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Abstract— Physically soft robots are promising for robotic
assembly tasks as they allow stable contacts with the environ-
ment. In this study, we propose a novel learning system for
soft robotic assembly strategies. We formulate this problem as
a reinforcement learning task and design the reward function
from human demonstrations. Our key insight is that the failed
demonstrations can be used as constraints to avoid failed behav-
iors. To this end, we developed a teaching device with which hu-
mans can intuitively provide various demonstrations. Moreover,
we leverage Physically-Consistent Gaussian Mixture Models to
clearly assign Gaussian components to the successful and failed
trials. We then create the reference trajectories via Gaussian
Mixture Regressions, which fit the successful demonstrations
while considering the failed ones. Finally, we apply a sample-
efficient deep model-based reinforcement learning method to
obtain robust strategies with a few interactions. To validate
our method, we developed a real-robot experimental system
composed of a rigid collaborative robot arm with a compliant
wrist and the teaching device. Our results demonstrated that
our method learned the assembly strategies with a higher
success rate than when using only successful demonstrations.

I. INTRODUCTION

Autonomous robotic assembly is an essential component
for industrial applications. Despite significant research and
development, robotic assembly tasks are still challenging as
they involve strict tolerances and complex contact dynamics.
In order to deal with such contact-rich tasks, force controllers
have been proposed [1]. Although recent studies have demon-
strated high precision assembly control solutions [2], [3],
these approaches largely depend on high-performance hard-
ware, e.g., high-frequency controllers or precise force/torque
sensors.

In contrast, physically soft robots (consisting of springs
and compliant materials) have attracted much attention [4],
[5] as they can handle contact-rich interactions intrinsically
without the force controllers and sensors. Meanwhile, de-
signing controllers for soft robotic assembly is much more
difficult due to the complex dynamics of soft bodies in a
contact-rich environment. Especially, we need to carefully
design the control objective, since unlike the rigid robots,
following reference trajectories precisely is difficult for the
soft robots. A poorly designed control objective would often
cause failures, for example, applying a high force to an
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Fig. 1. Illustration of our proposed method. We propose a novel learning
system for soft robotic assembly tasks. We apply a reinforcement learning
approach and design the reward function from human demonstrations.
Our key idea is to exploit successful and failed demonstrations to obtain
assembly strategies more successfully.

environment where soft materials shrink at the limit, and
unexpected behaviors such as oscillation and overshooting
can occur due to the elastic effects. If we can obtain the
controller and its objective in a more intuitive way and let the
robots know about these potential failures in advance, they
would likely perform the assembly tasks more successfully.

In this study, we explore a data-driven approach to acquire
successful soft robotic assembly strategies. We formulate
this problem as a reinforcement learning task and design a
reward function with a Learning from Demonstrations (LfD)
approach. LfD is promising since humans can intuitively
provide their strategies with the robots [6], [7], and it has also
been used widely in industrial applications [8]. Furthermore,
we propose to leverage failed demonstrations as well as
successful ones as shown in Fig. 1. The motivation is that the
failed demonstrations can be used as constraints to avoid the
failed behaviors. This dual approach results in extracting the
necessary strategies to complete the tasks more successfully
using both the failed and successful demonstrations.

However, two serious problems arise. First, since the as-
sembly tasks require high precision manipulation, providing
adequate demonstrations is sometimes difficult. For example,
in direct teaching cases using collaborative robots [9], manip-
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ulating the end effector to the desired location is challenging
due to the robot joints restricting the user’s movement. To
solve this problem, we developed a teaching device (see
Fig. 1), which mimics the robot’s gripper and facilitates
the demonstration of assembly strategies. Moreover, we can
argue that the pose information from this device is sufficient
to reproduce the contact-rich tasks using simple position
or velocity control, since the robot’s softness allows stable
contacts [10].

Second, if we apply standard methods such as a Gaussian
Mixture Model (GMM) and Gaussian Processes (GP) [7], or
GMM-based GP [11] to the collected demonstrations, they
are prone to fit averaged trajectories such that distinctions
between the success and failure trials are difficult. To address
this problem, we employ a Physically-Consistent Gaussian
Mixture Model (PC-GMM) that considers similarities such as
locality and directionality between the demonstrations [12].
Whereas Figueroa and Billard used GMM to clearly fit com-
plex trajectories [12] and demonstrated better expressiveness
compared to the standard EM-based GMM methods, we
propose to use PC-GMM to distinguish the successful and
failed demonstrations. By applying PC-GMM, the Gaussian
components are unambiguously assigned to the successful
and failed ones while keeping away from each other. Then,
we create time-dependent reference trajectories via Gaussian
Mixture Regressions (GMR) using the optimized Gaussian
components by PC-GMM. We extract the Gaussian compo-
nents, which are fitted to the successful demonstrations.

Finally, given the reference trajectories from the demon-
strations, we apply a deep model-based reinforcement learn-
ing method [13] to obtain robust assembly strategies. This
method combined ensembles of deep neural network dy-
namics models with sampling-based propagation to contend
with nonlinearity and uncertainty, and demonstrated notable
sample-efficiency when compared with other modern model-
based reinforcement learning methods [13]. It is suitable for
our setting, which includes the model complexity due to the
softness and contact richness.

The contributions of this study are as follows:

• We propose a novel learning system for soft robotic
assembly strategies. We formulate the problem as a rein-
forcement learning task and design the reward function
from successful and failed demonstrations.

• We developed a teaching device, with which the users
can provide various demonstrations intuitively and em-
ploy PC-GMM to exploit the successful and failed
demonstrations. In addition, we apply a state-of-the-art
model-based reinforcement learning method.

• We performed real robot experiments. Our method
showed a higher success rate in a peg-in-hole task com-
pared with using only the successful demonstrations.

This paper is organized as follows. Section II presents
related works for our study. We introduce our proposed
method in Section III. Section IV describes the experiment,
whereas, Section V discusses our results and Section VI
presents our conclusion.

II. RELATED WORKS

In this section, we describe related works for the soft
robotic assembly control. We also focus on recent studies
learning from demonstration and failed behaviors.

A. Physically soft robotic assembly control

Physically soft robots are suitable for assembly tasks
since the softness allows safer interactions with the envi-
ronment [14]. Yun et al. demonstrated that lower stiffness
improved the performance of the peg-in-hole tasks in simu-
lations [15]. Nishimura et al. developed a passive compliant
wrist which can deal with position uncertainty during the
peg-in-hole tasks [4]. Soft tactile sensors have been used
for measuring and aligning the orientations of the grasped
assembly parts [16], [17].

Our prior work presented learning assembly controllers for
the soft robot [18]. We leveraged softness and environmental
constraints so that the robot can complete tasks in a lower-
dimensional state and action spaces. Then, we applied sample
efficient reinforcement learning. Although we demonstrated
the sample efficiency, expert knowledge would be required
to design the constraints. In addition, the robots had to
learn the strategies for each sub-task. Unlike the previous
work, we apply the novel learning system utilizing human
demonstrations such that designing constraints or learning
the strategies for each sub-task are not required.

B. Learning from demonstrations and failed behaviors

LfD approaches have previously been applied to soft
robots. Nishimura et al. and Della et al. also employed
human demonstrations to imitate object manipulation and
grasping [19], [20]. Gupta et al. proposed to combine rein-
forcement learning with human demonstrations [21]. These
methods showed efficient learning performances; however,
they only provided successful demonstrations.

Meanwhile, recent studies have also proposed to learn
from failed behaviors. Wang et al. and Kobayashi et al.
proposed a dual reward function to acquire strategies to
maximize the positive reward and minimize the negative
reward [22], [23]. Esteban et al. proposed a reinforcement
learning method, whose policies were updated to avoid the
bad experiences [24]. Failed or imperfect demonstrations
have also been used in inverse reinforcement learning [25]
and deep reinforcement learning contexts [26]. As an al-
ternative, we propose to leverage the successful and failed
demonstrations to directly create reference trajectories, which
can extract the necessary strategies to complete the tasks.
To this end, we develop the teaching device, and employ
PC-GMM and state-of-the-art model-based reinforcement
learning.

III. PROPOSED METHOD

In this section, we present our proposed method. Our goal
is to obtain the appropriate soft robotic assembly strategies.
The procedure of our method is depicted in Fig. 2. First, we
provide the labeled successful and failed demonstrations on
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Fig. 2. Procedure of our method. First, we collect the successful and
failure demonstrations with a teaching device. Next, we apply PC-GMM
and GMR to the labeled demonstrations. Finally, we employ deep model-
based reinforcement learning.

the peg-in-hole task with the teaching device. The demon-
strated data is labeled with success or failure. Given the
collected data, we apply PC-GMM to fit GMM to the both
successful and failed ones. Then, we employ GMR to create
the reference trajectories using the Gaussian components,
which are assigned only to the successful data. Finally, based
on the trajectories, we apply deep model-based reinforcement
learning.

A. Physically-Consistent Gaussian Mixture Model

In attempting to exploit both successful and failed demon-
strations, we cannot directly apply typical methods such as
GMM or GP since they tend to fit to the average of both suc-
cessful and failed trials. To address this problem, we employ
PC-GMM [12]. PC-GMM uses a similarity measure based
on locally-scaled cosine similarity of the velocity to bias the
GMM fitting. In addition, PC-GMM automatically estimates
the number of Gaussian components using a Bayesian non-
parametric approach, the Chinese Restaurant Process (CRP)
representation. Below, we briefly explain PC-GMM. The
details can be seen in [12].

The probabilistic distribution of GMM at the data x
(labeled with success and failure), mixture of K Gaussian
distributions N (·|θγ) with θγ = {µkγ ,Σk

γ} can be written
as:

p (x|Θγ) =

K∑
k=1

πkN
(
x|µk,Σk

)
, (1)

where πk = p(zi = k) is a mixing coefficient, Θγ =
{πk, θkγ}Kk=1 is a parameter set for the Gaussian distribution.
Z = [z1, . . . , zM ] is an assignment variables with M
samples, where z ∈ [1, ...,K].

We then use the physically consistent similarity dependent
CRP. The physically consistent similarity is composed of two
main properties: directionality and locality. The similarity
measure ∆ is given as:

∆ij(xi,xj , ẋi, ẋj) =

η

(
1 +

(ẋi)
>
ẋj

‖ẋi‖ ‖ẋj‖

)
exp

(
−ls ‖xi − xj‖2

)
.

(2)

The first term, which represents directionality, is the shifted
cosine similarity of measured velocity, the second term
represents the locality with a Gaussian kernel on the position
measurements, and ls is a scale parameter. In this study,
we add a modification parameter η to reduce the similarity
η = 0.01 when the labels (success and failure) between the
two data points are different, otherwise η = 1.0.

The similarity-dependent CRP generates a prior dis-
tribution p(C) over customer seating assignments C =
[c1, . . . , cM ] where i : ci = j indicates that the i and j
customers are in the same cluster. The prior is computed
as:

p(C|∆, α) =

M∏
i=1

p (ci = j|∆, α) , (3)

p (ci = j|∆, α) =

{
∆ij(·)∑M

j=1 ∆ij(·)+α if i 6= j
α

M+α if i = j,
(4)

where ∆ ∈ RM×M is the pairwise similarity matrix between
M customers and α is the probability to sit alone.
C = [c1, . . . , cN ] is sampled from Eq. 3 and mapped

to Z = [z1, . . . , zN ] using a function Z = Z(C). The
parameters θkγ are sampled from the Normal-Inverse-Wishart
distribution with a hyperparameter λ0. The optimal num-
ber of the components K is derived from the number of
unique clusters of C. We estimate the posterior distribution
p(C,Θγ |X) given the data X = [x1, ...,xM ]. However,
since obtaining the analytic posterior is intractable, we use
Collapsed Gibbs sampling for the approximated posterior as
follows:

p(ci = j|C−1,X,∆, α, λ0) ∝
p (ci = j|∆, α) p (X|Z (c1 = j ∪ C−1) , λ0) ,

(5)

where the second term in the right hand-side is the likeli-
hood of table assignments coming from the current seating
arrangement Z(ci = j ∪ C−i). C−i is the customer seating
assignment for all customers except for the i-th. We run the
sampler in Eq. 5 iteratively and obtain the optimal number
of Gaussian components K and their parameters Θγ via the
Maximum A Posteriori.

B. Gaussian Mixture Regression

Using the Gaussian components obtained from PC-GMM,
we apply GMR [27] to create the trajectories. We select the
Gaussian components, which are assigned to the successful
demonstration data from all components Θγ . At the timestep
t, we decompose the data xt into two vectors xIt and xOt .
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I is the input dimension (time step) and O is the output
dimension (e.g., end effector pose). The data xt, µk, and
Σk can be written as follows:

xt =

[
xIt
xOt

]
, µk =

[
µIk
µOk

]
, Σk =

[
ΣIk ΣIOk
ΣOIk ΣOk

]
.

(6)
We approximate the conditional distribution of p(xOt |xIt )

to the single peak distribution:

p
(
xOt |xIt

)
= N (xOt |µ̂Ot , Σ̂Ot ), (7)

µ̂Ot =

K∑
k=1

hk(µOk + ΣOIi ΣI−1
k

(
xIt − µIi

)
), (8)

Σ̂Ot =

K∑
k=1

hk(ΣOk −ΣOIk ΣI−1
k ΣIOk + µ̂Ok µ̂

O>
k )

− µ̂Ot µ̂O>t , (9)

hk =
πkN

(
xIt |µIk ,ΣIk

)∑K
k πkN

(
xIt |µIk ,ΣIk

) . (10)

We use the mean µ̂Ot for the reference trajectories Xref .

C. Deep model-based reinforcement learning

Given the created trajectories, we apply the deep model-
based reinforcement approach [13], [28] to the soft robot.
This algorithm is called probabilistic ensembles with trajec-
tory sampling (PETS). PETS learns an ensemble of neural
network dynamics models to deal with the uncertainty that
arises in the low data regime of learning.

We consider the Markov decision process formulation.
The robot state (e.g., position and orientation) is x̃, and
the robot action (e.g., velocity command of the tip of the
arm) is ũ. Given the current state and action, the next
state is given as x̃t+1 = fθ(x̃, ũ), where the model is
parameterized by θ. Unlike previous studies [13], [28], we
learn deterministic dynamics models fθ with the training
dataset D = {x̃t, ũt, x̃t+1}, as we found the probabilistic
models did not assist in our problem setting. Then, we
employ model ensembles of B bootstrap models with b-th
models fθb .

Next, we perform online planning with model predictive
control to select optimal actions. The learned models are
used to predict a short-term return t ∈ [0, . . . ,H] at each
time step. We employ the cross-entropy method [29], which
starts by generating random action sequences Ui (i ∈ I).
Then, the mean and variance of the sampling distribution
are updated with a smoothing operation [28] for L iterations
(l ∈ L) based on the highest J return action sequences:

Ui = [ui0, . . . ,u
i
H−1],uit ∼ N (µlt,Σ

l
t), (11)

Uelites = sort (Ui) [−J :], (12)

µl+1
t = β ∗mean (Uelites ) + (1− β)µlt, (13)

Σl+1
t = β ∗ var (Uelites ) + (1− β)Σl

t, (14)

where β is a smoothing coefficient. After L iterations, we
select the optimal actions Ui∗ that maximize the predicted
reward: i∗ = arg maxi Σt+H−1

t′=t r(x̃t, ũt).

Motion capture
camera

Compliant
wrist

UR5

Hole

Fig. 3. The experimental setup consisted of a UR5, the motion capture
system, and the compliant wrist.

The reward can be written as:

r(x̃t, ũt) = −(x̃ref
t − x̃t)>Wx(x̃ref

t − x̃t)−Wuũ
2
z

Wu =

{
0.01 if d > ε
0 otherwise,

(15)

where Wx is a weight matrix of the reward related to
the position error. We also design the action reward for
the z direction to avoid applying force to the environment
excessively. If the robot is far from the goal d > ε, where
d is an x-y distance from the goal position, we increase a
weight Wu so that the robot does not exceed the workable
limit of the environment.

IV. EXPERIMENT

To validate our method, we conducted a real robot experi-
ment. We developed the experimental system composed of a
robot with a compliant wrist, a motion capture system, and
a teaching device. This experiment goal was to investigate
whether using both the successful and failure demonstrations
could make learning perform better than when using only
successful ones.

A. Setup

We utilized a Universal Robot (UR5) and a compliant
wrist, which was attached between the arm and a Robotiq
2F-85 gripper (Fig. 3) [18]. A peg was firmly affixed to the
gripper using a 3D printed jig for simplicity. We employed
MoveIt to control Cartesian positions and velocities for the
tip of the arm [30], and measured the 6D pose of the gripper
using Optitrack, a motion capture system due to the under
actuation of the compliant wrist. The diameter of the peg
was 10 mm. The tolerance between the peg and the hole
was 15 µm. This peg-in-hole task is considered difficult due
to the low tolerance and no chamfer.

We designed a teaching device in which users could
demonstrate their skills intuitively (Fig. 4). The device
mimics the Robotiq gripper to reduce kinematic differences
and allows the users to easily manipulate it with their
fingers. The opening width of the fingers can be measured
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Close Open

Potentiometer

Fig. 4. The teaching device. It was designed so that the users can provide
demonstrations easily while keeping the kinematics structure similar to the
robot gripper.

Fig. 5. Examples of failure demonstrations. A participant was instructed
to slide the peg in four incorrect directions to imitate overshooting.

with potentiometers, although the data was not used in our
experiments because of the peg jig. We attached IR markers
for the motion capture system to measure the 6D pose of the
device. To match the kinematics between the device and the
gripper, we calculated the offset δ. The reference trajectory
xref was then modified as : x̃ref = xref + δ.

A participant provided demonstrations with the teaching
device 15 times (one demonstration corresponded 10 sec-
onds). Three demonstrations were successful demonstrations
and 12 were failed ones (three demonstrations with four
directions). In the successful demonstrations, the participant
was instructed to imitate the manipulation primitives [31],
[18] to help the robot perform the task more successfully.
The manipulation primitives consisted of three step: 1) fit the
tip of the peg into the hole, 2) align the peg vertically while
keeping contacts with the hole, and 3) insert the peg to the
bottom of the hole. In the failed demonstrations, a participant
was instructed to slide incorrectly in four directions under the
assumption that the robot caused overshooting as shown in
Fig. 5. The sampling frequency was 5.0 Hz. We applied a
low pass filter zero phase shift (second order Butterworth
filter, where cutoff frequency was 2.0) to the collected data.

Fig. 6. Snapshots of the demonstrations and the robot’s task execution
on each condition. The robot successfully imitated the participant’s peg-in-
hole demonstrations on the success and failure condition. Meanwhile, we
observed overshooting on the only success condition and getting stuck on
the no demo condition.

We used a Matlab open-source code for PC-GMM [32] and
GMR [33].

We next used PyTorch implementation for PETS [34]
The neural network dynamics model consisted of three
fully connected layers, 100 neurons per layer with ReLU
activation functions. The number of ensembles B was three.
The number of particles I to generate action candidates
and iterations L were 300 and five, respectively. The top
100 elites were selected to create the next distribution. The
predictive horizon H was three. The control frequency was
5.0 Hz to avoid the large computational cost.

For evaluation, we compared the three conditions: 1) using
both successful and failed demonstrations and PETS (called
success and failure), 2) only successful demonstrations and
PETS (called success only; we used only successful demon-
strations for PC-GMM), and 3) only PETS with a reward
to minimize the x-y-z hole position error (called no demo).
We investigated the performance and success rate under
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Fig. 7. The absolute mean errors of x-y-z (left) and z (right) positions
between the position at the end of each episode and the hole position during
10 learning sessions. The green line is success and failure, the blue line is
success only, and the light green line is no demo condition. The success
and fail condition performed best.

TABLE I
SUCCESS RATE

Condition Success and
failure

Success
only No demo

Success
rate 8/10 5/10 0/10

each condition. The number of episodes for one learning
session was 10 and we repeated 10 learning sessions with
10 different random seeds.

B. Results

PC-GMM fitted all successful and failed trajectories with
13 Gaussian components. In the success only condition, it
fitted the trajectories with six Gaussian components.

Fig. 6 shows snapshots of the demonstrations and the
robot’s task execution with learned dynamics. The robot
successfully obtained the peg-in-hole strategies by imitating
human demonstrations. Meanwhile, we observed overshoot-
ing when using only successful demonstrations, and the con-
troller getting stuck when no demonstrations were provided.

In addition, to demonstrate the learning performance,
Fig. 7 shows the absolute mean errors of x-y-z and z
positions between the position at the end of each episode
and the hole position. The green line shows success and
failure, the blue line shows success only, and the light
green line shows no demo condition. The error bar indicates
standard deviations during 10 learning sessions. In all of the
conditions, performance improved over the course of the 10
episodes. Using demonstrations resulted in smaller z position
errors than no demo, and the success and failure condition
shows a smaller z error than the success only condition. The
success rates on each condition can be seen in Table I.

From the results, we conclude that using demonstrations
yielded better performance than without demonstrations and
using both successful and failed demonstrations further im-
proved the performances over using only successful ones.
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Fig. 8. The fitted GMM assigned to the successful demonstrations (green)
and one of the group of the failed demonstrations (red) on the success
and failure condition (left), and on the only successful condition (middle).
The predicted mean of fitted GMR (right). The GMM with the successful
and failed demonstrations was roughly fitted while avoiding each other.
Meanwhile, the GMM with the only successful demonstrations was tightly
fitted and GMR showed the sharper trajectory.

V. DISCUSSION

In this section, we discuss the experiment results, limita-
tions, and future works.

We obtained better performance utilizing demonstrations
than without. Using only PETS showed larger z-position
errors since the robot often got stuck at the edge of the
hole or during insertion. This is because the reward function
used Euclidean distance between the hole position. The robot
applied high forces while attempting to move downwards to
minimize the error, even though the tip of the peg was not
above the hole.

To investigate the performance of our method, Fig. 8
shows the fitted PC-GMM and GMR in y position, which was
the direction toward the hole. The x-axes show scaled time.
Markers and circles show the collected data and fitted GMM
assigned to the successful demonstrations on the success and
failure condition (left panel) and the only success condition
(middle panel), respectively. In the left panel, we also added
the data and GMM assigned one of the group of the failed
demonstrations, which represented overshooting towards the
y-direction. In the right panel, the lines show the predicted
mean of the fitted GMR. On one hand, the GMM with
the successful and failed demonstrations roughly fitted to
the entire demonstrations while avoiding both the successful
and failed ones. On the other hand, the GMM with only
successful demonstrations fitted tightly to the data, yielding
GMR with a sharper trajectory. This would be the reason for
the overshooting. Much biasing to the successful demonstra-
tions did not always yield good performances. Meanwhile,
leveraging both success and failure demonstrations could
extract necessary strategies to complete the tasks.

As limitations, we fixed the peg into the gripper and
the teaching device to reduce the uncertainty of the peg’s
pose. Instead of using the jig, it would be interesting to
use tactile sensors to measure the peg pose and perform in-
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hand-manipulation from demonstrations. In this experiment,
we designed the number of demonstrations empirically so
that they could cover the entire workspace with minimum
efforts of the demonstrator resulting in the small number
of demonstrations. However, there is room to explore how
many demonstrations can affect performances in more detail.
To this end, we will increase the number of demonstrations
or change the percentages between the number of successful
and failed ones as well as increase the number of experiments
with multiple participants.

In future works, we will test our framework with multiple
peg-in-hole tasks such as different tolerance levels or mate-
rials. Moreover, we will extend our method to consider the
uncertainty of the peg locations using tactile sensors.

VI. CONCLUSION

In this study, we proposed the novel system for learning
soft robotic assembly strategies. To this end, we employed
PC-GMM to exploit the successful and failed trajectories and
the deep model-based reinforcement learning to efficiently
obtain the robust strategies. We performed experiments using
a teaching device and a real robot equipped with a compliant
wrist. The experimental results showed that our method
utilizing the successful and failed demonstrations could learn
strategies with a higher success rate than using only the
successful demonstrations.
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