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Abstract— In this paper, we present an analytical modeling
approach to address the problem of tension loss in a generic
variable curvature tendon-driven continuum manipulators (TD-
CM) occurring due to the tendon-sheath distributed friction
force. Despite the previous approaches in the literature, our
presented model and the iterative solution algorithm do not rely
on a priori known curvature/shape of the TD-CM and can be
implemented on any TD-CM with constant/ variable curvatures
with a continuous neutral axis function. The performance of
the proposed modeling approach in predicting the distributed
tendon tension and tension loss has been evaluated via simula-
tion and experimental studies on a TD-CM with planar bending.
Results demonstrate the outstanding and accurate performance
of our novel modeling and the proposed solution algorithm.

I. INTRODUCTION

Tendon-Driven Continuum Manipulators (TD-CMs) have
gained increasing popularity in various minimally invasive
single-port, multi-port, and natural orifice surgical robotic
applications [1]. For instance, various types of TD-CMs have
been utilized for minimally invasive treatment of orthopedic
applications [2], [3], single-incision laparoscopic [4]. This is
mainly due to the excellent features of a tendon-driven ac-
tuation mechanism that enable safe and remote transmission
of power to the robot’s end-effector using a lightweight and
miniaturized tendon-sheath mechanism [1], [5]. However, the
adverse effects of tendon-sheath friction along the transmis-
sion line (typically, the body of CM as shown in Fig. 1) may
result in significant non-uniform tendon tension and subse-
quently tension/motion losses [5], [6]. These considerable
losses affect the deformation behavior of a TD-CM, which
need to be considered during the modeling and design phases
before fabrication of the robot. Additionally, appropriate TD-
CM deformation behavior modeling considering the tendon-
sheath friction can mitigate challenges associated with the
CM’s accurate control, shape sensing, and contact detection
with the environment [1].

A review of literature demonstrates the efforts of re-
searchers in modeling the deformation behavior of TD-
CMs using different approaches while mainly ignoring the
effect of tendon-sheath friction. For instance, piece-wise
constant curvature approaches have been utilized in different
studies (e.g., [7], [8]), which work based on the imperfect
assumption that the curvature of a small section in the CM is
constant along its arc length [9]. Additionally, geometrically
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Fig. 1. Conceptual illustration of the curvature-dependent distributed
friction/normal force in TD-CMs and its interrelated relation with curvature.

exact models, mainly based on Cosserat rod theory, have
also been adapted for modeling various types of Variable
Curvature (VC) TD-CMs (e.g., [10]). Till et al. [9] has
recently reviewed Cosserat-rod-theory-based modeling ap-
proaches for different types of CMs.

On the other hand, various approaches have been sug-
gested by researchers to consider the effect of friction in
modeling the deformation behavior of CMs. For instance,
Gao et al. [11] considered a simple point-load Coulomb
friction model between the tendon and sheath of the TD-CM
using Cosserat rod theory deformation modeling approaches.
However, this simplified approach cannot accurately model
the distributed friction force along the tendon-sheath trans-
mission line. In [12], a modified Dahl friction formulation
and lumped-mass model were utilized to model internal
friction of a cardiac catheter. However, this model requires
experimental data to determine the Dahl friction model
parameters and it cannot be extended to a generic model used
for other forms of CMs. Subramani et al. [13] proposed a
nonlinear friction model to predict tension distribution of a
catheter system based on linear elastic bending mechanics of
CM. The least squares fitting techniques and experimental
data were used to optimize the friction parameter. It is
an optimization-based method and relies on experimental
data. More recently, to estimate internal friction parameters
for a VC-CM, a framework has been suggested by Roy
et al. [6]. This approach is also optimization-based, and it
requires experimentally-measured data to identify the friction
parameters. Overall, review of the literature demonstrates
that most of the current approaches have been mainly devel-
oped based on either simplifying assumptions (e.g., constant-
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curvature deformation behavior or point load friction forces)
or optimization-based approaches that are not extendable to
a generic analytical model of a VC-CM.

To address the aforementioned limitations and with the
goal of introducing a generic approach for modeling the
deformation behavior of a VC-CM, in this study, we extend
the typical geometrically exact model based on the Cosserat
rod theory and include the effect of Curvature-Dependent
Distributed Friction (CDDF) Force between the tendon and
sheath. Of note, in our derivation, we do not consider
assumptions such as a priori known curvature/shape and/or
constant-curvature deformation behavior for the TD-CM. For
this study, we will focus on analytical modeling of the
distributed friction force and tension loss along a generic
TD-CM with a 2D planar bending and propose an iterative
algorithm to calculate interrelated shape/curvature and CDDF
force of a generic TD-CM. We also experimentally evaluate
our derived analytical model and the proposed algorithm for
solving this model on a fabricated TD-CM.

II. PROBLEM FORMULATION

A. Problem Statement

Let’s consider a generic variable curvature TD-CM, shown
in Fig. 2, with an unknown planar deformation behavior.
The goal of this paper is to derive a mathematical model to
establish an analytical relation between the known actuation
input (i.e., tendon tension(s) at the base of the CM, Tbase),
and unknown deformation behavior of a VC-CM, while
considering the effect of a curvature-dependent distributed
friction force on the tendon(s) tension loss along the TD-
CM. With this objective in mind, we make the following
assumptions/remarks:

Remark 1: It is worthwhile to emphasize that, CDDF
force and shape/curvature in a TD-CM are interrelated, which
makes their mathematical modeling very complex. To miti-
gate this modeling problem, most of the literature (e.g.,[12],
[13]) either considered a priori known shape/curvature for
the CM to calculate the friction force or completely ignored
the tendon friction to model the shape of a TD-CM. However,
in this paper, we assume these parameters (i.e., the CDDF
force and shape of the CM) both are unknown and entangled
and completely consider the effect of tendon-sheath friction
on deformation behavior of a generic TD-CM and vice versa.

Remark 2: Although, in this paper, we have considered
a conical geometry for our modeled VC-CM, the proposed
modeling approach is generic and can be applied on any CM
with different geometry in which the neutral axis is a smooth
differentiable function of arc length s.

Remark 3: From now on and for the sake of simplicity
throughout the paper, we use the acronym “VC-CM” to refer
to a “variable curvature tendon-driven continuum manipula-
tor”.

B. Considered Reference Frames

As shown in Fig. 2, to model deformation behavior of a
generic conical-shaped VC-CM, we first define a fixed frame
{X−Y } located at the base of the manipulator and use local

Fig. 2. Conceptual illustration of a generic VC-CM with planar bending.

2D Frenet–Serret reference frames (~t(s), ~n(s)) to describe
the position and orientation of arbitrary cross sections along
the VC-CM midline. The following describes the equations
relating these two reference frames:

d~t

ds
= κ(s)~n(s)

d~n

ds
= −κ(s)~t(s)

d~u

ds
= ~t(s)

(1)

where s represents the arc length parameter along the VC-
CM midline, κ(s) represents the curvature of the midline
(neutral axis) as a function of s, and ~t(s) and ~n(s) are
the tangential and normal vectors to the midline curve,
respectively. Also, ~u(s) describes the position of the origin of
these local frames with respect to the fixed frame {X −Y }.

Using these frames, we can also continuously define the
position ~uci(s) of the ith tendon i = {1, 2} passing through
a conical sheath (or CM’s body, as shown in Fig. 2) based
on the arc length parameter s as follows: ~uci(s) = ~u(s)± dci~n(s)

dci(s) = ai −
s (ai − bi)

L

(2)

where ai and bi are the distances between the tendons
locations to the midline at the base and tip cross sections of
the VC-CM, respectively (Fig. 2). Also, dci(s) is a function
defining the distance between the tendons’ location and the
midline and L is the overall length of the VC-CM.

Using (1) and (2), we can derive the tangential unit vector
for each tendon ~tci(s) as well as the curvature along each
tendon κci using the following equations:

~tci(s) =
d ~uci
ds

, κci(s) =
1

1

κ(s)
± dci(s)

(3)

where here we assume the tendon arc length sc can be
approximated by the midline arc length s.

C. Modelling Curvature-Dependent Distributed Friction
Force in a Generic VC-CM

As shown in Fig. 2, relations among the normal force Fn,
friction force Ff , and tendon tension Ttendon in a differen-
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tial element along the tendon-sheath of a VC-CM can be
described using the following equations [13], [5]:{

dTtendon = dFf

dFf = µdFn = µTtendondθ
(4)

where µ is the friction coefficient of the relative motion
between the tendon and sheath/manipulator body and dθ is
the differential tendon wrap/bending angle of the VC-CM.

Considering (4), we can describe the relation between the
tendon tension at the base Tbase and tip Ttip of a VC-CM
based on the overall tendon wrap/bending angle θ along the
tendon length as follows:

dTtendon

Ttendon
= µdθ∫ Tbase

Ttip

1

Ttendon
dTtendon = µθ

ln (Tbase)− ln (Ttip) = ln

(
Tbase

Ttip

)
= µθ

(5)

Additionally, wrap/bending angle θi(s) of the ith tendon
can be related to the curvature κci over the arc length of the
tendon , as shown in (6). Using (3), (5), and (6), we can now
obtain (7) to calculate ~Ttip, the vector of tendon tension at
the tip of a VC-CM.

θi(s) =

∫ s

0

κci(ξ) dξ (6)

~Ttip,i = −Tbase,i~tci(L)e
−µθi(L) = −Tbase,i~tci(L)e

−µ
∫ L
0
κci(ξ) dξ

(7)
More generally, we can use (3), (5), and (6) to calculate the
vector of tendon tension at any arbitrary point ~Ttendon(s)
based on a variable curvature along the tendon arc length
κci(s):

~Ttendon,i(s) = −Tbase,i~tci(s)e
−µ

∫ s
0
κci(ξ) dξ (8)

Using (1-4) and (8), at any arbitrary point along the
arc length s, we can calculate the Curvature-Dependent
Distributed Normal (CDDN) force FCDDN(s) and the CDDF
force FCDDF(s) of a generic VC-CM as the following:

~FCDDN,i(s) = Ttendon,i(s)
d ~tci(s)

ds
= Tbase,i

d ~tci(s)

ds
e−µ

∫ s
0
κci(ξ) dξ

(9)

~FCDDF,i(s) = −µFCDDN,i(s) ~tci(s) (10)

= −Tbase,iµκci(s)
d ~uci(s)

ds
· e−µ

∫ s
0
κci(ξ) dξ

Of note, (8), (9), and (10) describe the distributed tendon
tension, distributed normal force, and distributed friction
force along tendon(s) of a generic VC-CM, respectively,
and have been derived without considering any assumptions.
These forces are used in the next section to obtain the
deformation behavior/shape of a VC-CM.

D. Modeling the Deformation Behavior of a Generic VC-CM
Based on the CDDF Force

To obtain the deformation behavior (i.e., shape/curvature)
of a generic VC-CM, in this section, we use the Euler-
Bernoulli beam theory and the derived forces in Section II-C
to relate the actuation input (i.e., tendon tension(s)) to the
to the configuration variable (i.e., curvature of the VC-CM
κ(s)) along its neutral axis as follows:

EJ(s)κ(s) =M(s) (11)

where E is the Young’s modulus of the VC-CM and J(s)
is the second moment of area of the VC-CM’s cross section
along its arc length.

For a generic conical-shaped VC-CM with an internal
channel (as shown in Fig. 2), the second moment of area
about the neutral axis can be represented by a smooth and
differentiable function as the following:

J(s) =
π

4
(Router(s)

4 − rinner(s)
4)

Router(s) = Router,0 −
s (Router,0 − router,0)

L

rinner(s) = Rinner,0 −
s (Rinner,0 − rinner,0)

L

(12)

where Router,0 and Rinner,0 describe the outer and inner
radii of the VC-CM circular cross section at its base, while
router,0 and rinner,0 represent the outer and inner radii of the
VC-CM circular cross section at its tip, respectively. Also,
Router(s) and Rinner(s) are the outer and inner radii of the
circular cross section of the VC-CM at an arbitrary point s.

To use (11), we first need to calculate the total moment at
each cross section due to the point load Ttip at the tip of the
VC-CM (obtained by (7)) as well as the CDDN and CDDF
forces (obtained by (9) and (II-C), respectively) along the
VC-CM as the following:

~Mi(s) =

∫ L

s

Tbase,ie
−µ

∫ s
0
κci(ξ) dξ

(
d~tci(ξ)

dξ
−

µκci(ξ)
d~uci(ξ)

dξ

)
× (~u(s)− ~uci(ξ)) dξ − Tbase,i~tci(L)·

e−µ
∫ L
0
κci(s) ds × (~u(s)− ~uci(L)) (13)

where (...)×(...) denotes the cross product of an appropriate
force vector and moment arm, respectively.

Substituting (12) and (13) in the Euler-Bernoulli equation
(11), we can now obtain the following static equation relating
the distributed tendon tension, friction, and normal forces to
the shape of a generic VC-CM described by its neutral axis
curvature κ(s):

EJ(s)κ(s) =

2∑
i=1

[

∫ L

s

Tbase,ie
−µ

∫ s
0
κci(ξ) dξ

(
d~tci(ξ)

dξ
−

µκci(ξ)
d~uci(ξ)

dξ

)
× (~u(s)− ~uci(ξ)) dξ − Tbase,i~tci(L)·

e−µ
∫ L
0
κci(s) ds × (~u(s)− ~uci(L))] (14)
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III. PROPOSED ITERATIVE ALGORITHM TO SOLVE THE
VC-CM DEFORMATION BEHAVIOR MODEL

As mentioned in Remark 1 and can be understood from
(14), deformation behavior/shape of a VC-CM– which is
described by its curvature– is the function of the distributed
tendon(s) tension while the distributed tendon(s) tension
itself is determined by the manipulator’s shape. In other
words, to solve this interrelated equation, one of the shape or
distributed tension parameters needs to be known a priori.

To solve this problem without a priori knowledge on
the shape or distributed tendon(s) tension, we propose an
iterative algorithm comprising of the following two steps:

1) Step 1: Solving (14) when FCDDF = 0: We first assume
there is no tension loss due to the tendon-sheath friction force
(i.e., FCDDF = 0 and Tbase = Ttip) and, therefore, simplify
(14) as follows:

EJ(s)κ(s) =

2∑
i=1

[

∫ L

s

Tbase,i
d~tci(ξ)

dξ
× (~u(s)− ~uci(ξ)) dξ

(15)

−
(
Tbase,i~tci(L)

)
× (~u(s)− ~uci(L))]

By taking the derivative of (15) with respect to arc length s,
we can obtain the following first-order ordinary differential
equation describing the shape of VC-CM based on its neutral
axis curvature:

Eκ(s)J ′(s) + EJ(s)κ′(s) =

2∑
i=1

[−Tbase,i
d~tci(s)

ds
×

(~u(s)− ~uci(s))−
(
Tbase,i~tci(s)

)
× ~t(s)] (16)

For a conical-shaped VC-CM using two actuation tendons
Tbase1 and Tbase2, shown in Fig. 2, equation (16) can be
simplified to the following algebraic form [10]:

(17)κ′(s) = − Eκ(s)J ′(s)∑2
i=1 d

2
ciTbase,i + EJ(s)

To solve (17), the initial value of curvature can be obtained
from the boundary condition at the tip position (i.e., s = L).
Equations (1) and (17) then form a system of ordinary
differential equations that can be simultaneously solved to
obtain the neutral axis curvature and shape of the VC-
CM represented by local 2D Frenet–Serret reference frames
(~t(s), ~n(s)) [10]. Of note, using (3), the tendon(s) curvature
can be easily calculated from the obtained κ(s) to shift the
curvature of the midline to that of tendon(s) κci(s) .

2) Step 2: Iterative Algorithm for Solving (14) when
FCDDF 6= 0: In this step, we use the obtained curvature
and shape in Step 1 (i.e., the friction-less model) as the
initial guess to iteratively solve (14). The resulted new VC-
CM shape and curvature, after solving the nonlinear equation
(14), are then used again as the next initial guess for solving
the same equation. We repeat this process until the following
stopping criterion is satisfied defining the VC-CM tip etip
error:

etip(j) = ‖~utip(j + 1)− ~utip(j)‖2≤ etip,th (18)

Fig. 3. Convergence of the algorithm based on the tip position error.

where ~utip(j
th) represents the tip position of the VC-CM at

the jth iteration and etip,th is the considered stopping threshold
for the calculated VC-CM tip error.

Using the proposed algorithm, obviously, the maximum
curvature κmax(s) is always obtained from the first step
corresponding to the friction-less model with zero loss in the
tendon(s) tension. On the other hand, the next iteration, using
Step 2 and with initial curvature κmax(s), always yields the
minimum curvature κmin(s) with the maximum friction loss
for the VC-CM tendon(s) (check equation (10)). Therefore,
based on the derived equations and the squeeze (or sandwich)
theorem, the final obtained shape/curvature κfinal(s) using the
proposed algorithm always converges to its final shape after
a few iterations.

IV. PERFORMANCE EVALUATIONS

To evaluate the performance of the derived analytical
approach and its proposed iterative solution described in
Sections II-D and III, we have performed studies in sim-
ulations and experiments. The following sections describe
these studies in details:

A. Simulation Studies

For our simulations performed in MATLAB (MathWorks,
Inc.), we considered a conical-shaped VC-CM with the
following parameters defined in Fig. 2: L = 140 mm,
dci = ai = bi = 10 mm, Router,0 = 20 mm, router,0 = 13 mm,
Rinner,0 = rinner,0 = 7 mm, E = 1.4 MPa, and µ = 0.42.
Of note, Young’s modulus and the friction coefficient were
selected based on a silicone (Smooth-Sil 940, Smooth-On,
Inc.) used for molding a VC-CM for our experiments and
described in Section IV-B.

To evaluate the performance of the model and the proposed
iterative solution, we applied different tensions on one tendon
at the VC-CM base and evaluated the convergence behavior
of the proposed algorithm. Of note, for these simulations,
we considered etip,th = 0.1 mm as the stopping criterion
for our algorithm. Fig. 3 demonstrates the results of this
study. Also, Fig. 4 shows the calculated shapes of the VC-
CM (i.e., its midline) at each iteration for the case of
Tbase = 75N . Fig. 5 indicates the calculated distributed
cable tension Ttendon(s), normal force FCDDN(s), and friction
force FCDDF(s) along the tendon arc length for the case of
Tbase = 75 N. In addition, Fig. 6 compares the calculated VC-
CM shapes, midlines, and tendon arc lengths for the cases of
Tbase = 10 N and Tbase = 75 N. It also shows the calculated
FCDDN(s) and FCDDF(s) force vectors (i.e., directions, and
scaled magnitudes) along the tendon arc length.
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Fig. 4. Estimated midline shapes at each iteration for Tbase = 75 N.

Fig. 5. Calculated distributed forces (Ttendon(s), TCDDN(s) and TCDDF(s))
along the VC-CM tendon arc length for Tbase = 75 N.

B. Experimental Studies

Fig. 7 shows the experimental setups fabricated for eval-
uating the performance of the derived equations and the
iterative algorithm. For these experiments, we used a silicone
(Smooth-Sil 940, Smooth-On, Inc.) with Young’s modulus of
E = 1.4 MPa to mold a VC-CM (shown in Fig. 7b) with the
dimensions described in Section IV-A. As shown in Fig. 7a,
we also used this silicone to mold a sheath (outer diameter
= 7 mm and inner diameter = 2 mm) to measure the friction
coefficient between the sheath and the actuation wire rope
(34235T28, McMaster-Carr) with outer diameter of 0.046
inch. To measure this friction coefficient, we first mounted
the molded sheath around a 3D printed pulley with radius
of 3 inch (Fig. 7a), passed the wire rope through the sheath,
and then fixed one end of the wire to a load cell (LSB201,
FUTEK Advanced Sensor Technology, Inc.) and its other end
to various lab weights. Given known tensions on two sides of
the wire rope and using (5), we obtained friction coefficient
µ = 0.42.

Since Distributed Friction Force and Shape/Curvature in
a TD-CM are interrelated, we only evaluated the proposed
model by measuring the tendon-tension transmission loss. To
this end, we used the setup shown in Fig. 7b to evaluate
the performance of the presented model and its solution
algorithm in obtaining the tendon’s tension at the VC-CM
tip Ttip for various base tensions. To measure Tbase, we

Fig. 6. Calculated FCDDN(s) and FCDDF(s) force vectors (i.e., directions,
and scaled magnitudes) along the tendon arc length.

used a tension load cell (LSB201, FUTEK Advanced Sensor
Technology, Inc.) while for Ttip, we utilized a through
hole compression load cell (LTH300, FUTEK Advanced
Sensor Technology, Inc.). To generate various Tbase and a
continuous bending motion for the VC-CM, we used a micro
meter head (BM25.40, Newport Corporation) and linear
stage (M-UMR12.40, Newport Corporation) mechanism to
continuously pull the actuation wire rope (Fig. 7b) from
the VC-CM initial straight configuration. Fig. 8 reports the
results of six repeated experiments in which 18 tensions at
the base (Tbase = 5 N- 85N with 5N increments) and tip of
the VC-CM using the described load cells were measured.
This figure also compares these measurements with the
obtained results from the model and iterative solution.

V. DISCUSSION

The simulation results shown in Fig. 3 and Fig. 4 demon-
strate the successful performance of the proposed iterative
algorithm in fast convergence to the final VC-CM shape for
different tendon tensions. As discussed in Section III-.2 and
can be observed in Fig. 4, the initial shape obtained based
on the friction-less model (i.e., equation (17)) resulted in
the maximum curvature, while the first iteration based on
this initial curvature resulted in the minimum curvature for
the VC-CM because of the maximum tension loss due to the
friction. Additionally, based on the squeeze theorem, the final
converged shape is located between these two curvatures.
Fig. 3 also indicates the efficacy of the proposed algorithm by
dramatically reducing the VC-CM tip position after the first
iteration. As can be observed in this figure, for the maximum
base tendon tension (i.e., Tbase = 75 N), the algorithm errors
are less than the considered thresholds after 6 iterations. Fig.
5 and Fig. 6 clearly demonstrate the importance and effect
of the distributed friction force on the deformation behavior
of the VC-CM and tendons’ tension-loss, which has been
ignored in various studies (e.g., [14], [10]). For instance, for
the simulated case shown in Fig. 5, about 40% tension loss is
observed due to the tendon-sheath friction. These figures also
show the relation between the curvature and friction/normal
force where higher curvatures, at the tip of the VC-CM,
produce a higher friction/normal forces and vice versa.

Comparison between the measured experimental tensions

8827



Fig. 7. (a) Friction coefficient measuring setup; (b) Experimental setup for evaluation of the derived analytical approach and the iterative solution algorithm.

Fig. 8. Comparison of the predicted tensions at the tip of the VC-
CM obtained by our analytical model with the measured load cell values.
The green shaded region around the experimental results demonstrates the
deviation of the six trials from the calculated average.

at the tip of the VC-CM and the tensions obtained using the
derived analytical model (shown in Fig. 8) demonstrates the
outstanding performance of the derived model (average error
of 14.66% between the predicted and measured tensions in
6 repeated experiments) in calculating the tension loss due
to the distributed friction force. It is worth re-emphasizing
the derived model, despite most of the reported studies in
the literature, does not rely on a priori knowledge on the
shape/curvature of the VC-CM; it instead uses the proposed
iterative algorithm in Section III-.2. Of note, the discrepancy
between the predicted and experimental results can be partly
due to the usage of inaccurate Young’s modulus and/or
friction coefficient.

VI. CONCLUSION AND FUTURE STUDIES

In this paper, we presented a novel and analytical approach
for modeling curvature-dependent distributed friction force
that solves the important problem of tendon-tension trans-
mission losses with a unknown deformation behavior of a
generic VC-CM. We showed that the proposed modeling
approach does not require a priori knowledge of the VC-
CM deformation behavior and can be implemented on a
generic VC-CM with a continuous neutral axis function. Our
simulation and experimental studies proved the efficacy of
the proposed modeling and iterative solution in predicting the
VC-CM tendon tension. Our future studies include the ex-
tension and experimental evaluation of the current developed
model for predicting the deformation behavior and internal
forces of a generic VC-CM with 3D bending behavior in the
presence of hysteresis and cable slack [15].
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