
Generating New Lower Abstract Task Operator using Grid-TLI

Shumpei Tokuda1, Mizuho Katayama1, Masaki Yamakita1, and Hiroyuki Oyama2

Abstract— We propose a method of subdividing robot tasks
into new lower abstract tasks. The description of robot tasks in
an abstract manner is effective for motion planning for complex
tasks and teaching robot movements in various environments.
However, a more efficient task description may be obtained by
using a lower abstraction according to the work environment.
We argue that a higher abstract task can be expressed as a
new lower abstract subtasks by applying Grid-based Signal
Temporal Inference (Grid-TLI). We show that a new task can
be completed using the Signal Temporal Logic formula for each
cluster. We demonstrated the efficiency of our method through
computer simulations using a 2-D security robot task.

I. INTRODUCTION

A. Background

Robots are widely used not only in industrial areas such
as factories, but also in commercial areas. Even in the
commercial area where robots have not been used in the past,
the movement to introduce robots is becoming popular, but
the difficulty of teaching tasks to robots in a real environment
is a major barrier to introducing robots. The major factors are
that it is not user-friendly to manually rewrite the motion plan
according to the robot’s work environment with conventional
methods, difficulties increase in proportion to the complexity
of the task, and it is necessary to conduct operation planning
by considering safety.

One approach that simplifies the teaching tasks is de-
scribing a complicated task by dividing it into simple tasks
such as Hierarchical Task and Motion Planning (TAMP)
[1][2][3]. With this method, a task is expressed by a pre-
condition and an end-condition after the task execution, and
a complex task is completed by finding a task sequence
that can reach a desired end condition from the current
state. These methods can separate the task into high-level
task planning and low-level controller design. They have
the advantage that task planning becomes easier, and that
complex tasks are represented by simple task sequences,
making them easier for the user to understand.

However, how to set the pre-conditions and end-conditions
of simple tasks is a problem. The problem depends on
the degree of abstraction of the task. This degree indicates
the complexity of the pre-conditions and end-conditions of
the task (e.g. the number of conditions). A higher task

1S.Tokuda, 1M.Katayama, and 1M.Yamakita are with the
Department of Systems and Control Engineering, Tokyo
Institute of Technology, 1-11-1 Oh-Okayama, Meguro, 151-
8551, Japan tokuda@ac.sc.e.titech.ac.jp,
katayama@ac.sc.e.titech.ac.jp,
yamakita@ac.sc.e.titech.ac.jp

2H.Oyama is with Data Science Research Laboratories, NEC Corpora-
tion, 1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa, Japan, 211-
8666. h.oyama@nec.com.

Fig. 1. Proposed method. Upper row is task sequence generated by high-
level task planner. Lower row is task sequence using new lower abstract
task generated with proposed method. It is effective to prepare task group
with high degree of abstraction in advance and systematically reduce degree
of abstraction of task according to environment.

abstraction has an advantage in that a robot can easily
respond to changes in its work environment, but it requires
low-level controllers for having higher performance. Usually
high-performance controllers require long computation times
and powerful computers. Reducing the abstraction level can
reduce the scale of the problem by adding information about
the work environment to the task conditions [4], thus reduc-
ing the performance required for the low-level controllers.
Therefore, it is effective to prepare a task group with a
high degree of abstraction in advance and systematically
reduce the degree of abstraction of the task according to
the environment.

B. Task Abstraction

There are cases in which the efficiency for operating
tasks is poor when using the assumed task description. For
example, consider a pick-and-place task for an object on a
table. If there is a constraint in the work environment, for
example, the left and right sides of the table are separated at
the center of the table. The effects of the constraint on the
task execution may differ depending on the arrangement of
the objects. In this case, it is more efficient to divide the task
into “pick the object on the right” and “pick the object on
the left” with a lower abstract task description than to use
the task with a higher abstract task description, “Picking an
object”.

C. Safety

Linear Temporal Logic (LTL) and Signal Temporal Logic
(STL) have been proposed as task description methods
to guarantee the safety of operations [5][6][7]. It is also
expected that it will be possible to translate instructions in

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6578

natural language into LTL [8][9]. By describing tasks in
LTL or STL, it is possible to ensure safety by checking in
advance that rules stored as common sense and that newly
acquired task rules are consistent with each other. However,
checking that the acquired tasks are consistent is generally
very computationally expensive [10].

D. Contributions

We propose a method for generating new lower abstract
tasks from higher abstract tasks. There are two main contri-
butions in this paper:

1) Generation of new tasks using Grid-based Signal Tem-
poral Inference (Grid-TLI)
Our method generates new tasks by defining the tra-
jectory cluster as new tasks by using Grid-TLI [11].

2) Trajectory optimization using Grid-TLI
We propose a trajectory optimization method using
Grid-TLI for low-level controller.

With the proposed method, we apply Grid-TLI to the
trajectories of a robot obtained by the task description with a
higher abstraction and obtain the clusters of the trajectories
represented by STL. We show that each resulting cluster can
be represented as a new task; consequently, one task can be
represented as multiple lower abstract task descriptions.

There are several algorithms of trajectory classification
using STL [12][13], but Grid-TLI is suitable for the proposed
method because the trajectory does not need to be labeled,
unlike other algorithms.

Since the task is expressed as an STL condition, we can
combine it with other STL conditions obtained as prior
information. We argue that this can be used as an initial guess
for warm-starting trajectory optimization using the obtained
STL conditions, and a higher abstract task can be executed
efficiently.

II. RELATED WORK

There have been many studies on robot task planning
[1][2][14][15]. There are roughly two types of low-level
controllers: the planning algorithm and feedback control. The
planning algorithm solves a task as a trajectory optimization
problem to obtain the trajectory of the system that can
complete the task [1][2]. Feedback control, however, sets a
policy in advance so that the task can be completed using the
input obtained by that policy [14][15]. In contrast to feedback
control, the planning algorithm incurs high computational
cost; while guaranteeing the optimality of the trajectory.
Therefore, it is important to generate a good initial guess
using prior information and perform warm-start.

Related methods that define the behavior of robots using
LTL or STL have been proposed [5][16][17][18][19][20].
In [16], the motion planner uses LTL, but the path of the
robot is generated by rapidly expanding random tree (RRT),
and selects the one that satisfies the definition of LTL. In
[5], the trajectory is calculated from the LTL and the given
system dynamics without the help of the planning algorithm.
However, since the mixed integer programming problem
(MILP) is used as the optimization method, the system needs

to be converted to a discrete time linear system. Advisory
Temporal Logic Inference [20] generates STL conditions
from successful and failed trajectories when the robot is
operated by a human to assist the execution of the motion.
With this method, STL conditions are used and the time-
varying constraint conditions, such as moving obstacles, can
be expressed. However, this method requires the labeling of
the trajectory in advance, similar to trajectory classification
using other TLIs [12][13].

With the proposed method, trajectories can be clustered
using only executable trajectories by Grid-TLI. Grid-TLI has
the advantage that clustering trajectories and generating STL
conditions for each cluster can be done simultaneously. Also,
by using a new task with a lower abstract task, this new task
can be executed efficiently by carrying out warm-start or
limiting the areas of the solution.

III. PRELIMINARIES

A. Notation

We consider a continuous-time system of the form:

ẋ = f(x, u) (1)
y = g(x, u) (2)

where x ∈ X ⊆ Rnx are the continues states, u ∈ U ⊆
Rnu are control inputs, and y ∈ Y ⊆ Rm are outputs. For
t1, t2 ∈ R, we write the interval [t1, ∞) as R≥t1 and [t1, t2]
as {t ∈ R | t1 ≤ t, t ≤ t2}. We denote a trajectory of a
system as s ∈ S, s : R≤0 → Rn and the set of them as S.

B. Task Description

As in a previus study [14], we represent a high-level task
using three conditions: entry LP , runnable LR, and expected
LE . The LP condition is necessary for operating a task, LR

continues the task motion, LE is expected to be satisfied
after task execution. For example, the “Picking” task for a
manipulator is described as
Picking :

LP : Object Exists, Hand is Empty
LR : Object Exists, Hand is Empty
LE : Object is in Hand.

C. Optimization-based Motion Planning

Optimization-based Motion Planning is a method of using
a trajectory optimization method as a low-level controller.
The Lp, LR, and LE conditions of each task are converted
into the following inequality constraint:

LP → hP (x(0)) = 0, gP (y(0)) ≤ 0 (3)

LR → ∀t, hR(y(t)) = 0, gR(y(t)) ≤ 0 (4)
LE → hE(y(tE)) = 0, gE(y(tE)) ≤ 0, (5)

where tE is the terminal time of the task, hP , hR, hE
are functions of equality constraint that return vectors, and
gP , gR, gE are functions of inequality constraint that return
vectors.

6579

We can obtain the trajectory that completes the task by
solving the following trajectory optimization problem:

min
x, u, t

{∫ T

0

c(x, u, t)dt+ cE(x(tE))

}
(6)

s.t.
ẋ = f(x, u)

y = g(x, u)

hP (y(0)) = 0, gP (y(0)) ≤ 0 (7)
hR(y(t)) = 0, gR(y(t)) ≤ 0

hE(y(tE)) = 0, gE(y(tE)) ≤ 0

where c(x, u, t) is a stage cost function and cE(x(tE)) is a
terminal cost function.

D. Signal Temporal Logic

1) Preliminary Definitions: we consider STL formulas
defined recursively according to the following grammar:

ϕ := πµ | ¬µ |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |G[a,b] ϕ |ϕ1 U[a,b] ϕ2
(8)

where πµ is an atomic predicate X → B whose truth value is
determined by the sign of a function µ : X → R, and ϕ1, ϕ2
are STL formulas. The fact that the signal s satisfies an STL
formula ϕ is denoted as s |= ϕ. The s |= ϕ1 U[a,b] ϕ2 if
ϕ1 holds every time before ϕ2 holds, and s |= G[a,b] ϕ if
ϕ holds every time between a and b. Formally, the validity
of ϕ with respect to s at time t, denoted as (s, t) is defined
inductively as follows

(s, t) |= πµ ⇐⇒ µ(x(t)) > 0 (9)
(s, t) |= ¬ϕ ⇐⇒ ¬(s, t) |= ϕ (10)
(s, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (s, t) |= ϕ1 ∧ (s, t) |= ϕ2 (11)
(s, t) |= ϕ1 ∨ ϕ2 ⇐⇒ (s, t) |= ϕ1 ∨ (s, t) |= ϕ2 (12)

(s, t) |= G[a,b] ϕ ⇐⇒ ∀tl ∈ [t+ a, t+ b] , (s, tl) |= ϕ
(13)

(s, t) |= ϕ1 U[a,b] ϕ2 ⇐⇒ (14)
∃t′ ∈ [a+ t, t+ b] s.t. (s, t′) |= ϕ2

∧∀t′′ ∈ [t, t′] , (s, t′′) |= ϕ1.

The robust degree for STL is defined as a real-valued
function ρ of s and t such that (s, t) |= ϕ ≡ ρϕ(x, t) >
0 [21]. We call ρϕ the rubustness function of ϕ. This
is computed recursively. The complete robust semantics is
defined as follows:

ρµ(s, t) = µ(s(t))

ρ¬µ(s, t) = −µ(s(t))
ρϕ1∧ϕ2(s, t) = min(ρϕ1(s, t), ρϕ2(s, t))

ρϕ1∨ϕ2(s, t) = max(ρϕ1(s, t), ρϕ2(s, t))

ρG[a,b]ϕ(s, t) = min
t′∈[t+a,t+b]

ρϕ(s, t′)

ρϕ1U[a, b]ϕ2(s, t) = max
t′∈[a+t, b+t]

(min(ρϕ1(s, t′), (15)

min
t′′∈[t, t′]

ρϕ2(s, t′′)). (16)

E. Grid-based Signal Temporal Logic Inference

Grid-TLI [11] is an algorithm that generates STL formulas
from a given set of training signals. We explain Grid-TLI for
multi-dimensional signals.

1) Notations: The notation R is an n + 1 -dimensional
closed rectangular region given signal value codomain
Rn and time domain R≥0. Region R is bounded by
[x1min, x

1
max] × · · · × [xnmin, x

n
max] × [0, tmax] ⊂ Rn ×

R≥0, where ximin, x
i
max ∈ R, ximin < ximax, i =

1, 2 . . . , n, and tmax ∈ R>0. Region R is partitioned
into a grid made of rectangular cells. As in [11],
we use the object oriented dot notation (“.”) to ref-
erence the properties. For example, the properties of
R are described as R.xmax, R.xmin, R.tmax, xmax =
(x1max, . . . , x

n
max), xmin = (x1min, . . . , x

n
min).

A cell g is a rectangular bounding box in Rn × R≥0

represented with a tuple (x, t, xinc, tinc), where (x, t) ∈
Rn × R≥0 is the minimum point and minimum time
defined as x = (x1, . . . , xn), s.t. ∀x′, ∃j, xj < x′j , t =
minτ∈g.IT τ, g.IT := [t, t + tinc], and xinc ∈ Rn

>0 and
tinc ∈ R>0 are a set of the lengths of the sides of the box
along the value and one of time dimensions. Therefore, g is
bounded between [xi, xi+xiinc] × . . . [xn, xn+xninc] along
the value dimensions and between [t, t+ tinc] along the time
dimension. As with R, the properties of g are described as
g.x, g.y, g.xinc, g.tinc, g.IT .

Given a g and a set of signals S, we define “g is covered
by S ” if and only if at least one signal s ∈ S has a non-
empty intersection with g and described as g(s) |= ⊤. The
properties of s is described as s.tmax, s.g, where s.tmax is
the end time of s and s.g is the set of cells covered by s. We
define the following property of an s, ∀t ≥ s.tmax, s(t) :=
s(s.tmax).We denote the set of cells as Γ.

2) Algorithm of Grid-TLI: With Grid-TLI [11], all signal
exists until tmax. In our case, each signal has different end
times. Therefore, we use an extended version of Grid-TLI
[11].

Our Grid-TLI has four parameters: xt, tt, cx, ct, where
xt = (x1t , . . . , x

n
t) ∈ Rn, tt ∈ R are the signal and time

thresholds and define minimum values of g.xinc, g.tinc for
all cells. The cx = (cx1 , . . . , cxn) ∈ Rn, ct ∈ R are the
cluster threshold and affect the number of clusters.

Grid-TLI has four main steps: 1) find cells covered by
each signal 2) cluster signals, 3) simplify the STL formula
for each cluster, and 4) map the clusters to the final STL
formula.

In the first step, we set the properties of R and unit cell
gu where gu(x, t, xt, tt), and find the cells coverd by each
signal.

In the second step, we cluster the signals in S to k subset
(S1, . . . , Sk) by cluster thresholds cx, ct. We define “two
signals s1 and s2 are in same cluster Si” as that s1 is in
Si and there exists s′ ∈ Si such that s2 and s′ satisfy
the following relations, for all t ∈ [0, s2.tmax], there exists
gp, gq such that t ∈ gp.IT , gp(s2) |= ⊤, t ∈ gq.IT , gq(s

′) |=

6580

⊤, and{
gp.x

i − (gq.x
i + gq.x

i
inc) ≤ cix if gp.x

i ≥ gq.x
i,

gq.x
i − (gp.x

i + gp.x
i
inc) ≤ cix if gq.x

i > gp.x
i.

(17)

|s2.tmax − s′.tmax| ≤ ct. (18)

In the third and fourth steps, we use Algorithm 3 in [11].
Finally, we obtain STL formula Φi =

∧
j G[τ0j , τ1j](s(t) ∈

gj) for each cluster and the complete formula assembled by
disjunction of the formula obtained for each cluster: Φ =
Φ1 ∨ Φ2 ∨ · · · ∨ Φk.

IV. PROPOSED METHOD

In this section, we present a proposed method for subdivid-
ing tasks. The flow of the proposed method is shown in Fig.
2. It consists of three steps. In the first step, we apply task
planner to existing higher abstract tasks, and the trajectory
for each task is generated using the low-level controller for
various situations using the task sequence. In the second step,
we apply clustering using Grid-TLI to the trajectories of each
task generated in the first step. Finally, in the third step, the
task is separated into new tasks using the STL conditions of
the cluster obtained in the second step.

1) High-Level Task Planner and Low-Level Controller:
The task planner uses a method in which tasks are rep-
resented with a higher abstraction. For example, suppose
that tasks are represented in the Planning Domain Definition
Language (PDDL) [22], LTL, and STL. The method for
generating task sequence can use a method such as Stanford
Research Institute Problem Solver (STRIPS) [23].

A. Clustering Task Trajectory

We apply Grid-TLI to the trajectories obtained in step 1.
The number of clusters and the length of STL formula for
each cluster depends on the parameters of Grid-TLI.

The STL condition for the obtained cluster Γj is Φj =
ϕj1 ∧ · · · ∧ ϕjnj , ϕjl = G[τj

0 l
, τj

1 l
] (y ∈ gl) .

Fig. 2. Flow of the proposed method. The proposed method consists of
three steps: 1) we apply task planner to existing higher abstract tasks, and
trajectory for each task is generated using low-level controller for various
situations using task sequence, 2) we apply clustering using Grid-TLI to
trajectories of each task generated in first step, 3) task is separated into new
tasks using STL conditions of cluster obtained in second step.

B. Using Subtask
Using the STL formula obtained in Step 2, the precondi-

tions of the new task are expressed as follows:

ψ
Li

p

j = ψLi
p ∧ ϕj1 (19)

where ψLi
p is the precondition of task i. We define a set of

initial condition of subtask in task i as Ψi = [ψ
Li

p

1 , . . . , ψ
Li

p

k].
Algorithm 1 shows the optimization-based motion plan-

ning algorithm using the newly generated subtask. The
flow is to first check which the subtask satisfies the initial
condition, and obtain the trajectory of the task by solving the
trajectory optimization problem using the central trajectory
of the cluster of the subtask as the initial guess.

First, at line 1 of Algorithm 1, check whether the ini-
tial state belongs to the cluster from the initial condition
of Eq. (19). Algorithm 2 shows Select SubTask. t0, y0 is
the initial time and initial output of the Task. Output of
Select SubTask γi can be considered in two cases. The first
is when the number of elements of γi is 1 or more. In this
case, the central trajectory of the cluster in γi with the largest
value of robustness function ρset(i) is used as the inital guess
for the trajectory optimization problem. The second is when
γi is 0. When γi is 0, yi0 means that the initial condition of
any subtask is not satisfied. In this case, solve the trajectory
optimization problem with the central trajectory of the cluster
with the largest value of robustness function ρset(i) as the
inital guess. This allows us to efficiently obtain the trajectory
that for completing the original task.

C. Approximation Grid-TLI
Expressing the STL condition as a continuous func-

tion is effective when used for control. The ϕ =
G[τ0j , τ1j] (y ∈ gj) is approximated using the following
continuous function and constraints:

(t, y) |= ϕ (20)

≈ Gϕ(t, y) ≥ δ > 0,

Gϕ(t, y) = S(τ0j , τ1j , ϵt, t)

m∏
i=1

S(yli, yui, ϵyi , yi),

(21)

S(c1, c2, ϵ, x) =
1

1 + e(−α(x−(c1−ϵ)))

1

1 + e(α(x−(c2+ϵ)))
,

(22)

where ϵt, ϵyi , δ are relaxation parameters. This function is
(t, y) |= G[τ0j , τ1j] (y ∈ gj) with (t, y), and Gϕ(t, y) is
a function that returns ≈ 1. Using this function, the STL
condition for Γi can be written as

GΦi(t, y) =

n∑
j=1

Gϕij (t, y). (23)

V. IMPLEMENTATION AND SIMULATION
We applied the proposed method to simulations of se-

curity robot tasks. In the simulations, we implemented the
ICLOCS2 [24] framework in MATLAB R⃝ to solve the tra-
jectory optimization problem, and used IPOPT [25].

6581

Algorithm 1 Optimization-based Motion Planning Algo-
rithm
Require: t0, y0, Task, Ψ, Γ
Ensure: x∗, u∗

1: [γ, ρset] = Select SubTask(t0, y0, Ψ)
2: if γ is empty then
3: indexρmax

= arg max
i∈{1, ..., k}

(ρset,i)

4: else
5: indexρmax

= arg max
i∈γ

(ρset,i)

6: end if
7: ỹ = Initial Guess(Γindexρmax

)
8: Slove x∗, u∗ using the trajectory optimization warm-

started by ỹ for Task

Algorithm 2 Select SubTask
Input: t0, y0, Ψi

Output: γ, ρset
1: for l := 1 to k do
2: if y0 |= ψ

Li
p

j then
3: γ.insert(l)
4: end if
5: ρset.insert(ρ

ϕj1(y0, t0))
6: end for

A. System of Security Robots

Consider the task when a security robot finds a suspicious
individual or object. When a suspicious object appears on the
premises, the security robot needs to approach the object to
confirm its identity and possibly eliminate it. Security robots
often have areas into which they are prohibited from entering,
such as a private area. We show the work environment of
considering these situations in Fig. 3.

The security robots are indicated as blue triangles and
suspicious objects are indicated as green triangles. The red
rectangular area is the private area into which security
robots cannot enter. The dynamics of the security robot are
described as

ẋ = −v sin(θ) (24)
ẏ = v cos(θ) (25)

θ̇ = ω (26)
v̇ = u1 (27)
ω̇ = u2, (28)

where x, y are the coordinates of the robot, θ is the posture
of the robot, v is speed of the robot, and ω is the angular
velocity of the attitude angle of the robot.

Considering the case in which a suspicious object moves,
the dynamics of the suspicious object are set as

ẋo = v1 (29)
ẏo = v2, (30)

where xo, yo are the coordinates of the object and v1, v2
are the speeds of the object, which were constant during

simulation. We assumed xo(0) = −1, yo(0) ∈ [0.5, 1], v1 ∈
[0, 1], v2 = 0.

B. Task

We define the task of the security robot as follows:
Catch :

LP : Object Exists, ¬Enter Private Area
LR : ¬Enter Private Area
LE : Contact Object,

where ¬Enter Private Area in LR indicates that the
security robot does not always enter the private area, and
LE means that the security robot has caught a suspicious
object at the end of the task. In other words, if a suspicious
object is in the private area, the security robot cannot catch
it.

C. Sampling Trajectory

Using the trajectory optimization method as a low-level
controller, we generated the trajectory of the task when
y(0), v1 was changed. The initial values of other states were
(x, y, θ, v, ω)(0) = (0, 0, 0, 0, 0), xo(0) = −1, v2 =
0. Since the optimization problem for this task tends to
converge to the local infeasible point, it is necessary to
use global search. Therefore, we repeatedly solved the op-
timization problem while changing the initial guess until a
solution was obtained for the initial state. We needed to solve
the trajectory optimization problem twice on average. The
generated trajectory is shown in Fig. 4.

D. Clustering using Grid-TLI

We applied clustering using Grid-TLI to the
sampled trajectories. The output was defined as
[x, y, θ, v, ω, xo, yo, v1, v2]. Grid-TLI parameters were
manually determined based on number of clusters and the
number of STL conditions. The parameters used are shown
in Table. I. We show the trajectories after clustering in Fig.
4. The trajectories were classified into eight clusters using
these parameters. Then we checked the STL formula for each
cluster. For example, the entry condition to v1 of the yellow
trajectory’s cluster was G[0, 0.5](0.2 ≤ v1 ≤ 1) and that of
the brown trajectory’s cluster was G[0, 0.5](0.0 ≤ v1 ≤ 0.2).
It shows that “the security robot could catch the suspicious
object before the suspicious object reached the private area
when the suspicious object was moving slowly, but when
the suspicious object was fast, the security robot needed
to catch the suspicious object after the object passed the
private area”. Therefore, we can consider new lower abstract
tasks “catch before the object reaches private area” and
“catch after the object passed the private area”.

E. Using Subtask

The trajectory generated from Algorithm 1 using the
obtained subtask is shown in Fig. 5 and supplemental video.
The rectangular area shows the area that satisfies the STL
condition of each subtask. A trajectory that completed the
task is almost generated by solving the trajectory optimiza-
tion problem once.

6582

F. Using LR of Subtask

We can consider an STL formula for each cluster as an LR

condition of the subtask. We compared Algorithm 1 and that
using approximated Grid-TLI constraints of LR conditions
of the subtask. The average computation times of solving the
trajectory optimization problem when generating initial state
of y and v1 at random were 6.21s and 9.15s, and the success
rates to solve the trajectory optimization problem were 97%
and 62%. The performance when using LR depends on the
relaxation parameters ϵt, ϵyi

, δ because approximated Grid-
TLI constraints cause computational complexity.

Fig. 3. Work environment of security robot. Security robot is indicated
with blue triangle. Suspicious object is indicated with green triangle. Red
rectangular area is private area into which security robots cannot enter.

TABLE I
PARAMETERS FOR GRID-TLI

tinc xinc

0.5 0.1 0.1 π/180 0.1 0.1 0.2 0.2 0.1 0.1
ct cx

4 0.2 0.2 π/18 0.2 0.2 1 1 1 1

Fig. 4. Left : trajectories generated by solving optimization problem of
higher abstract task. Right : trajectories after clustering using Grid-TLI.
Trajectories are clustered into 8 clusters by using Grid-TLI. Trajectories of
same color belong to same cluster.

VI. CONCLUSIONS

We showed that higher abstract tasks are subdivided into
new lower abstract tasks by using the STL condition of each
cluster generated by clustering the trajectories using Grid-
TLI. The proposed method is effective for tasks that require
a search of a global solution, such as the case study in
discussed in Section 5. The proposed method may be also
effective in situations where multiple agents execute tasks
simultaneously. When multiple agents execute tasks at the

Fig. 5. Trajectories generated by solving warm-started optimization
problem. Rectangles are STL conditions for cluster of subtasks. Left :
trajectory that can be considered as new task “catch before the object reaches
private area”. Right : trajectory that can be considered as new task “catch
after the object passes by private area”. Initial output satisfies pre-conditions
of two subtasks.

same time, it is important to find the tasks of each agent
efficiently.

Future work is to automatically generate and optimize the
parameters of Grid-TLI. And in the case study of this paper,
the performance of proposed method with approximated
Grid-TLI constraints of LR is worse than without. Therefore
we need to use more computationally efficient arroximation
for LR like [17]. In this paper, we used the trajectory
optimization method as the low-level controller. We will also
verify a case using feedback controller.

ACKNOWLEDGMENTS

We would like to thank NEC Corporation for support in
this research.

REFERENCES

[1] L. P. Kaelbling, T. Lozano-Pérez, ”Hierarchical task and motion
planning in the now,” IEEE International Conference on Robotics and
Automation, 2011.

[2] M. Toussaint, ”Logic-Geometric Programming: An Optimization-
Based Approach to Combined Task and Motion Planning,” Interna-
tional Joint Conferences on Artificial Intelligence, 2015.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, P. Abbeel,
”Combined Task and Motion Planning Through an Extensible Planner-
Independent Interface Layer,” IEEE International Conference on
Robotics and Automation, 2014.

[4] T. Lozano-Pérez, L. P. Kaelbling, ”A constraint-based method for
solving sequential manipulation planning problems,” IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2014.

[5] S. Karaman, R. G. Sanfelice and E. Frazzoli, ”Optimal Control
of Mixed Logical Dynamical Systems with Linear Temporal Logic
Specifications,” Proc. of 47th IEEE Conference on Decision and
Control, 2008.

[6] O. Maler and D. Nickovic, ”Monitoring temporal properties of con-
tinuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Springer, pp.152-166, 2004.

[7] S. Sadraddini and C. Belta, ”Robust Temporal Logic Model Predictive
Control,” Proc. of 5 th Annual Allerton Conference, Allerton House,
UIUC, Illinois, 2015.

[8] A. P. Nikora, and G. Balcom, ”Automated Identification of LTL
Patterns in Natural Language Requirements,” Proc. of 10 th Int.
Symposium on Software Reliability Engineering, 2009.

[9] S.Ghosh et. al., ”SRSENAL:Automatic Requirements Specification
Extraction from Natural Language,” arXiv:1403.3142v3[cs.CL], 2016.

[10] Michael Bauland et.al., ”The Tractability of Model-Checking for
LTL:The Good, the Bad, and the Ugly Fragments,” arXiv:0805.0498
[cs.LO], 2008.

[11] T. Lozano-Pérez, L. P. Kaelbling, ”Grid-Based Temporal Logic Infer-
ence,” IEEE 56th Annual Conference on Decision and Control, 2017.

6583

[12] Z. Kong, A. Jones, A. I. M. Ayala, E. A. Gol, C. Belta, ”Temporal
Logic Inference for Classification and Prediction from Data,” HSCC
’14: Proceedings of the 17th international conference on Hybrid
systems: computation and control, pp.273-282, 2014.

[13] Z. Xu, C. Belta, A. Julius, ”Temporal Logic Inference with Prior
Information: An Application to Robot Arm Movements,” in Proc.
IFAC Conf. Anal. Design Hybrid Syst. (ADHS), vol.48. no.27, pp.141-
146, 2015.

[14] C. Paxton, N. Ratliff, C. Eppner, D. Fox, ”Representing Robot Task
Plans as Robust Logical-Dynamical Systems,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2019.

[15] E. Pignat and S. Calinon, ”Bayesian Gaussian Mixture Model for
Robotic Policy Imitation,” in IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4452-4458, Oct. 2019.

[16] P. Nilsson and A. D. Ames ”Barrier Functions: Bridging the Gap
between Planning from Specifications and Safety-Critical Control,”
57th IEEE Conference on Decision on Control, 2018.

[17] K. Garg and D. Panagou, ”Control-Lyapunov and Control-Barrier
Functions based Quadratic Program for Spatio-temporal Specifica-
tions”, 58th IEEE Conference on Decision on Control, 2019.

[18] J. A. DeCastro, V. Raman, H. Kress-Gazit, ”Dynamics-driven adaptive
abstraction for reactive high-level mission and motion planning,” IEEE
International Conference on Robotics and Automation, 2015.

[19] Y. V. Pant, H. Abbas, R. Quaye, R. Mangharam, ”Fly-by-Logic:
Control of Multi-Drone Fleets with Temporal Logic Objectives,”
9th ACM/IEEE International Conference on Cyber-Physical Systems,
2018.

[20] Z. Xu, S. Saha, B. Hu, A. A. Julius, ”Advisory Temporal Logic
Inference and Controller Design for Semiautonomous Robots,” in
IEEE Transactions on Automation Science and Engineering, vol.16,
pp.459-477, 2019.

[21] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, S. A. Seshia, ”Model predictive control with signal tem-
poral logic specifications,” 53rd IEEE Conference on Decision and
Control, 2014.

[22] M. Fox, D. Long, ”PDDL2.1 : An Extension to pddl for Expressing
Temporal Planning Domains,” Journal of Artificial Intelligence Re-
search 20, pp.61-124, 2003.

[23] R. E. Fikes, N. J. Nilsson, ”STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial intelligence, vol.2,
no.3-4, pp.189-208, 1971.

[24] Y. Nie, O. Faqir, E. C. Kerrigan, ”ICLOCS2: Try this Optimal Control
Problem Solver Before you Try the Rest,” UKACC 12th International
Conference on Control (CONTROL), 2018.

[25] A. Wächter, L. T. Biegler, ”On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol.106, pp.25-57, 2006.

6584

