
Human Gait Phase Recognition using a Hidden Markov Model
Framework*

Ferhat Attal1, Yacine Amirat1, Abdelghani Chibani1 and Samer Mohammed1

Abstract— Analysis of human daily living activities, particu-
larly walking activity, is essential for health-care applications
such as fall prevention, physical rehabilitation exercises, and
gait monitoring. Studying the evolution of the gait cycle
using wearable sensors is beneficial for the detection of any
abnormal walking pattern. This paper proposes a novel dis-
crete/continuous unsupervised Hidden Markov Model method
that is able to recognize six gait phases of a typical human
walking cycle through the use of two wearable Inertial Mea-
surement Units (IMUs) mounted at both feet of the subject. The
results obtained with the proposed approach were compared to
those of well-known supervised and unsupervised segmentation
approaches. The obtained results show the efficiency of the
proposed approach in accurately recognizing the different gait
phases of a human gait cycle. The proposed model allows
the consideration of the sequential aspect of the walking gait
phases while operating in an unsupervised context that avoids
the process of data labeling, which is often tedious and time-
consuming, particularly within a massive-data context.

I. INTRODUCTION

Walking is a natural human locomotion mode that re-
quires a coordinated synergy between the nervous system
and the skeletal muscles involved in lower-limb movement
generation [1]. Walking activity involves alternatively and
repeatedly the two legs in moving the human body forward
while maintaining balance during dynamic and static pos-
tures. The basic component of the walking activity is the
gait cycle, which starts at the moment of initial contact
of one foot with the ground and lasts until the same foot
contacts the ground again. Analysis of the evolution of the
gait cycle is at the core of many application fields, and is used
for providing useful information for clinicians during the
process of gait-rehabilitation treatment [2]; improving athlete
coaching performances and preventing subject injuries [3];
and providing valuable inputs for the design and control of
wearable devices such as orthoses/prostheses and exoskele-
tons during assistance or rehabilitation processes [4]. Gait
analysis can also assist doctors in the diagnosis of certain
diseases such as Parkinson’s disease, and in the assessment
of the risk of developing dementia [5], etc.

The use of classical tools for data gathering and treatment
for gait analysis is often a tedious and time-consuming task,
particularly within the context of a large amount of data.
Therefore, there is a growing need for the development of
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automatic systems for gait analysis. Several approaches have
been used in the literature to address the problem of gait
analysis through the recognition/segmentation of gait phases.
These approaches are related to different factors such as the
nature, number and placement of sensors.

With regard to the nature of the sensors, several systems
have been used in the literature, namely wearable and non-
wearable systems [1]. As examples of non-wearable sensors,
one can cite the video-based systems [6], [7], the floor-based
systems such as pressure-measurement and force-platform
systems [8] and Laser Range Finders (LRF) mounted on
robotic rollators [9] or fixed at predefined locations [10].
However, these systems present some disadvantages, which
are related mainly to their relatively high costs as well as
the difficulties of their use in cluttered and outdoor envi-
ronments. For the wearable systems, inertial measurement
units and plantar pressure sensors are most commonly used
[11], [12], [13]. They present several advantages over the
non-wearable systems: they can be used in both indoor and
outdoor environments, are less costly, and have limited sizes
and energy consumption due to the latest advances in Micro-
Electro Mechanical Systems (MEMS).
Different methods have been used in the literature to ad-
dress the problem of automatic gait recognition. In [14],
a threshold-based method and a smart shoe equipped with
inertial and force sensors are used to recognize four gait
phases. In [15], a threshold-based method is also used to
recognize four gait phases, using data provided by three foot
switches placed under the sole of the foot. In [16], data
collected from a 3D magnetometer placed at the subject’s
shank and a threshold-based method are used to recognize
four gait phases. The main limitation of threshold-based
methods is related to the choice of thresholds that are
chosen empirically based on observational analysis, which
may affect their generalization. With regard to machine-
learning-based methods for gait-phase assessment, several
approaches have been used in the literature. In [17], a
fuzzy inference system is used to detect abnormalities in
the gait-phase transition, as well as for the recognition of
six gait phases using GRF data collected from four air-
pressure sensors embedded in the subject’s shoes. In [18],
a Hidden Markov Model (HMM) is used to recognize the
six gait phases using the GRF data provided by smart shoes
equipped with four air-pressure sensors. A HMM is also used
in [19] to recognize four gait phases using data collected
from gyroscope sensors mounted at the foot level. In [11],
a supervised HMM is used to classify six gait phases using
GRF data provided by in-shoe pressure sensors. In [9], a
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supervised HMM is used to recognize seven gait phases
through data measured by a Laser Range Finder sensor
mounted on a robot walker that follows the subject. In [13],
a supervised HMM is used to classify four gait phases using
data collected from a gyroscope mounted on each foot of
the subject. A supervised HMM is also proposed in [20] to
recognize i) two gait phases, ii) four gait phases, and iii) six
gait phases using data provided by gyroscope sensors placed
at the foot and shank of the subject’s leg. In [21], a hybrid
neural network and HMM, in supervised framework, are
combined to recognize six gait phases using data collected
from inertial sensing and optical motion capture systems. In
[22], curve similarity model and ground contact forces data
are used to distinguish between swing phase and stance phase
in real time context. Most of the aforementioned studies used
supervised classification techniques, which require labeled
data and do not consider the temporal aspect of the data.
In [23], switching linear dynamical systems and joint angle
kinematic data are used to model four gait phases. In our
previous works [24], a Multiple Regression Hidden Markov
Model (MRHMM) was proposed to segment gait cycle into
six gait phases using vGRF signals collected from in-shoe
pressure sensors. These sensors present several advantages
such as accuracy measurement and low cost; they have,
however, some disadvantages such as: a bad linearity, a
complex signal processing, and limited life expectancy. In
addition, from model point of view, in [24], the use of
regressive version of HMM is related to the fact that the
vGRF signals follow a polynomial evolution according to
gait phases, which can be easily modeled using polynomial
functions through a regressive model.
In this study, we propose a discrete/continuous unsupervised
HMM approach, which combines a HMM-based model with
the use of acceleration data acquired during multiple gait
cycles. The parameters of the generated model are learned
in an unsupervised way from unlabeled raw acceleration data
acquired during the human gait using the Baum-Welch algo-
rithm [25]. The most likely sequence of gait phases is then
estimated using the Viterbi algorithm [26]. Six gait phases
are considered in this study: loading response, mid-stance,
terminal stance, pre-swing, mid-swing and terminal swing.
Four performance criteria were used to assess the proposed
approach: accuracy, F-measure, recall and precision.
The rest of the paper is organized as follows: Section
II presents a description of the human gait cycle and its
subsequent phases, as well as the experimental protocol
and data-labeling process. Section III presents the proposed
gait-cycle phase-recognition approach. The performance of
the proposed approach is compared to those of traditional
supervised and unsupervised machine-learning approaches
and discussed in section IV. Section V concludes the paper
and presents some potential research perspectives.

II. DATA COLLECTION

A. Human gait cycle

The human gait cycle is a cyclic pattern, that is char-
acterized by two main phases: the stance phase and the

swing phase. The stance phase represents approximately 60%
of the whole gait cycle, while the swing phase represents
approximately 40%. Generally, the gait cycle starts from the
heel strike of one foot with the ground and ends when the
heel of the same foot contacts the ground again. According
to [27], the walking gait cycle involves eight phases: initial
contact (IC), loading response (LR), mid-stance (MS), ter-
minal stance (TS), pre-swing (PSW), initial swing (ISW),
mid-swing (MSW) and terminal swing (TSW). In this study,
a configuration that includes six gait phases (LR, MS, TS,
PSW, ISW, MSW and TSW) is considered. Fig.1 illustrates
the considered gait phases.

 Loading 
response

Mid-stance
Terminal 
  stance

Pre-swing Terminal swingMid-swing

Fig. 1. Gait-phase illustration

B. Experimental protocol for data acquisition and data
labeling

1) Data acquisition: In this study, the gait-cycle phases
are classified using two MTx 3-DOF inertial measurement
units (IMUs) from Xsens mounted at each foot of the subject,
as shown in Fig. 2. Each MTx unit is equipped with a tri-axial
accelerometer/gyrometer, which measures the acceleration
and angular velocity in 3D space. The MTx inertial trackers
are connected via an Xbus cable to the central unit, called the
Xbus Master, which is attached to the waist of the subject.
The collected data are transmitted to the host computer
through a wireless Bluetooth link. The sampling frequency
is set to 100 Hz, which is large enough to assess the human
gait cycle. The experiments were performed at the LISSI

  Wireless 
Datalogger

Xbus Master
MTx inertial 
   tracker

 In-shoe pressure 
        sensor

 Cuffs

Fig. 2. Placement of inertial and pressure sensors.

Lab of the University of Paris-Est Creteil (UPEC) with five
healthy subjects with different profiles (mean age: 27 years
old, mean weight: 79 kg). Each subject was asked to perform
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thirty cycles along a straight line on his own style. Fig. 3
shows the evolution of the acceleration data of both the left
and right feet during five walking cycles.
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Fig. 3. Example of 3D acceleration data, collected during five walking
cycles.

2) Data labeling: To evaluate the performance of the pro-
posed approach, a data-labeling step was carried out during
the experimental process. To accurately estimate the different
time intervals of each gait phase, a pressure-based mapping
system from Tekscan, also known as the F-Scan Wireless in-
shoe pressure-mapping system, is used. This system consists
of in-shoe pressure sensors, a Wireless Datalogger unit and
Cuffs, as shown in Fig. 2. The Wireless Datalogger unit
acts as a wireless gateway between the Cuffs, the in-shoe
pressure sensors and the host computer; see Fig. 2. The
data labeling is performed manually by analyzing the vertical
Ground Reaction Force (vGRF) profiles collected from the
in-shoe pressure sensors [11].

III. HMM-BASED GAIT-CYCLE PHASE-RECOGNITION
METHODOLOGY

A. Hidden Markov Model background

Hidden Markov Model (HMM) is a powerful tool for
analyzing time-series data and has been used in many ap-
plications. The HMM is a doubly stochastic process [28]
and assumes that the underlying Markov process is not
directly observable (hidden states) but could be observable
through other stochastic processes. This model consists of a
structure that is composed of states, transition probabilities,
and a set of probability distributions, which can be discrete
or continuous, depending on the observation type. In the
case of a Discrete HMM (DHMM), observations are discrete
symbols from a finite alphabet. A DHMM is defined by a
quintuplet λ = (N,M,A,B, π), where:

• N represents the number of hidden states in the model.
Let us denote by S = {s1, s2, s3, . . . , sN} the state
vector, where the state si at time t is defined by the
variable qt.

• M denotes the number of distinct observations per
state. Let us denote by V = {v1, v2, v3, . . . , vM} the
observation vector.

• The transition probability distribution matrix is denoted
by A = {aij}, where

aij = P (sj = qt+1|si = qt), 1 ≤ i, j ≤ N. (1)

• The observation probability distribution matrix in state
j is denoted by B{bj(k)}, where

bj(k) = P (vk|sj = qt), 1 ≤ j ≤ N, 1 ≤ k ≤M. (2)

• The initial probability distribution is denoted by π =
{πi}, where:

πi = P (si = q1), 1 ≤ i ≤ N (3)

Compact notation is often used in the literature to define
the complete parameter set of the model, such as λ =
{A,B, π}.

In the case of a Continuous HMM (CHMM), observations
have continuous values. Therefore, to ensure that the model
parameters are re-estimated in a consistent way, some restric-
tions on the form of the probability density function (pdf)
have to be considered. In the literature, the most commonly
used form of pdf is the finite mixture see equation (4).

B. Gait-cycle phase recognition using a Hidden Markov
Model

The different steps of the gait-cycle phase-recognition
process are shown in Fig. 4. To recognize the six gait phases

Models learning CHMM DHMM

Performance Evaluation

    Vector 
quantization

Plantar pressure 
        sensors MTx 3-D inertial trackers 

Data labeling

3-D accelerations/angular 
velocities 

vGRF

True gait 
phases

Estimated gait phases 
(Hidden states)

Fig. 4. Gait-cycle phase-recognition methodology.

considered in section II, a discrete/continuous unsupervised
HMM is used with a six-state left-to-right topology; each
state corresponds to a gait phase. This topology is well suited
to the model of normal walking gait due to the sequential
evolution of the gait phases [9]. In the following, DHMM
and CHMM refer, respectively, to the use of HMM within
discrete-observation and continuous-observation contexts.
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CHMM: The emission distributions for each state are mod-
eled using a multivariate Gaussian distribution, such as

bj(X) =

M∑
m=1

cjmN [X,µjm,Σjm] , (4)

where: cjm represents the mixture coefficient for the mth

mixture in state j; N represents the multivariate Gaussian
density; µjm represents the mean vector for the mth mixture
in state j; Σjm represents the covariance matrix for the mth

mixture in state j.
As the number of states is equal to 6, the only parameter

to tune is the number of mixtures M . This number reflects
a trade-off between the complexity of the model structure
and the performance of the model in terms of recognition
rate. In this study, each state is modeled using a mixture of
3 diagonal Gaussians.
DHMM: To use the DHMM, the continuous observations
are transformed into discrete observations using the Vector
Quantization (VQ) method. It allows a continuous-amplitude
signal to be approximated by a discrete-amplitude signal.
Formally, it can represent any vector X ⊆ Rd by an-
other vector V = {v1, v2, v3, . . . , vM} using a code book
C = {C1, C2, C3, . . . , CM} in Rd of M vectors, where
Ci = {c1, c2, . . . cd} is the ith code word; and Rd is d-
dimensional Euclidean space. K-means is one of the most
simple and efficient algorithms for constructing a code book
from unknown data. This algorithm has as input the matrix
of accelerations and angular velocities, and as output the
vector of discrete observations V . The code-book size of 40
elements provides the best trade-off between error quantifi-
cation and performance of the model in terms of recognition
rate.

The DHMM and CHMM parameters are estimated using
the Baum-Welch algorithm [28]. Regarding the inference
problem, the Viterbi decoding algorithm is used to estimate
the state sequence, i.e., the gait phases.

IV. EXPERIMENTAL RESULTS

A. Results and discussions

To evaluate the performance of the proposed gait phase-
recognition approach, four criteria are used: accuracy, F-
measure, recall and precision. Table I summarizes the recog-
nition rates obtained with each subject using CHMM and
DHMM. The obtained results show the ability of the HMM
to recognize accurately the different walking gait phases. We
note that, in the case of CHMM, the recognition rates are
higher than 79.30%, with an average accuracy of 82.62%.
In the case of DHMM, the recognition rates are higher than
79.30%, with an average accuracy of 78.25%. The obtained
results in terms of F1-measure per class, F1-measure, pre-
cision, recall, average accuracy and its standard deviation
are shown in Table II. It should be noted that CHMM gives
better results than DHMM, which can be explained by the
fact that, in the case of DHMM, a transformation of the
continuous observations into discrete observations is needed.
This transformation may lead to information loss, which can

TABLE I
RECOGNITION RATES FOR EACH SUBJECT

CHMM DHMM
Subject1 (%) 85.31 80.80
Subject2 (%) 84.91 78.35
Subject3 (%) 82.18 77.28
Subject4 (%) 79.30 77.02
Subject5 (%) 80.66 76.85

affect the prediction quality of the model. The global confu-
sion matrices obtained with CHMM and DHMM are given
in Tables III and IV, respectively. The LR phase is estimated
with an accuracy of 95.83% in the case of CHMM, while
in the case of DHMM, the same phase is recognized with
an accuracy of 93.13%. In the case of CHMM, confusions
occur between: (i) MS and TS phases with a confusion rate
of 20.58%, (ii) TS and PSW phases with a confusion rate of
14.43%, and (iii) MSW and TSW phases with a confusion
rate of 15.95%. In the case of DHMM, confusions occur
chiefly between: (i) MS and TS phases with a confusion
rate of 16.11%, (ii) TS and PSW with a confusion rate
of 13.30%, (iii) PSW and MSW with a confusion rate of
13.87%, and (iv) MSW and TSW phases with a confusion
rate of 23.48%. These confusions can be explained by the
fact that the reference (true) labels are constructed manually.
The reference labels may not be accurate enough to be
considered real labels, especially during transitions between
phases. Fig. 5 represents the estimated phases obtained with
CHMM and DHMM for five gaits, along with the reference
hand-labeled data. We notice that the hidden states, i.e., the
recognized phases, for both CHMM and DHMM follow a
sequential evolution that is in accordance with the walking
gait phases. Moreover, DHMM and CHMM provide accurate
data segmentation with respect to the reference labels. In
some cases, the recognized phases do not match the reference
labels. This phenomenon usually occurs during transitions
between phases since the walking gait phases are modeled
using a HMM with left-to-right topology.

B. Comparison with unsupervised and supervised classifica-
tion approaches

In this section, the performance of the proposed approach
is compared to those of standard supervised and unsupervised
machine-learning approaches. In supervised approaches, the
labels are used in the learning phase to construct the models.
The leave-one-out evaluation method is used to construct the
learning dataset and the testing dataset. The latter is com-
posed of data collected from one subject, while the former
is composed of data collected from the remaining subjects.
This procedure is repeated for each subject. In unsupervised
approaches, no labels are used to construct the models, which
are learned without using any labels. The labels are used only
to evaluate the performances of the considered approaches.
The model parameters of each approach are chosen in such
way that maximizes their recognition performance rates.
F1-measure per class, F1-measure, precision, recall, av-

erage accuracy and its standard deviation, obtained with re-
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TABLE II
F1-MEASURE PER CLASS, F1-MEASURE, PRECISION, RECALL, AND AVERAGE OF ACCURACY RATE (R) AND ITS STANDARD DEVIATION (STD) FOR

EACH MODEL

F1 measure per class F1 measure Precision Recall Accuracy
1 2 3 4 5 6 (R)± (std)

DHMM (%) 92.45 79.30 74.88 76.07 67.83 79.01 78.28 78.25 87.32 78.25± 1.63
CHMM (%) 92.58 80.87 79.18 79.58 76.55 86.73 82.71 82.62 82.79 82.62± 2.61

TABLE III
GLOBAL CONFUSION MATRIX OBTAINED WITH CHMM

Obtained classes

LR MS TS PSW MSW TSW

LR (%) 95.83 4.16 0 0 0 0
True MS (%) 11.19 84.68 4.12 0 0 0
classes TS (%) 0 20.58 77.70 1.70 0 0

PSW (%) 0 0 14.43 75.00 10.56 0
MSW (%) 0 0 0 11.77 78.45 9.76
TSW (%) 0 0 0 0 15.95 84.05

TABLE IV
GLOBAL CONFUSION MATRIX OBTAINED WITH DHMM

Obtained classes

LR MS TS PSW MSW TSW

LR (%) 93.13 6.86 0 0 0 0
True MS (%) 8.34 80.80 10.85 0 0 0
classes TS (%) 0 16.11 74.31 9.57 0 0

PSW (%) 0 0 13.30 75.77 10.92 0
MSW (%) 0 0 0 13.87 68.98 17.13
TSW (%) 0 0 0 0 23.48 76.51

spect to standard unsupervised and supervised classification
approaches, are summarized in Table V. The proposed HMM
approach outperforms the standard ones, as it achieves accu-
racy rates of 78.25% and 82.62% with DHMM and CHMM,
respectively, while only 42.96% and 59.43% of instances
are well classified using K-Means and GMM, respectively.
Note that the unsupervised GMM and K-means approaches
are not well suited for this kind of sequential data as they
do not consider the sequential and temporal aspects in their
model formulations. It can also be observed that Random
Forest (RF) achieves the highest classification accuracy rate
of 88.33%, followed by the k-Nearest Neighbors (k-NN),
with an accuracy rate of 84.73%. Support Vector Machine
(SVM) and Multi-Layer Perceptron (MLP) obtain accuracy
rates of 83.89% and 80.50%, respectively. The supervised
learning model SLGMM obtains an accuracy rate of 79.49%,
and Naive Bayes (NB) obtains the lowest accuracy rate of
75.68%. Table V shows also that the RF approach achieves
the best performance in terms of F1-measure per class, F1-
measure, precision, recall, and average accuracy. Compared
to standard supervised classification techniques, the proposed
HMM techniques outperform some of them with an accuracy
rate of 82.62% in the case of CHMM, while only 79.49% and
75.68% of instances are well classified using the supervised
GMM and the NB approaches, respectively. One can notice
also that the results obtained with CHMM are almost the
same as those obtained with the K-NN and MLP approaches.
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Fig. 5. Gait-phase evolutions obtained with (a) CHMM and (b) DHMM

The obtained results are very encouraging since the pro-
posed approach performs within an unsupervised context.
Furthermore, the aforementioned supervised classification
approaches require a labeled collection of data for training.
In addition, they do not explicitly include the temporal
dependence in their model formulations. Globally, unlike
supervised-based classifiers, which require labeled data in
the model-training phase, the proposed approach shows very
encouraging results since it does not require any labeled data,
while it considers temporal and sequential aspects of the
acquired data.

V. CONCLUSION AND PERSPECTIVES

In this paper, we presented a human walking gait phase-
recognition approach based on the use of only two inertial
measurement units, which are worn by a subject at the foot
level. A discrete/continuous unsupervised HMM with a left-
to-right topology is used to model the sequential appearance
of the walking gait-cycle phases as well as the transitions
between those phases. The use of HMM in an unsupervised
context is very useful for classifying a large amount of
unlabeled data into different gait-cycle phases. The obtained
results with healthy subjects are satisfactory and clearly show
the efficiency of the proposed approach by comparison to
well-known supervised and unsupervised machine-learning-
based approaches. This work can be extended in several
directions. Feature extraction/selection from raw inertial data
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TABLE V
COMPARISON OF THE PERFORMANCE IN TERMS OF ACCURACY, RECALL, PRECISION AND F1 MEASURE OF THE FIVE SUPERVISED CLASSIFIERS AND

TWO UNSUPERVISED CLASSIFIERS

F1 measure per class F1 measure Precision Recall Accuracy
1 2 3 4 5 6 (R)± (std)

k-NN (%) 86.76 85.51 84.58 80.66 83.13 87.68 84.76 84.73 84.78 84.73± 2.13
SVM (%) 87.29 84.28 83.61 81.07 81.89 85.14 83.91 83.89 83.93 83.89± 1.91

Naive Bayes (%) 82.50 77.86 68.21 72.84 72.53 79.72 75.97 75.68 76.25 75.68± 1.78
Random Forest (%) 90.49 87.93 87.42 87.76 87.08 89.26 88.34 88.33 88.36 88.33± 1.72

MLP (%) 73.80 84.23 80.03 81.71 84.33 81.41 81.91 80.50 83.36 80.50± 2.35
SLGMM (%) 85.42 81.68 77.43 76.47 74.99 80.75 79.74 79.49 79.99 79.49± 2.48
k-Means (%) 35.60 41.21 53.88 28.68 39.22 61.06 45.28 42.96 47.86 42.96± 7.56
GMM (%) 54.22 57.63 59.69 42.23 66.32 73.90 59.38 59.43 59.33 59.43± 7.02

can be introduced in the recognition process to improve the
classification accuracy rate. To evaluate the robustness of the
proposed methodology and its effectiveness for the diagnosis
of neurodegenerative diseases such as Parkinson’s disease,
the ongoing works concern the enrichment of database by
data from healthy subjects as well as subjects with diseases
affecting walking; walking data collected in the context of
various gait speeds will also be considered.
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