estimate the
unobserved regions by transfer learning from the observed
environment. The accuracy of the proposed method was also
effective in the f-measure results, and the usefulness of the
proposed method was demonstrated in the accuracy rate and
coverage of the estimated range.

Moreover, the accuracy was better for the models trained
with noisy data than those trained without noise, whereas the
ARI was better for the models trained without noise than
those trained with noisy data. This demonstrates that the
accuracy is improved when correcting the clustering error
of the multimodal information by training with noisy data.
However, as the irregular shapes of the environment were
misunderstood as noise and erased, the ARI was decreased.

D. Experiment II: Semantic mapping in real space

We conducted an experiment to determine whether seman-
tic mapping could be performed in a real environment.

1) Conditions: The inference model was trained with
the HouseExpo dataset, without additional noise, using a
10% assignment rate. We used a laboratory room that repli-
cates a home as the experimental environment. Moreover,
we used the Toyota HSR as the robot. The place labels
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(b) SpCoMapGAN trained using 
the training data

(c) SpCoMapGAN trained using 
the noisy training data

(d) SpCoMapping (e) SpCoA(a) Ground truth

Fig. 5. Experiment I: Examples of map completion using each method. First row: Estimation using all observation. Second row: Estimation using missing
observation. In the map of (a), (b), and (c), the relationship among colors and labels is corresponding. In the map of (d) and (e), the relationship among
colors and labels is not corresponding, but the same color in the same map has the same label.

TABLE II
EXPERIMENT I: SEMANTIC MAPPING RESULTS IN SIMULATION.

Methods All observation Missing observation
word Acc. class Acc. class f1 ARI word Acc. class Acc. class f1 ARI

SpCoMapGAN 0.611 0.823 0.481 0.491 0.444 0.791 0.259 0.405
SpCoMapGAN (noise) 0.635 0.834 0.484 0.446 0.456 0.773 0.294 0.334
SpCoMapping 0.299 0.845 0.404 0.408 0.284 0.751 0.237 0.117
SpCoA 0.391 0.822 0.329 0.261 0.248 0.774 0.164 0.150

were living room, office, kitchen, dining room,
entryway, and meeting room. We used three sentences
extracted from the sentence collection of each place label
found in an English dictionary site1 as human utterance data.
Here, the proper nouns included in the human utterance data
were changed to use the same ones overall. The total number
of teachings was 124. The image information was extracted
using the AlexNet [27] CNN trained with the Places205
dataset [28], and the word information was weighted using
tf-idf [29] after converting the utterance data into bag-of-
words representations.

2) Results: Fig. 6 shows the semantic map estimated in
the real environment and the five words obtained in each
region in order of decreasing probability. The experimental
results demonstrate that SpCoMapGAN is useful for seman-
tic mapping, even in a real environment.

Regarding the acquired words, the robot associates mul-
tiple words to the place regions. For example, in the up-
per right table of Fig. 6 (blue area), in addition to the
meeting room originally given as a place label, words
strongly related to the meeting room, such as groups, team-
work, and brainstorming, were estimated at the top. This
means that a particular place can be indicated using words
other than the pre-prepared place labels by using local
information. Even when tf-idf was used, general words such
as she and was were mapped to regions, but as the number
of sentences in the utterance data increased, the weight and
probability of the general words decreased.

Focusing on the map segmentation, living room and
dining room were considered to be classified into the
same category because the image information was similar,

1https://www.yourdictionary.com/

as indicated in the lower left of Fig. 6(a).

V. CONCLUSIONS

We proposed SpCoMapGAN which performs semantic
mapping in a newly visited environment using a network
that approximates the joint distribution of the classes of all
cells trained by the semantic maps of a large number of
known environments in the pix2pix framework. Experiments
in a simulation environment indicated that the proposed
method could transfer features from the already estimated
semantic maps, such as the relationships between rooms,
to a newly visited environment. Moreover, the accuracy
was remarkably improved when estimating the unobserved
regions from information gathered in observed regions by
using the joint distribution of the classes of all cells.

However, although SpCoMapGAN was able to deal with
room shapes to a certain extent, regions that straddle walls
and obstacles were sometimes inaccurately estimated be-
cause occupancy grids and unobserved areas are input into
the network as images to model the dependence on all cells.
This problem could be solved by integrating MRF similarly
to SpCoMapping.

As future work, we will improve the model by integrating
SpCoMapGAN with SLAM so that semantic mapping can
be performed even when the map of the environment is
unknown.

APPENDIX

A. Experiment to compare the inference models to a rule-
based algorithm

We compared the accuracy of the semantic mapping with
a rule-based algorithm using several datasets to demonstrate
the validity of each inference model.
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she 4.21%
dining_room 3.83%

when 3.35%

was 3.11%

kitchen 2.91%

entryway 3.61%

about 2.59%

dollars 2.59%
paint 2.59%

later 2.59%

entryway 5.64%
create 4.03%

along 4.01%

structure 4.01%

overarching 4.01%

office 5.61%

too 4.18%

have 4.18%

computers 4.18%
repaired 4.16%

groups 3.44%
meeting_room 3.38%

teamwork 2.42%
audience 2.42%

brainstorming 2.42%
is 7.41%

education 4.93%
classroom 4.91%

where 4.90%
laboratory 4.89%

(a) living_room and dining_room

Fig. 6. Experiment II: Semantic map estimated in a real environment. The tables show the five words obtained in each region in decreasing probability.

1) Conditions: We prepared the HouseExpo dataset [21],
described in Section IV-A, and the HOME’S dataset [30].
The HOME’S dataset includes floor plan images of apart-
ments in Japan. It also includes six types of class labels. We
used 3,500 images as training data, 200 images as model
validation data, and 100 images as test data.

The comparison included the following: (i) SNGAN, (ii)
U-net, and (iii) nearest neighbor (NN). SNGAN and U-net
used weights trained on 10,000 iterations with the training
data. NN used the closest semantic label in the condition
data provided to the cells as the estimation result for each
cell.

The evaluation method included both accuracy and ARI.
For the test data, the assignment rates of the HouseExpo
were 2.5%, 5%, and 10%, whereas the assignment rates of
the HOME’S dataset were 2.5% and 10%. Both of these used
100 data with and without noise.

In this experiment, we also compared each result with
and without missing observation. In the information-missing
dataset, half of the labels for each environment were ran-
domly deleted.

Fig. 7 shows an example of the correct labels and condition
data under each experimental condition.

2) Results: Fig. 8 shows an example of each result of the
semantic mapping. Table III shows the evaluation results of
accuracy and ARI.

Comparing the results of SNGAN and U-net, which were
trained as inference models, and NN, which is a rule-based
algorithm, NN showed higher values when the assignment
rate in the HouseExpo dataset was lower. However, when
the assignment rate was high, the result of the inference
model improves the accuracy and ARI. Because the network
was trained using data with an assignment rate of 10%,
the accuracy of the inference model was increased as the
difference between the training and test data decreased.
With the HOME’S dataset, the performance when using the
inference model was superior than when using the rule-based

(a) 2.5% assignment rate test data (b) 10.0% assignment rate test data

(c) 10.0% assignment rate noisy 
test data

(d) Correct labels

Fig. 7. Test data under each condition and their correct labels.

algorithm at 2.5% and 10%. Because the HOME’S dataset
is made of real floor plans of existing houses, the network
is effective when performing semantic mapping in a real
environment.

For the two methods using the inference model, the
results of the SNGAN and U-net exhibited no significant
quantitative difference overall. However, when investigating
the data that were actually generated, U-net often supple-
mented information in the missing data area with labels
that existed in the environment, whereas SNGAN used the
information of labels that did not exist in the environment
from the surroundings. This can be confirmed from the fact
that the accuracy of SNGAN was superior to that of U-
net in the experimental results using HouseExpo at 10%,
when the assignment rate of the condition data was the
biggest and the estimation error of the missing data area
was reduced. As GANs have a discriminator that estimates
the distance between the distribution of the data generated
by the generator and that of the training data, we consider
that the performance of modeling the dependence between
each region in the environment, as if it was real, was high.
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