
Deep Imitation Learning of Sequential Fabric Smoothing

From an Algorithmic Supervisor

Daniel Seita1, Aditya Ganapathi1, Ryan Hoque1, Minho Hwang1, Edward Cen1,
Ajay Kumar Tanwani1, Ashwin Balakrishna1, Brijen Thananjeyan1, Jeffrey Ichnowski1,

Nawid Jamali2, Katsu Yamane2, Soshi Iba2, John Canny1, Ken Goldberg1

Abstract— Sequential pulling policies to flatten and smooth

fabrics have applications from surgery to manufacturing to

home tasks such as bed making and folding clothes. Due

to the complexity of fabric states and dynamics, we apply

deep imitation learning to learn policies that, given color

(RGB), depth (D), or combined color-depth (RGBD) images

of a rectangular fabric sample, estimate pick points and

pull vectors to spread the fabric to maximize coverage. To

generate data, we develop a fabric simulator and an algorithmic

supervisor that has access to complete state information. We

train policies in simulation using domain randomization and

dataset aggregation (DAgger) on three tiers of difficulty in the

initial randomized configuration. We present results comparing

five baseline policies to learned policies and report systematic

comparisons of RGB vs D vs RGBD images as inputs. In

simulation, learned policies achieve comparable or superior

performance to analytic baselines. In 180 physical experiments

with the da Vinci Research Kit (dVRK) surgical robot, RGBD

policies trained in simulation attain coverage of 83% to 95%

depending on difficulty tier, suggesting that effective fabric

smoothing policies can be learned from an algorithmic su-

pervisor and that depth sensing is a valuable addition to

color alone. Supplementary material is available at https:
//sites.google.com/view/fabric-smoothing.

I. INTRODUCTION

Robot manipulation of fabric has applications in senior
care and dressing assistance [13], [14], [15], sewing [39],
ironing [23], laundry folding [24], [28], [42], [54], fabric
upholstery manufacturing [31], [48], and handling gauze
in robotic surgery [46]. However, fabric manipulation is
challenging due to its infinite dimensional configuration
space and unknown dynamics.

We consider the task of transforming fabric from a
rumpled and highly disordered starting configuration to a
smooth configuration via a series of grasp and pull actions.
We explore a deep imitation learning approach based on
a Finite Element Method (FEM) fabric simulator with an
algorithmic supervisor and use DAgger [36] to train policies.
Using color and camera domain randomization [37], [47],
learned policies are evaluated in simulation and in physical
experiments with the da Vinci Research Kit (dVRK) surgical
robot [19]. Figure 1 shows examples of learned smoothing
episodes in simulation and the physical robot.

This paper contributes: (1) an open-source simulation
environment and dataset for evaluation of fabric smoothing

1AUTOLAB at the University of California, Berkeley, USA.
2Honda Research Institute, USA.
Correspondence to seita@berkeley.edu

Fig. 1: Learned policies executed in simulation and with a physical
da Vinci surgical robot, with actions indicated from the overlaid
arrows. Policies are learned in simulation using DAgger with an
algorithmic supervisor that has full state information, using struc-
tured domain randomization with color and/or depth images. The
4-action smoothing episode in simulation (top) increases coverage
from 43% to 95%. The 7-action episode on the physical da Vinci
robot (bottom) increases coverage from 49% to 92%.

with three difficulty tiers of initial fabric state complexity,
(2) deep imitation learning of fabric smoothing policies
from an algorithmic supervisor using a sequence of pick
and pull actions, and (3) transfer to physical experiments
on a da Vinci surgical robot with comparisons of coverage
performance using color (RGB), depth (D), or RGBD input
images.

II. RELATED WORK

Well-known research on robotic fabric manipulation [5],
[38], [8] uses bilateral robots and gravity to expose corners.
Osawa et al. [30] proposed a method of iteratively re-
grasping the lowest hanging point of a fabric to flatten
and classify fabrics. Subsequently, Kita et al. [20], [21]
used a deformable object model to simulate fabric sus-
pended in the air, allowing the second gripper to grasp
at a desired point. Follow-up work generalized to a wider
variety of initial configurations of new fabrics. In particular,
Maitin-Shepard et al. [26], Cusumano-Towner et al. [9], and
Doumanoglou et al. [11] identified and tensioned corners
to fold laundry or to bring clothing to desired positions.
These methods rely on gravity to reveal corners of the fabric.
We consider the setting where a single armed robot adjusts
a fabric strewn across a surface without lifting it entirely
in midair, which is better suited for larger fabrics or when
robots have a limited range of motion.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9651

A. Reinforcement Learning for Fabric Manipulation
Reinforcement Learning (RL) [45] is a promising method

for training policies that can manipulate highly deformable
objects. In RL applications for folding, Matas et al. [27]
assumed that fabric is flat, and Balaguer et al. [2] began
with fabric gripped in midair to loosen wrinkles. In contrast,
we consider the problem of bringing fabric from a highly
rumpled configuration to a flat configuration. Using model-
based RL, Ebert et al. [12] were able to train robots to
fold pants and fabric. This approach requires executing a
physical robot for many thousands of actions and then train-
ing a video prediction model. In surgical robotics, Thanan-
jeyan et al. [46] used RL to learn a tensioning policy to cut
gauze, with one arm pinching at a pick point to let the other
arm cut. We focus on fabric smoothing without tensioning,
and additionally consider cases where the initial fabric state
may be highly rumpled and disordered. In concurrent and
independent work, Jangir et al. [18] used deep reinforcement
learning with demonstrations to train a policy using fabric
state information for simulated dynamic folding tasks.

B. Fabric Smoothing
In among the most relevant prior research on fabric

smoothing, Willimon et al. [51] present an algorithm that
pulls at eight fixed angles, and then uses a six-step stage to
identify corners from depth images using the Harris Corner
Detector [16]. They present experiments on three simulated
trials and one physical robot trial. Sun et al. [43] followed up
by attempting to explicitly detect and then pull at wrinkles.
They measure wrinkledness as the average absolute deviation
in a local pixel region for each point in a depth map
of the fabric [35] and apply a force perpendicular to the
largest wrinkle. Sun et al. evaluate on eight fixed, near-flat
fabric starting configurations in simulation. In subsequent
work, Sun et al. [44] improved the detection of wrinkles
by using a shape classifier as proposed in Koenderink and
van Doorn [22]. Each point in the depth map is classified
as one of nine shapes, and they use contiguous segments of
certain shapes to define a wrinkle. While Sun et al. were able
to generalize the method beyond a set of hard-coded starting
states, it was only tested on nearly flat fabrics in contrast to
the highly rumpled configurations we explore.

In concurrent and independent work, Wu et al. [53] trained
an image-based policy for fabric smoothing in simulation
using deep reinforcement learning, and then applied domain
randomization to transfer it to a physical PR2 robot.

This paper extends prior work by Seita et al. [40] that
only estimated a pick point and pre-defined the pull vector.
In contrast, we learn the pull vector and pick point simul-
taneously. Second, by developing a simulator, we generate
far more training data and do not need to run a physical
robot. This enables us to perform systematic experiments
comparing RGB, D, and RGBD image inputs.

III. PROBLEM STATEMENT

Given a deformable fabric and a flat fabric plane, each
with the same rectangular dimensions, we consider the task

Fig. 2: FEM fabric simulation. Left: a wireframe rendering, show-
ing the 25⇥25 grid of points and the spring-mass constraints. Right:
the corresponding image with the white fabric plane, rendered
using Blender and overlaid with coordinates. The coverage is 73%,
measured as the percentage of the fabric plane covered.

of manipulating the fabric from a start state to one that
maximally covers the fabric plane. We define an episode as
one instance of the fabric smoothing task.

Concretely, let ⇠t be the full state of the fabric at time t
with positions of all its points (described in Section IV). Let
ot 2 O be the image observation of the fabric at time t,
where O = RH⇥W⇥c represents the space of images with
H ⇥W pixels, and c = 1 channels for depth images, c = 3
for color images, or c = 4 for combined color and depth (i.e.,
RGBD) images. Let A be the set of actions the robot may
take (see Section IV-A). The task performance is measured
with coverage C(⇠t), or the percentage of the fabric plane
covered by ⇠t.

We frame this as imitation learning [1], where a supervisor
provides data in the form of paired observations and actions
D = {(ot,at)}Nt=1. From D, the robot’s goal is to learn a
policy ⇡ : O ! A that maps an observation to an action, and
executes sequentially until a coverage threshold or iteration
termination threshold is reached.

IV. FABRIC AND ROBOT SIMULATOR

We implement a Finite Element Method (FEM) [4] fabric
simulator and interface with an OpenAI gym environment
design [6]. The simulator is open source and available on the
project website. Alternative fabric simulators exist, such as
from Blender [7], which is a popular open-source computer
graphics software toolkit. Since 2017, Blender has had sig-
nificant improvements in physics and realism of fabrics, but
these changes are only supported in Blender 2.80, which does
not support headless rendering of images and therefore meant
we could not run massive data collection. We downgraded to
an older version of Blender, 2.79, which supports headless
rendering, to create images generated from the proposed
custom-built fabric simulator. MuJoCo 2.0 provides another
fabric simulator, but did not support OpenAI-gym style fabric
manipulation environments until concurrent work [53].

The fabric (Figure 2) is represented as a grid of 25 ⇥ 25
point masses, connected by three types of springs [34]:

• Structural: between a point mass and the point masses
to its left and above it.

9652

• Shear: between a point mass and the point masses to
its diagonal upper left and diagonal upper right.

• Flexion: between a point mass and the point masses two
away to its left and two above it.

Each point mass is acted upon by both an external gravita-
tional force which is calculated using Newton’s Second Law
and a spring correction force

Fs = ks · (kqa � qbk2 � `), (1)

for each of the springs representing the constraints above,
where ks is a spring constant, qa 2 R3 and qb 2 R3 are
positions of any two point masses connected by a spring,
and ` is the default spring length. We update the point mass
positions using Verlet integration [49]. Verlet integration
computes a point mass’s new position at time t+�t, denoted
with pt+�t , as:

pt+�t = pt + vt�t + at�
2
t
, (2)

where pt 2 R3 is the position, vt 2 R3 is the velocity,
at 2 R3 is the acceleration from all forces, and �t 2 R is a
timestep. Verlet integration approximates vt�t = pt�pt��t

where pt��t is the position at the last time step, resulting in

pt+�t = 2pt � pt��t + at�
2
t

(3)

The simulator adds damping to simulate loss of energy due
to friction, and scales down vt, leading to the final update:

pt+�t = pt + (1� d)(pt � pt��t) + at�
2
t

(4)

where d 2 [0, 1] is a damping term, which we tuned to 0.02
based on visually inspecting the simulator.

We apply a constraint from Provot [34] by correcting point
mass positions so that spring lengths are at most 10% greater
than ` at any time. We also implement fabric-fabric collisions
following [3] by adding a force to “separate” two points if
they are too close.

The simulator provides access to the full fabric state ⇠t,
which contains the exact positions of all 25 ⇥ 25 points,
but does not provide image observations ot which are more
natural and realistic for transfer to physical robots. To obtain
image observations of a given fabric state, we create a
triangular mesh and render using Blender.

A. Actions
We define an action at time t as a 4D vector which includes

the pick point (xt, yt) represented as the coordinate over
the fabric plane to grasp, along with the pull direction. The
simulator implements actions by grasping the top layer of
the fabric at the pick point. If there is no fabric at (xt, yt),
the grasp misses the fabric. After grasping, the simulator
pulls the picked point upwards and towards direction �xt 2
[�1, 1] and �yt 2 [�1, 1], deltas in the x and y direction of
the fabric plane. In summary, actions at 2 A are defined as:

at = hxt, yt,�xt,�yti (5)

representing the pick point coordinates (xt, yt) and the pull
vector (�xt,�yt) relative to the the pick point.

Fig. 3: Initial fabric configurations drawn from the distributions
specified in Section IV-B, with tiers grouped by columns. The first
two rows show representative simulated color (RGB) and depth (D)
images, respectively, while the last two rows show examples of real
images from a mounted Zivid One Plus camera, after smoothing and
de-noising, which we then pass as input to a neural network policy.
Domain randomization is not applied on the simulated images
shown here.

B. Starting State Distributions

The performance of a smoothing policy, or more generally
any fabric manipulation policy, depends heavily on the
distribution of starting fabric states. We categorize episodes
as belonging to one of three custom difficulty tiers. For each
tier, we randomize the starting state of each episode. The
starting states, as well as their average coverage based on
2000 simulations, are generated as follows:

• Tier 1, 78.3± 6.9% Coverage (High): starting from a
flat fabric, we make two short, random pulls to slightly
perturb the fabric. All fabric corners remain visible.

• Tier 2, 57.6 ± 6.1% Coverage (Medium): we let the
fabric drop from midair on one side of the fabric plane,
perform one random grasp and pull across the plane,
and then do a second grasp and pull to cover one of the
two fabric corners furthest from its plane target.

• Tier 3, 41.1± 3.4% Coverage (Low): starting from a
flat fabric, we grip at a random pick point and pull high
in the air, drag in a random direction, and then drop,
usually resulting in one or two corners hidden.

Figure 3 shows examples of color and depth images of

9653

TABLE I: Results from the five baseline policies discussed in
Section V. We report final coverage and the number of actions
per episode. All statistics are from 2000 episodes, with tier-specific
starting states. Both oracle policies (in bold) perform the best.

Tier Method Coverage Actions

1 Random 25.0 +/- 14.6 2.43 +/- 2.2
1 Highest 66.2 +/- 25.1 8.21 +/- 3.2
1 Wrinkle 91.3 +/- 7.1 5.40 +/- 3.7
1 Oracle 95.7 +/- 2.1 1.76 +/- 0.8

1 Oracle-Expose 95.7 +/- 2.2 1.77 +/- 0.8

2 Random 22.3 +/- 12.7 3.00 +/- 2.5
2 Highest 57.3 +/- 13.0 9.97 +/- 0.3
2 Wrinkle 87.0 +/- 10.8 7.64 +/- 2.8
2 Oracle 94.5 +/- 5.4 4.01 +/- 2.0

2 Oracle-Expose 94.6 +/- 5.0 4.07 +/- 2.2

3 Random 20.6 +/- 12.3 3.78 +/- 2.8
3 Highest 36.3 +/- 16.3 7.89 +/- 3.2
3 Wrinkle 73.6 +/- 19.0 8.94 +/- 2.0
3 Oracle 95.1 +/- 2.3 4.63 +/- 1.1

3 Oracle-Expose 95.1 +/- 2.2 4.70 +/- 1.1

fabric initial states in simulation and real physical settings
for all three tiers of difficulty. The supplementary material
contains additional examples of images.

V. BASELINE POLICIES

We propose five baseline policies for fabric smoothing.
1) Random: As a naive baseline, we test a random policy

that uniformly selects random pick points and pull directions.
2) Highest (Max z): This policy, tested in Seita et al. [40]

grasps the highest point on the fabric. We get the pick point
by determining p, the highest of the 252 = 625 points from
⇠t. To compute the pull vector, we obtain the target coordi-
nates by considering where p’s coordinates would be if the
fabric is perfectly flat. The pull vector is then the vector from
p’s current position to that target. Seita et al. [40] showed that
this policy can achieve reasonably high coverage, particularly
when the highest point corresponds to a corner fold on the
uppermost layer of the fabric.

3) Wrinkle: Sun et al. [43] propose a two-stage algorithm
to first identify wrinkles and then to derive a force parallel
to the fabric plane to flatten the largest wrinkle. The process
repeats for subsequent wrinkles. We implement this method
by finding the point in the fabric of largest local height
variance. Then, we find the neighboring point with the next
largest height variance, treat the vector between the two
points as the wrinkle, and pull perpendicular to it.

4) Oracle: This policy uses complete state information
from ⇠t to find the fabric corner furthest from its fabric plane
target, and pulls it towards that target. When a corner is
occluded and underneath a fabric layer, this policy will grasp
the point directly above it on the uppermost fabric layer, and
the resulting pull usually decreases coverage.

5) Oracle-Expose: When a fabric corner is occluded, and
other fabric corners are not at their targets, this policy picks
above the hidden corner, but pulls away from the fabric plane
target to reveal the corner for a subsequent action.

VI. SIMULATION RESULTS FOR BASELINE POLICIES

We evaluate the five baseline fabric smoothing policies by
running each for 2000 episodes in simulation. Each episode

draws a randomized fabric starting state from one of three
difficulty tiers (Section IV-B), and lasts for a maximum of 10
actions. Episodes can terminate earlier under two conditions:
(1) if a pre-defined coverage threshold is obtained, or (2) the
fabric is out of bounds over a certain threshold. For (1) we
use 92% as the threshold, which produces visually smooth
fabric (e.g., see the last few images in Figure 4) and avoids
supervisor data being dominated by taking actions of short
magnitudes at the end of its episodes. For (2) we define a
fabric as out of bounds if it has any point which lies at least
25% beyond the fabric plane relative to the full distance of
the edge of the plane. This threshold allows the fabric to go
slightly off the fabric plane which is sometimes unavoidable
since a perfectly smoothed fabric is the same size as the
plane. We do not allow a pick point to lie outside the plane.

Table I indicates that both oracle policies attain nearly
identical performance and have the highest coverage among
the baseline policies, with about 95% across all tiers. The
wrinkles policy is the next best policy in simulation, with
91.3%, 87.0%, and 73.6% final coverage for the three
respective tiers, but requires substantially more actions per
episode.

One reason why the oracle policy still performs well with
occluded corners is that the resulting pulls can move those
corners closer to their fabric plane targets, making it easier
for subsequent actions to increase coverage. Figure 4 shows
an example episode from the oracle policy on a tier 3 starting
state. The second action pulls at the top layer of the fabric
above the corner, but the resulting action still moves the
occluded corner closer to its target.

VII. IMITATION LEARNING WITH DAGGER

We use the oracle (not oracle-expose) policy to generate
supervisor data and corrective labels. For each tier, we
generate 2000 episodes from the supervisor and use that as
offline data. We train a fabric smoothing policy in simulation
using imitation learning on synthetic images. When behavior
cloning on supervisor data, the robot’s policy will learn the
supervisor’s actions on states in the training data, but general-
ize poorly outside the data distribution [32]. To address this,
we use Dataset Aggregation (DAgger) [36], which requests
the supervisor to label the states the robot encounters when
running its learned policy. A limitation of DAgger is the need
for continued access to the supervisor’s policy, rather than
just offline data. During training, the oracle corner-pulling
supervisor is able to efficiently provide an action to each
data point encountered by accessing the underlying fabric
state information, so in practice this does not cause problems.

A. Policy Training Procedure
We use domain randomization [47] during training. For

RGB images, we randomize the fabric color by selecting
RGB values uniformly at random across intervals that include
shades of blue, purple, pink, red, and gray. For RGB im-
ages, we additionally randomize the brightness with gamma
corrections [33] and vary the shading of the fabric plane.
For depth (D) images, we make the images slightly darker

9654

Fig. 4: Example simulated episode of the oracle corner supervisor policy, from left to right, drawn from a Tier 3 starting state with 38.4%
coverage. The policy uses the exact corner location from the fabric state (not the images) and pulls the one furthest from its target on
the fabric plane. For visualization purposes, we show matching color and depth images from the episode without domain randomization.
Overlaid circles and arrows represent the action taken after the given state. In the second action, the fabric corner furthest from the target
is slightly underneath the fabric, and the supervisor pulls at the fabric’s top layer. Nonetheless, the underlying corner is still moved closer
to its target position, and subsequent pulls are able to achieve high coverage. The oracle policy took five actions before getting to 95.5%
coverage and triggering the 92% threshold in the rightmost images.

to more closely match real depth images. For both RGB
and D, we randomize the camera pose with independent
Gaussian distributions for each of the position and orientation
components. The supplementary material has examples of
images after domain randomization.

The policy neural network architecture is similar to the
one in Matas et al. [27]. As input, the network consumes
images with dimension (100⇥ 100⇥ c), where the number
of channels is c = 1 for D, c = 3 for RGB, or c = 4
for RGBD images. It passes the input image through four
convolutional layers, each with 32 filters of size 3 ⇥ 3,
followed by four dense layers of size 256 each, for a total
of about 3.4 million parameters. The network produces a 4D
vector with a hyperbolic tangent applied to make components
within [�1, 1]. We optimize using Adam with learning rate
10�4 and use L2 regularization of 10�5.

The imitation learning code uses OpenAI baselines [10]
to make use of its parallel environment support. We run the
fabric simulator in ten parallel environments, which helps
to alleviate the major time bottleneck when training, and
pool together samples in a shared dataset. We first train
with a “behavior cloning (BC) phase” where we minimize
the L2 error on the offline supervisor data, and then use
a “DAgger phase” which rolls out the agent’s policy and
applies DAgger. We use 500 epochs of behavior cloning
based on when the network’s L2 error roughly converged on
a held-out validation dataset. The DAgger phase runs until
the agent collectively performs 50,000 total steps. Further
training details are in the supplementary material.

B. Simulation Experiments

For all simulated training runs, we evaluate on 50 new
tier-specific starting states that are not seen during training.
Figure 5 shows results across all tiers, suggesting that after

behavior cloning, DAgger improves final coverage perfor-
mance by 6.1% when averaging over the nine experimental
conditions (three image input modalities across three tiers).
In addition, RGB policies attain better coverage in simulation
than D policies with gains of 10.8%, 8.3%, and 10.9% across
respective tiers, which may be due to high color contrast
between the fabric and fabric plane in the RGB images, as
opposed to the D images (see Figure 3). The RGBD policies
perform at a similar level as the RGB-based policies.

In all difficulty tiers, the RGB policies get higher final
coverage performance than the wrinkles policy (from Ta-
ble I): 94.8% over 91.3%, 89.6% over 87.0%, and 91.2%
over 73.6%, respectively, and gets close to the corner pulling
supervisor despite only having access to image observations
rather than underlying fabric state. Similarly, the RGBD
policies outperform the wrinkles policy across all tiers. The
depth-only policies outperform the wrinkles policy on tier 3,
with 80.3% versus 73.6% coverage.

VIII. PHYSICAL EXPERIMENTS

The da Vinci Research Kit (dVRK) surgical robot [19] is
a cable-driven surgical robot with imprecision as reviewed
in prior work [25], [41]. We use a single arm with an end
effector that can be opened to 75�, or a gripper width of
10mm. We set a fabric plane at a height and location that
allows the end-effector to reach all points on it. To prevent
potential damage to the grippers, the fabric plane is foam
rubber, which allows us to liberally set the gripper height to
be lower and avoids a source of height error present in [27].
For the fabric, we cut a 5x5 inch piece from a Zwipes 735
Microfiber Towel Cleaning Cloth with a blue color within
the distribution of domain randomized fabric colors. We
mount a Zivid One Plus RGBD camera 0.9 meters above the
workspace, which is used to obtain color and depth images.

9655

Fig. 5: Coverage over 50 simulated episodes at checkpoints (shown
with “X”) during behavior cloning (left) and DAgger (right), which
begins right after the last behavior cloning epoch. Results, from top
to bottom, are for tier 1, 2, and 3 starting states. We additionally
annotate with dashed lines the average starting coverage and the su-
pervisor’s average final coverage. Results suggest that the RGB and
RGBD policies attain strong coverage performance in simulation.
Shaded regions represent one standard deviation range.

A. Physical Experiment Protocol

We manually create starting fabric states similar to those in
simulation for all tiers. Given a starting fabric, we randomly
run one of the RGB or D policies for one episode for at
most 10 steps (as in simulation). Then, to make comparisons
fair, we “reset” the fabric to be close to its starting state,
and run the other policy. After these results, we then run
the RGBD baseline to combine RGB and D images, again
manipulating the fabric starting state to be similar among
comparable episodes. To facilitate this process, we save all
real images encountered and use them as a guide to creating
the initial fabric configurations.

During preliminary trials, the dVRK gripper would some-
times miss the fabric by 1-2 mm, which is within the
calibration error. To counter this, we measure structural
similarity [50] of the image before and after an action to
check if the robot moved the fabric. If it did not, the next
action is adjusted to be closer to the center of the fabric
plane, and the process repeats until the robot touches fabric.

B. Physical Experiment Results

We run 20 episodes for each combination of input modal-
ity (RGB, D, or RGBD) and tiers, resulting in 180 to-
tal episodes as presented in Table II. We report starting
coverage, ending coverage, maximum coverage across the
episode after the initial state, and the number of actions. The

TABLE II: Physical experiments. We run 20 episodes for each of
the tier 1 (T1), tier 2 (T2), and tier 3 (T3) fabric conditions, with
RGB, D, and RGBD policies, for a total of 20 ⇥ 3 ⇥ 3 = 180
episodes. We report: (1) starting coverage, (2) final coverage, with
the highest values in each tier in bold, (3) maximum coverage at
any point after the start state, and (4) the number of actions per
episode. Results suggest that RGBD is the best policy with harder
starting fabric configurations.

(1) Start (2) Final (3) Max (4) Actions

T1 RGB 78.4 +/- 4 96.2 +/- 2 96.2 +/- 2 1.8 +/- 1
T1 D 77.9 +/- 4 78.8 +/- 24 90.0 +/- 10 5.5 +/- 4
T1 RGBD 72.5 +/- 4 95.0 +/- 2 95.0 +/- 2 2.1 +/- 1
T2 RGB 58.5 +/- 6 87.7 +/- 13 92.7 +/- 4 6.3 +/- 3
T2 D 58.7 +/- 5 64.9 +/- 20 85.7 +/- 8 8.3 +/- 3
T2 RGBD 55.0 +/- 5 91.3 +/- 8 92.7 +/- 6 6.8 +/- 3
T3 RGB 46.2 +/- 4 75.0 +/- 18 79.9 +/- 14 8.7 +/- 2
T3 D 47.0 +/- 3 63.2 +/- 9 74.7 +/- 10 10.0 +/- 0
T3 RGBD 41.7 +/- 2 83.0 +/- 10 85.8 +/- 6 8.8 +/- 2

maximum coverage allows for a more nuanced understanding
of performance, because policies can take strong initial
actions that achieve high coverage (e.g., above 80%) but a
single counter-productive action at the end can substantially
lower coverage.

Results suggest that, despite not being trained on real
images, the learned policies can smooth physical fabric. All
policies improve over the starting coverage across all tiers.
Final coverage averaged across all tiers is 86.3%, 69.0%,
and 89.8% for RGB, D, and RGBD policies, respectively,
with net coverage gains of 25.2%, 7.8%, and 33.4% over
starting coverage. In addition, the RGB and RGBD policies
deployed on tier 1 starting states each achieve the 92%
coverage threshold 20 out of 20 times. While RGB has higher
final coverage on tier 1 starting states, the RGBD policies
appear to have stronger performance on the more difficult
starting states without taking considerably more actions.

Qualitatively, the RGB and RGBD-trained policies are ef-
fective at “fine-tuning” by taking several short pulls to trigger
at least 92% coverage. For example, Figure 6 shows an
episode taken by the RGBD policy trained on tier 3 starting
states. It is able to smooth the highly wrinkled fabric despite
several corners hidden underneath fabric layers. The depth-
only policies do not perform as well, but this is in large part
because the depth policy sometimes takes counterproductive
actions after several reasonable actions. This may be in part
due to uneven texture on the fabric we use, which is difficult
to replicate in simulated depth images.

C. Failure Cases

The policies are sometimes susceptible to performing
highly counter-productive actions. In particular, the depth-
only policies can fail by pulling near the center of the
fabric for fabrics that are already nearly smooth, as shown
in Figure 7. This results in poor coverage and may lead to
cascading errors where one poor action can lead fabric to
reach states that are not seen in training.

One cause may be that there are several fabric corners that
are equally far from their targets, which creates ambiguity
in which corner should be pulled. One approach to mitigate
this issue, in addition to augmenting depth with RGB-based

9656

Fig. 6: An example episode taken by a learned policy trained on RGBD images from tier 3 starting states. The top row shows screen
captures from the camera view used to record videos. The middle and bottom row show the processed RGB and D images that are passed
into the neural network policy. The leftmost images show the starting state of the fabric, set to be highly wrinkled with at least the bottom
left fabric corner hidden. The policy takes seven actions shown here, with pick points and pull vectors indicated by the overlaid black
arrows in the top row. Despite the highly wrinkled starting state, along with hidden fabric corners (as shown in the first four columns)
the policy is able to smooth fabric from 40.1% to 92.2% coverage as shown at the rightmost images.

Fig. 7: A poor action from a policy trained on only depth images.
Given the situation shown in the left image, the learned policy
erroneously picks a point near the center of the fabric. The resulting
pick, followed by the pull to the lower left, causes a major decrease
in coverage and makes it hard for the robot to recover.

data as in the RGBD policies we train, is to formulate corner
picking with a mixture model to resolve this ambiguity.

IX. CONCLUSION AND FUTURE WORK

We investigate baseline and learned policies for fabric
smoothing. Using a low fidelity fabric simulator and a custom
environment, we train policies in simulation using DAgger
with a corner pulling supervisor. We use domain randomiza-
tion to transfer policies to a surgical robot. When testing on
fabric of similar color to those used in training, RGB-based
and RGBD-based policies achieve higher coverage than D-
based policies. On the harder starting fabric configurations,
the combined RGBD-based policies get the highest coverage
among the tested policies, suggesting that depth is beneficial.

In future work, we will test on fabric shapes where corner
pulling policies may get poor coverage. We plan to apply
state-of-the-art deep reinforcement learning methods to learn
richer policies that can explicitly reason over multiple time
steps and varying geometries. To improve sample efficiency,
we will consider model-based approaches such as Visual
Foresight [12] and future image similarity [52], along with
approaches that predict physics properties [17]. We will
utilize higher-fidelity fabric simulators such as ARCSim [29].

Finally, we would like to extend the method beyond fabric
coverage to tasks such as folding and wrapping, and will
apply it to ropes, strings, and other deformable objects.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley
in affiliation with Honda Research Institute USA, the Berkeley AI
Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time
Intelligent Secure Execution (RISE) Lab, and the CITRIS “People
and Robots” (CPAR) Initiative, and by the Scalable Collaborative
Human-Robot Learning (SCHooL) Project, NSF National Robotics
Initiative Award 1734633. The authors were supported in part by
Siemens, Google, Amazon Robotics, Toyota Research Institute,
Autodesk, ABB, Samsung, Knapp, Loccioni, Intel, Comcast, Cisco,
Hewlett-Packard, PhotoNeo, NVidia, and Intuitive Surgical. Daniel
Seita is supported by an NPSC Fellowship. We thank Jackson Chui,
Michael Danielczuk, Shivin Devgon, and Mark Theis.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey
of Robot Learning From Demonstration,” Robotics and Autonomous
Systems, vol. 57, 2009.

[2] B. Balaguer and S. Carpin, “Combining Imitation and Reinforcement
Learning to Fold Deformable Planar Objects,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2011.

[3] D. Baraff and A. Witkin, “Large Steps in Cloth Simulation,” in ACM
SIGGRAPH, 1998.

[4] K. Bathe, Finite Element Procedures. Prentice Hall, 2006. [Online].
Available: https://books.google.com/books?id=rWvefGICfO8C

[5] J. Borras, G. Alenya, and C. Torras, “A Grasping-centered Analysis
for Cloth Manipulation,” arXiv:1906.08202, 2019.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[7] B. O. Community, Blender – a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

[8] E. Corona, G. Alenya, A. Gabas, and C. Torras, “Active Garment
Recognition and Target Grasping Point Detection Using Deep Learn-
ing,” in Pattern Recognition, 2018.

9657

[9] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and
P. Abbeel, “Bringing Clothing Into Desired Configurations with Lim-
ited Perception,” in IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[10] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “OpenAI Baselines,”
https://github.com/openai/baselines, 2017.

[11] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis,
“Autonomous Active Recognition and Unfolding of Clothes Using
Random Decision Forests and Probabilistic Planning,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2014.

[12] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual
Foresight: Model-Based Deep Reinforcement Learning for Vision-
Based Robotic Control,” arXiv:1812.00568, 2018.

[13] Z. Erickson, H. Clever, G. Turk, K. Liu, and C. Kemp, “Deep
Haptic Model Predictive Control for Robot-Assisted Dressing,” in
IEEE International Conference on Robotics and Automation (ICRA),
2018.

[14] Z. Erickson, M. Collier, A. Kapusta, and C. Kemp, “Tracking Human
Pose During Robot-Assisted Dressing using Single-Axis Capacitive
Proximity Sensing,” in IEEE Robotics and Automation Letters (RA-
L), 2018.

[15] Y. Gao, H. J. Chang, and Y. Demiris, “Iterative Path Optimisation for
Personalised Dressing Assistance using Vision and Force Information,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

[16] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”
in In Proceedings of the Fourth Alvey Vision Conference, 1988.

[17] A. Howard and G. Bekey, “Intelligent Learning for Deformable Object
Manipulation,” in Autonomous Robtoics, 2000.

[18] R. Jangir, G. Alenya, and C. Torras, “Dynamic Cloth Manipulation
with Deep Reinforcement Learning,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2020.

[19] P. Kazanzides, Z. Chen, A. Deguet, G. Fischer, R. Taylor, and
S. DiMaio, “An Open-Source Research Kit for the da Vinci Surgical
System,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2014.

[20] Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita, “A Method For Handling
a Specific Part of Clothing by Dual Arms,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2009.

[21] ——, “Clothes State Recognition Using 3D Observed Data,” in IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[22] J. J. Koenderink and A. J. Van Doorn, “Surface shape and curvature
scales,” Image and vision computing, vol. 10, no. 8, 1992.

[23] Y. Li, X. Hu, D. Xu, Y. Yue, E. Grinspun, and P. K. Allen, “Multi-
Sensor Surface Analysis for Robotic Ironing,” in IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[24] Y. Li, Y. Yue, D. X. E. Grinspun, and P. K. Allen, “Folding Deformable
Objects using Predictive Simulation and Trajectory Optimization,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[25] J. Mahler, S. Krishnan, M. Laskey, S. Sen, A. Murali, B. Kehoe,
S. Patil, J. Wang, M. Franklin, P. Abbeel, and K. Goldberg, “Learning
Accurate Kinematic Control of Cable-Driven Surgical Robots Using
Data Cleaning and Gaussian Process Regression.” in IEEE Conference
on Automation Science and Engineering (CASE), 2014.

[26] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel,
“Cloth Grasp Point Detection Based on Multiple-View Geometric Cues
with Application to Robotic Towel Folding,” in IEEE International
Conference on Robotics and Automation (ICRA), 2010.

[27] J. Matas, S. James, and A. J. Davison, “Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation,” Conference on Robot
Learning (CoRL), 2018.

[28] S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A Geometric Approach to Robotic Laundry Folding,” in
International Journal of Robotics Research (IJRR), 2012.

[29] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive Anisotropic Remesh-
ing for Cloth Simulation,” in ACM SIGGRAPH Asia, 2012.

[30] F. Osawa, H. Seki, and Y. Kamiya, “Unfolding of Massive Laundry
and Classification Types by Dual Manipulator,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, 2007.

[31] J. K. Parker, R. Dubey, F. W. Paul, and R. J. Becker, “Robotic
Fabric Handling for Automating Garment Manufacturing,” Journal of
Manufacturing Science and Engineering, vol. 105, 1983.

[32] D. A. Pomerleau, “Alvinn: An Autonomous Land Vehicle in a Neural
Network,” Carnegie-Mellon University, Tech. Rep., 1989.

[33] C. Poynton, Digital Video and HDTV Algorithms and Interfaces,
1st ed. Morgan Kaufmann Publishers Inc., 2003.

[34] X. Provot, “Deformation Constraints in a Mass-Spring Model to
Describe Rigid Cloth Behavior,” in Graphics Interface, 1995.

[35] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Using
Depth and Appearance Features for Informed Robot Grasping of
Highly Wrinkled Clothes,” in IEEE International Conference on
Robotics and Automation (ICRA), 2012.

[36] S. Ross, G. J. Gordon, and J. A. Bagnell, “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning,”
in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2011.

[37] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image Flight
without a Single Real Image,” in Robotics: Science and Systems (RSS),
2017.

[38] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic Manipulation and Sensing of Deformable Objects in Domes-
tic and Industrial Applications: a Survey,” in International Journal of
Robotics Research (IJRR), 2018.

[39] J. Schrimpf and L. E. Wetterwald, “Experiments Towards Automated
Sewing With a Multi-Robot System,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2012.

[40] D. Seita, N. Jamali, M. Laskey, R. Berenstein, A. K. Tanwani,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep Transfer Learn-
ing of Pick Points on Fabric for Robot Bed-Making,” in International
Symposium on Robotics Research (ISRR), 2019.

[41] D. Seita, S. Krishnan, R. Fox, S. McKinley, J. Canny, and K. Goldberg,
“Fast and Reliable Autonomous Surgical Debridement with Cable-
Driven Robots Using a Two-Phase Calibration Procedure,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[42] S. Shibata, T. Yoshimi, M. Mizukawa, and Y. Ando, “A Trajectory
Generation of Cloth Object Folding Motion Toward Realization of
Housekeeping Robot,” in International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), 2012.

[43] L. Sun, G. Aragon-Camarasa, P. Cockshott, S. Rogers, and J. P.
Siebert, “A Heuristic-Based Approach for Flattening Wrinkled
Clothes,” Towards Autonomous Robotic Systems, 2014.

[44] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Accurate
Garment Surface Analysis using an Active Stereo Robot Head with
Application to Dual-Arm Flattening,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2015.

[45] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[46] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and
K. Goldberg, “Multilateral Surgical Pattern Cutting in 2D Orthotropic
Gauze with Deep Reinforcement Learning Policies for Tensioning,” in
IEEE International Conference on Robotics and Automation (ICRA),
2017.

[47] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

[48] E. Torgerson and F. Paul, “Vision Guided Robotic Fabric Manipulation
for Apparel Manufacturing,” in IEEE International Conference on
Robotics and Automation (ICRA), 1987.

[49] L. Verlet, “Computer Experiments on Classical Fluids: I. Thermody-
namical Properties of LennardJones Molecules,” Physics Review, vol.
159, no. 98, 1967.

[50] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
Trans. Img. Proc., Apr. 2004.

[51] B. Willimon, S. Birchfield, and I. Walker, “Model for Unfolding
Laundry using Interactive Perception,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2011.

[52] A. Wu, A. Piergiovanni, and M. Ryoo, “Model-based Behavioral
Cloning with Future Image Similarity Learning,” in Conference on
Robot Learning (CoRL), 2019.

[53] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to
Manipulate Deformable Objects without Demonstrations,” in Robotics:
Science and Systems (RSS), 2020.

[54] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable Folding Task by Humanoid Robot Worker Using Deep
Learning,” in IEEE Robotics and Automation Letters (RA-L), 2017.

9658

