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Abstract— In this paper, we study the problem of computing
grasping forces for quasi-static manipulation of large and heavy
objects, by exploiting object-environment contacts. We present
a general formulation of this problem as a Second-Order Cone
Program (SOCP) that considers (i) contact friction constraints
at the object-manipulator contacts and object-environment
contacts, (ii) force/moment equilibrium constraints, and (iii)
manipulator joint torque constraints. The SOCP formulation
implies that the optimal grasping forces for manipulating
objects with the help of the environment can be computed
efficiently. Different optimization objectives like minimizing
contact forces at the object-manipulator contacts or minimizing
joint torques of manipulators can be considered. We evaluated
our method by simulations of single-handed and dual-handed
manipulation scenarios.

I. INTRODUCTION

In the past few decades, significant advances have been
made in the design and construction of dexterous robotic
hands. Nevertheless, it is still difficult to utilize these hands
for complex manipulation tasks except for pick-and-place
grasping tasks. To increase ability of the robotic hands and
manipulators to grasp and manipulate a wider range of
objects, environment can be effectively exploited. Success-
ful accomplishment of many tasks involve exploitation of
contacts of the grasped objects with the environment [1].
In general, environment contact can be exploited in two
main ways: (1) environment contacts as external forces for
re-positioning and reorienting an object which is already
grasped by a robotic hand or gripper (Fig. 1-a,b), [2],[3],[4]
(2) environment contacts as essential supports for reorienting
a heavy object or moving it from one position to another
(Fig. 1-c,d). The former task can enable simple affordable
grippers to do dexterous manipulation [2]. The latter task
can enable the robotic arms to manipulate heavy or large
objects effectively.

For moving heavy or large objects, a common strategy
used (by humans) is to lift the object by pivoting on one
edge and then, move it, while maintaining contact with
the ground. This strategy exploits the contact of the object
with the ground so that the arms do not need to carry
the full weight, yet the object can be manipulated. Thus,
one of the key technical issues in synthesis of such grasps
is the development of algorithms to compute the optimum
contact forces to be applied at the object-robot contacts.
We call this problem the grasping force synthesis problem
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Fig. 1. (a)-(b) Examples of repositioning and reorienting an object grasped
by a gripper. (c)-(d) Examples of reorienting and manipulating heavy
objects.

for manipulating heavy objects and it is the main focus
of this paper. Intuitively, for any manipulator, an object is
considered heavy, if the joint motors are not powerful enough
to balance the weight of the object.

In grasping force synthesis, the grasping force has to
be computed while considering some essential constraints,
namely, (i) contact constraints, which are the friction
constraints at the object-manipulator contacts and object-
environment contacts, (ii) equilibrium constraints so that
the object does not fall when being manipulated, and (iii)
manipulator joint torque constraints, which are bounds on the
maximum amount of torque that the manipulator actuators
can apply to generate the contact forces.

In this paper, we present a general optimization formula-
tion of the grasp synthesis problem (for heavy objects) that
considers all the three constraints stated above. We show that
the grasping force synthesis problem while considering the
physical constraints and hand capabilities can be formulated
as a Second-Order Cone Program (SOCP), which is a convex
optimization problem [5] and this is a key contribution of the
paper. The SOCP formulation implies that we can obtain the
optimal solution for the grasping force synthesis problem
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efficiently. Our problem formulation is general enough to
consider different objective functions like minimizing the
maximum torque in the joints of the manipulators or min-
imizing the maximum contact force. We present simulation
results for grasping force synthesis for single-handed and
dual-handed manipulation of objects (using the Baxter robot
from ReThink Robotics), where the objective is to recon-
figure the object. The simulation scenarios are set up such
that the physical constraints of the robot (e.g., limits on
motor torques) imply that the robot cannot pick and place
the objects. Our simulation results show that the robot could
compute a sequence of grasping forces and/or joint torques
to reconfigure the object by exploiting the contact with the
environment, while ensuring that it’s physical constraints are
satisfied.

II. RELATED WORK

A key requirement of any grasp is the ability to resist the
externally applied wrenches. If there exist sufficient forces
at each contact to compensate every external wrench, the
grasp is known as a force-closure grasp [6], [7]. Among
the contact forces that can hold the object in equilibrium,
we may seek one with the minimum force. The problem
of finding such a set of contact forces is known as the
Force Optimization Problem (FOP). Since the contact friction
models are nonlinear, early works for solving FOPs use a
linear approximation of the friction cone and formulate the
FOP as a Linear Programming (LP) problem, which is solved
using the Simplex algorithm [8], [9]. However, the LP-based
formulation is not exact as it approximates the friction force
constraints as linear inequalities. Yoshikawa and Nagai [10],
[11], [12] proposed a heuristic-based scheme for determining
the internal grasping forces for multi-fingered hands and,
later on, Nakamura [13] solved the problem as a nonlinear
programming problem using Lagrange’s multipliers for ob-
taining a solution.

The friction cone constraint can be expressed as a positive
semi-definiteness constraint on a matrix [14]. Thus, the
problem of finding the optimal contact forces has been
formulated using Linear Matrix Inequalities (LMI) [15],
[16]. The resulting optimization problem is a semidefinite
programming problem (SDP). Buss [17] developed a Dikin-
type algorithm for solving the FOP formulated as a SDP.
Helmke [15] proposed a new compact formulation for the
SDP arising from the FOP, and developed a quadratically
convergent algorithm. Lobo et al. [18] formulated the FOP
for the first time as a Second-Order Cone Program (SOCP).
Later, Boyd and Wegbreit [19] used this conic formulation
and proposed a fast interior-point algorithm for solving
the FOP, with the point-contact friction model as the cone
constraint. However, the SOCP formulation in [19] does not
take into account the constraints imposed by the object-
environment contact and joints motor limitations. Note that
the SOCP is a convex optimization problem with linear
objective and equality constraints plus one or more quadratic
(or second order) cone constraints.

While grasping an object using robotic manipulators,
determining the joint torques required to produce the nec-
essary contact forces is also very important. Therefore, the
FOP can be extended and expressed as Torque Optimization
Problem (TOP), wherein, one optimizes the torques applied
at the motors that are used to generate the desired contact
forces while satisfying the torque constraints. Lippiello et al.
[20], [21] developed a new algorithm for online TOP of a
dextrous robotic hand based on [17], [15] and considering
the joint torque constraints. Dai et al. [22] have formulated
the problem of simultaneous computation of grasping force
and grasping locations as a Bilinear Matrix Inequality (BMI).
Although solving a BMI is NP-hard, the authors proposed
efficient solution techniques using sequential SDP.

The research described above is focused on manipulating
an object using only the capabilities of the hand. This is
sometimes referred to as intrinsic dexterity [4]. The use of
environmental factors and their effects in manipulation was
studied by Brock in [23]. He studied reorienting an already
grasped object with the help of controlled slippage at object-
environment contact. The use of the environment and other
factors (like gravity and dynamics) for in-hand manipulation
has been studied in great detail by Chavan-Dafle et al. [2], by
providing a repertoire of regrasps used to navigate the grasp
taxonomy. They coined the term, extrinsic dexterity, referring
to the external factors like gravity, external contacts, and
dynamic effects which can be used to reorient or regrasp an
object as desired. This work was further extended by Chavan-
Dafle and Rodriguez [3], where they introduced the notion
of prehensile pushing which can be used for in-hand manip-
ulation by pushing an object against the environment. They
presented the force analysis as a quasi-dynamic formulation
and solved it as a linear complementarity problem using
quadratic optimization techniques. The action of pivoting or
tilting has been analyzed as a type of extrinsic regrasping
in [4], [24] as a more faster and efficient alternative to
the traditional pick and place grasps. In [4], the pivoting
action has been analyzed as a rotation along the axis of
the object-robot contact normals and an open-loop trajectory
has been planned to achieve this rotation. Manipulating an
object while maintaining external contact with the object has
been referred to as ‘shared grasping’ in [25]. In this work,
the authors have provided a general framework to determine
the contact mode for a manipulation task involving external
contact while controlling the motion of the object using
Hybrid Force Velocity Control (HFVC). A stability analysis
has also been provided to determine the robustness of the
contact mode.

Our goal in this paper is to make use of the object-
environment contact to manipulate (reposition and reorient)
heavy objects without lifting the objects off the environment.
For simplicity of exposition, we assume that at all contacts
(1) the grasped object does not rotate about the axis of the
contact normal as in [4], and (2) the object continuously
remains in contact with the environment without slippage.
However, our formulation is general enough that these con-
straints can be applied or removed on a per contact basis,
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depending on the application. When manipulating a heavy
object, we tilt the object using one of its edges as a support.
The reaction forces produced at the contact along the edge
can be used to partly balance the weight of the object. This,
in turn, reduces the force required to grasp the object against
the effect of its own weight. We have evaluated our method
in simulation, for (1) tilting a large hollow cylindrical object
using a parallel jaw gripper, and (2) tilting a box about its
edge using two arms of the Baxter robot.

III. PROBLEM FORMULATION

Consider a rigid object which is in contact with the
environment at m points and grasped by n manipulators at
n positions as shown in Fig. 2. Contact coordinate frames
{Ci} and {Ej} (where i = 1, .., n and j = 1, ...,m) are
attached to the object at each manipulator and environment
contact, respectively, such that n-axis of the frames is normal
(inward) to the object surface and two other axes, t and o,
are tangent to the surface. Positions of the contact frames in
the inertial coordinate system (X ,Y ,Z) are represented by
pCi
∈ R3 and pEj

∈ R3.
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Fig. 2. A rigid object grasped by environment and manipulators.

A. Contact Constraints

A contact model can be used to impose constraints on the
forces that arise at the contact locations. In general, there
are two main contact models; point contact with friction
(PCWF) and soft finger contact with elliptic approximation
(SFCE). In this paper, we assume that the contacts between
the object and environment are PCWF and the contacts
between the object and the manipulator tips are SFCE. In
the PCWF, the contact wrench expressed in the contact
frame has three components of frictional and normal forces,
fEj = [fEt,j , fEo,j , fEn,j , 0, 0, 0]T, which satisfy the friction

cone constraint as

1

µEi

√(
fEt,j

eEt,j

)2

+

(
fEo,j

eEo,j

)2

≤ fEn,j , (1)

where the parameters µEi, eEt,j
, and eEo,j

are positive con-
stants defining the friction coefficients at the jth environment
contact point and j = 1, ...,m. The SFCE is a generalization
of the Coulomb’s friction law and derived from the principle
of maximum power dissipation. In this contact model, the
contact wrench expressed in the contact frame has four
components of frictional and normal forces and frictional
moment, fCi

= [fCt,i
, fCo,i

, fCn,i
, 0, 0,mCn,i

]T, which sat-
isfy the elliptic constraint as

1

µCi

√(
fCt,i

eCt,i

)2

+

(
fCo,i

eCo,i

)2

+

(
mCn,i

eCn,i

)2

≤ fCn,i
, (2)

where the parameters µCi, eCt,i
, eCo,i

, and eCn,i
are positive

constants defining the friction coefficients at the ith manip-
ulator contact and i = 1, ..., n. Note that eCt,i and eCo,i are
dimensionless and eCn,i

has a dimension of length. Note that
the contact constraints (1) and (2) are valid for fEn,i

≥ 0 and
fCn,i

≥ 0. Moreover, the contact constraints (1) and (2) are
Second-Order Cone (SOC) constraints [5]. For any x ∈ R6,
we define the friction cones KEj and KCi as

KEj =

{
x

∣∣∣∣∣ 1

µEi

√
x21
e2Et,j

+
x22
e2Eo,j

≤ x3, x4,5,6 = 0

}
,

(3)

KCi =

{
x

∣∣∣∣∣ 1

µCi

√
x21
e2Ct,i

+
x22
e2Co,i

+
x26
e2Cn,i

≤ x3, x4,5 = 0

}
,

(4)
where xi, i = 1, . . . , 6 is the ith component of x. The
contact constraints (1) and (2) can be written respectively
in a concise form as

fEj
∈ KEj , j = 1, · · · ,m, (5)

fCi ∈ KCi, i = 1, · · · , n. (6)

Furthermore, to guarantee that the object is not damaged
by the internal forces at the contacts between the object
and the manipulator tips, we can consider an upper bound
constraint for the normal contact forces. Let’s define the
vector of normal contact forces applied by the manipulators
to the object as Fn = [fCn,1

, · · · , fCn,n
]T. Therefore, this

constraint can be written as

Fn ≤ Fn,max, (7)

where Fn,max is the upper limit for the normal contact forces.
Note that a set of contact forces that result in no net force
on the object is known as internal force.

B. Equilibrium Constraints

In this paper, we assume that the manipulation is quasi-
static, therefore, the inertia forces and dynamic effects are
very small and can be ignored. Let ROCi ∈ SO(3) and
ROEj ∈ SO(3) be 3×3 orthogonal matrices that transforms
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the manipulator and environment contact forces from the
contact coordinate frames to object coordinate frame {O},
respectively. Hence, each contact wrench, fCi and fEj , can
be expressed in the object coordinate frame {O} as

FOCi
= GCi

fCi
=

[
ROCi 0

S(pOCi
)ROCi

ROCi

]
fCi

, (8)

FOEj = GEjfEj =

[
ROEj

0
S(pOEj )ROEj ROEj

]
fEj , (9)

where S(pOCi) ∈ skew(3) and S(pOEj ) ∈ skew(3) are 3×3
skew-symmetric matrices that satisfy S(pOCi

)z = pOCi
×z

and S(pOEj
)z = pOEj

× z (∀z ∈ R3) where pOCi
and

pOEj
are positions of {Ci} and {Ej} with respect to {O}

and expressed in {O}, respectively.
Therefore, by computing the net manipulator and envi-

ronment contact wrenches, the force and toque equilibrium
conditions can be written as

n∑
i=1

GCifCi +

m∑
j=1

GEjfEj + fext = 0, (10)

where fext ∈ R6 is the total external (force and moment)
wrench acting on the object (including the object weight)
expressed in the object coordinate frame {O}.

By introducing FC ∈ R6n and FE ∈ R6m as

FC =


fC1

fC2

...
fCn

 , FE =


fE1

fE2

...
fEm

 . (11)

Equation (10) can be represented in more compact form as

GCFC + GEFE + fext = 0, (12)

where GC = [GC1
, · · · ,GCn

] ∈ R6×6n is the manipulator
contact matrix, which is also known as the grasp map or
grasp matrix, and GE = [GE1 , · · · ,GEm ] ∈ R6×6m is the
environment contact matrix.

C. Manipulator Joint Torque Constraints

While performing any manipulation or grasping task using
robotic manipulators (or a robotic hand), we are primarily
interested in computing the joint torques required to produce
the necessary wrenches at the contact of manipulators with
the object. Therefore, we need to establish a relationship
between the joint torques and the contact wrenches, FC ,
exerted on the object. Let li be the number of joints of
the i-th manipulator, qi = [qi,1, · · · , qi,li ]T be vector of
joint variables, and τi = [τi,1, · · · , τi,li ]T be vector of
joint torques of this manipulator. The relationship between
the contact wrench, fCi

, and the joint torques, τi, for
manipulators is written as

τi = −JT
i (qi)fCi

+ τgi(qi), i = 1, · · · , n, (13)

where Ji(qi) ∈ R6×li is the Jacobian matrix of the i-
th manipulator expressed in the contact frames {Ci} and
τgi(qi) ∈ Rl

i is the torque due to gravitational forces of the

i-th manipulator. The negative sign appears in (13) because
the reaction wrench of fCi

is applied to the manipulator
tip. Moreover, since it is assumed that the manipulation is
quasi-static, the inertia forces and dynamic effects of the
manipulator can be ignored. By defining τ ∈ Rl, τg ∈ Rl,
and q ∈ Rl (l = l1 + · · ·+ ln) as

τ =


τ1
τ2
...
τn

 , τg =


τg1
τg2

...
τgn

 , q =


q1
q2
...
qn

 . (14)

Equation (13) can be represented in a compact form as

τ = −JT(q)FC + τg(q), (15)

where J = diag(J1, · · · ,Jn) ∈ R6n×l is the overall Jaco-
bian matrix of manipulators. For simplicity, it is presumed
that the manipulators are serial and fully-actuated.

To ensure that the joint actuators of the manipulators are
able to generate the required joint torques without saturation,
the joint torque constraints need to be considered as

τmin ≤ τ ≤ τmax, (16)

where τmin and τmax are the lower and the upper limits of
the manipulators joint torques, respectively.

IV. GRASPING FORCE SYNTHESIS

When the equations (5), (6), (7), (12), (15), and (16) are
satisfied simultaneously, the object can be stably grasped and
quasi-statically manipulated by the manipulators and with
the help of environment. In order to find the best solution
from all the feasible solutions for the contact wrenches, we
can define a general optimization problem with the objective
function Φ which satisfies the equations (5), (6), (7), (12),
(15), and (16) as

minimize
FC ,FE

Φ

subject to GCFC + GEFE + fext = 0,

τ + JTFC − τg = 0,

τmin ≤ τ ≤ τmax,

Fn ≤ Fn,max,

fCi ∈ KCi, i = 1, · · · , n,
fEj ∈ KEj , j = 1, · · · ,m.

(17)

Note that in (17), the second term of the first constraint (i.e.,
GEFE) and the last constraint (i.e., fEj

∈ KEj) represent
the effect of the environment in the object grasping and
manipulation.

If among all the sets of contact wrenches that satisfy the
system constraints we seek the one that minimizes the grasp-
ing forces, we can define a Grasping Force Optimization
Problem (GFOP). Moreover, if we seek the contact wrenches
that minimize the manipulators joint torques, we can define
a Torque Optimization Problem (TOP).
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A. Grasping Force Optimization Problem (GFOP)

The GFOP can be defined as (1) minimizing the maximum
magnitude of the manipulators normal contact forces, i.e.,
Φ = max(Fn), or (2) minimizing the Euclidean norm of
the vector of normal contact forces, i.e., Φ = ‖Fn‖2, while
satisfying the conditions expressed in equations (5), (6),
(7), (12), (15), and (16). In some real world scenarios, it
may be desirable to grasp a brittle object without damaging
it. The GFOP formulation can be effectively used, with
or without the object-environment contact constraint (5), in
such situations to compute the optimal contact forces by
specifying the maximum permissible normal contact force
using the constraint (7).

B. Torque Optimization Problem (TOP)

Similarly, our goal in the TOP can be defined as (1)
minimizing the value of maximum joint torque of the manip-
ulators, i.e., Φ = max(τ ), or (2) minimizing the Euclidean
norm of the vector of manipulators joint torques, i.e., Φ =
‖τ‖2, while satisfying the conditions expressed in equations
(5), (6), (7), (12), (15), and (16). The TOP formulation may
be used to compute the optimal joint torque required for a
specific task. It can be also used to reduce the variation in
actuator effort among the joints of a manipulator.

In order to solve (17) when Φ = max(Fn) or Φ =
max(τ ), we can add a constraint as fCn,i

≤ λ or τi,k ≤ λ
(i = 1, · · · , n and k = 1, · · · , li), respectively, and changing
the objective function to Φ = λ where λ is a scalar variable
that bounds the magnitude of normal contact forces or joint
torques. Note that the problem (17) is a convex optimiza-
tion problem, since the objective functions are convex and
the constraints are linear equalities/inequalities and convex
SOCs; therefore, it can be solve by using the CVX toolbox
[26].

V. IMPLEMENTATION AND RESULTS

In this section, we apply the grasping force synthesis
formulation described in (17) to compute the effort (i.e.,
grasping force and/or joint torque) required for two different
manipulation scenarios. Intuitively, in both examples (see
Fig. 3 and Fig. 4), we want to reconfigure an object from a
horizontal position on a support surface to a vertical position.
In both examples, the joint effort constraints are such that it
is not possible for the manipulator(s) to lift the objects off the
support surface, hence the objects cannot be reconfigured by
a pick and place strategy. We show that by exploiting contact
with the support surface, we can obtain manipulation efforts
such that the objects can be reconfigured without violating
the actuator limits.

In the first example, we consider the reconfiguration of
a hollow cylindrical object from a horizontal position to a
vertical position (see Fig. 3). This exemplifies an application
scenario where a single manipulator with a parallel jaw
gripper is reconfiguring an object. For simplicity, in this
example we consider only the maximum force constraint of
the actuators at the parallel jaw gripper.

In the second example, we consider a heavy box to be
reconfigured by a two-armed Baxter robot, with each arm
having 7 degrees-of-freedom (DoF). This exemplifies an
application scenario, where two robot arms need to coop-
eratively manipulate an object. In this example, we consider
actuator limits at each joint. The optimization formulations
for both the examples have been implemented and solved
in MATLAB using the CVX toolbox [26] with the default
solver, SDPT3, on a Dell XPS with Intel i7 1.8GHz processor
and 16GB RAM.

𝒈

𝛼𝐸

𝑂

𝑓𝐶𝑛,1

𝑓𝐶𝑛,2

𝑓𝐸𝑛

𝐿

(a) Titling by exploiting the environment

𝑂

𝑓𝐶𝑛,1

𝑓𝐶𝑛,2

𝒈

(b) Lifting off the environment

Fig. 3. A hollow cylinder being manipulated using a parallel jaw gripper
(side view).

(a) Lifting off the environment

𝛼

(b) Titling by exploiting the envi-
ronment

𝑂 𝒈

𝛼

𝐸1 𝐸2

𝐶1

𝒇𝐶1

𝒇𝐶2

𝒏𝐶1 𝒏𝐶2

𝐶2

𝒏𝐸2𝒏𝐸1

(c) Contact forces while titling by exploiting the
environment

Fig. 4. A box being manipulated by using both arms of a Baxter robot.

A. Cylinder Tilting Using Parallel Jaw gripper

In the first example, as shown in Fig. 3-a, we consider two
cylinder-gripper contact frames {C1} and {C2}, one at each
location where the gripper makes contact with the object,
and one cylinder-environment contact frame {E}. We use
the GFOP formulation with the contact forces at both the
cylinder-gripper and cylinder-environment contacts, i.e., fC1 ,
fC2 , and fE , as the optimization variables, which are in total
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11 variables. The objective function used while implementing
the GFOP is to minimize the maximum magnitude of the
normal force at the cylinder-gripper contact, i.e., Φ =
max(Fn), while the cylinder is being lifted quasi-statically.
In this example, we do not consider the manipulator joint
torque constraints specified in (15) and (16), but we use a
constraint, as given in (7), on the maximum force at the
gripper contact points to guarantee that the cylinder is not
damaged by the internal forces. Therefore, we can solve the
GFOP formulation to compute the optimal normal contact
forces, fCn,1

and fCn,2
, required at a particular angle α while

lifting the cylinder with the help of the environment contact.
The maximum grip force which can be exerted by the

parallel jaw gripper at a particular contact point, in the
normal direction, is assumed to be 30 (N). Results of the
simulation implementation using the parameters given in
Table I are presented in Fig. 5. The computation time
required to solve our GFOP formulation for each value of
the cylinder tilting angle α is about 1.15 seconds. Initially,
the cylinder is being grasped at two contact locations and
the normal contact forces act along the same direction as
the external gravitational wrench. As a result, as shown in
Fig. 5-a, the magnitude of fCn,2

is significant and that of
fCn,1

is negligible till the value of the tilting angle, α reaches
approximately 55◦ where the line of action of the normal
component of the cylinder-environment contact, fEn , passes
through the cylinder center of mass. Beyond this angle, as the
value of α increases, the magnitude of fCn,1

also increases.
Moreover, as shown in Fig. 5-b, the normal component
of the cylinder-environment contact, fEn , increases as the
magnitude of fCn,2 decreases. Note that since at α = 90◦ the
cylinder-environment contact is not a point contact anymore,
the results are represented till α = 85◦.

On the other hand, manipulating the cylinder by lifting
it off the environment, as shown in Fig. 3-b, requires us to
remove the environmental contact constraints (5) from the
GFOP formulation. This modified formulation is infeasible
because the upper bound constraint (7) does not allow us to
exert a force greater than 30 (N) at each of the cylinder-
gripper contact locations. Owing to the location of the
contact reference frames, {C1} and {C2}, as well as the
geometry of the object, we need to exert a force greater
than 30 (N) at the cylinder-gripper contacts to completely
resist the weight of the cylinder and satisfy the equilibrium
constraints (12) without the cylinder-environment contact.
Thus, the parallel jaw gripper in this example is not capable
of generating enough squeezing force to reconfigure the
cylinder by lifting it off the environment.

TABLE I
SIMULATION PARAMETERS FOR TILTING A HOLLOW CYLINDER.

Parameter Value

Weight 30 (N)
Dimensions Øout = 0.36, Øin = 0.3, L = 0.5 (m)
Constants µE = 0.2, µC1,2 = 0.15, eCn,1,2 = 0.25, e∗ = 1

0
°

10
°

20
°

30
°

40
°

50
°

60
°

70
°

80
°

90
°

0

5

10

15

20

25

30

35

(a)

0
°

10
°

20
°

30
°

40
°

50
°

60
°

70
°

80
°

90
°

0

5

10

15

20

25

30

35

(b)

Fig. 5. (a) Variation of the cylinder-gripper contact forces in the normal
direction, fCn,1

and fCn,2
, with respect to the tilting angle, α. (b) Variation

of the cylinder-environment contact force in the normal direction, fEn , with
respect to the tilting angle, α.

B. Dual-armed Box Tilting

In the second example, as shown in Fig. 4-c, we consider
two reference frames {C1} and {C2} at each box–end-
effector contact. We model the edge contact between the box
and the environment with two point contacts at the vertices
of the contact edge and the reference frames {E1} and {E2}.
To compute the joint torques in both the arms, we need
the corresponding joint angles when the box is grasped at
a particular tilting angle, α, as shown in Fig. 4-b. By having
the geometry of the object, the position and orientation of the
contact reference frames {C1}, {C2}, {E1}, and {E2} with
respect to the Baxter base reference frame is computed for
α ranging from 0◦ to about 90◦ with a step size of 5◦. The
joint angles for both the left and the right arms of Baxter
is obtained using inverse kinematics for each value of α.
The end-effector reference frame has the same position and
orientation as the contact reference frames.

The two objective functions used while implementing the
optimization problem (17) are to minimize the maximum
magnitude of the normal force at the box–end-effector con-
tacts, i.e., the GFOP with Φ = max(Fn), and to mini-
mize the magnitude of the maximum torque generated in
a particular joint of the Baxter arms, i.e., the TOP with
Φ = max(τ ). Both the optimization problems are solved
for all values of the box tilting angle, α. The optimization
variables for the GFOP are the contact forces at box–end-
effector contacts, fC1

and fC2
, as well as the contact forces
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at the box-environment contacts, fE1
and fE2

. Considering
the individual components of these contact forces, we get
a total of 14 optimization variables. Whereas for the TOP
formulation, we have to additionally include two 7× 1 joint
torque vectors for both arms of Baxter, i.e., τleft and τright,
giving us a total of 28 optimization variables. Note that, in
this example, we do not consider any upper bound constraint
for the normal contact forces as given in 7.

Results of the simulation using the parameters given in
Table II are presented in Fig. 6 to Fig. 8. The computation
time required to solve the GFOP and TOP, for each value
of α, is 2.23 seconds and 2.41 seconds, respectively. As
it is evident from Fig. 6, as the value of α increases, the
magnitude of the normal contact forces, fCn,1

and fCn,2
,

decreases for both the GFOP and TOP formulations. The
magnitude of the normal component of the box-environment
contacts, fEn,1 and fEn,2 , increases accordingly to contribute
to the force balance condition. As seen in the previous case,
the value of both fCn,1

and fCn,2
becomes negligible as the

value of α approaches 70◦, since at this angle of the box, the
weight of the box passes through its support edge. It should
be noted that since the configuration (joint angles) of the both
the Baxter arms while simulating the task of tilting the box
is not the same, the magnitude of the joint torques will also
be dissimilar. Thus, there is a slight variation between the
computed values of the contact forces at {C1} and {C2}, and
also at {E1} and {E2} for the TOP formulation, since we
are computing the optimal value for the joint torque vector,
τ . Figure 8 compares the magnitude of the maximum joint
torque for both the GFOP and TOP. The maximum joint
torque occurs at the elbow joints, 3 or 4, for both arms of
Baxter depending on the value of the box tilting angle α.

TABLE II
SIMULATION PARAMETERS FOR TILTING A BOX.

Parameter Value

Weight 20 (N)
Dimensions 0.3× 0.2× 0.1 (m3)
Constants µE1,2 = 0.25, µC1,2 = 0.1, eCn,1,2

= 0.5, e∗ = 1

On the other hand, if we assume that the box is to
be reconfigured from a horizontal position to a vertical
position using a pick and place strategy as shown in Fig. 4-a,
we have to eliminate the environmental contact constraints
(5) from the GFOP formulation. Additionally, let us also,
for the sake of convenience, remove the manipulator joint
torque constraints, specified in (15) and (16), from our
initial optimization formulation. By solving the GFOP, the
magnitude of the optimal normal contact forces, fCn,1

and
fCn,2 , for lifting the box off the environment is 52.97 (N).
This is greater than the maximum value of 27.22 (N) (refer to
Fig. 6-a) computed while considering both the environmental
contact constraints and manipulator joint torque constraints
in the GFOP and TOP formulations. Furthermore, upon
including the manipulator joint torque constraints without
the environmental contact constraints, the GFOP formulation
becomes infeasible. This means that the joint actuators
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Fig. 6. (a)-(b) Variation of the box–end-effector contact forces in the
normal direction, fCn,1

and fCn,2
, with respect to the tilting angle, α, for

both GFOP and TOP.
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Fig. 7. (a)-(b) Variation of the box-environment contact forces in the
normal direction, fEn,1

and fEn,2
, with respect to the tilting angle, α, for

both GFOP and TOP.
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Fig. 8. Magnitude of the maximum joint torque for both the GFOP and
TOP.

present in the arms of Baxter cannot generate the necessary
effort to lift the box using the pick and place strategy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a Second-Order Cone Pro-
gram (SOCP) for computing the grasping force required for
reconfiguring large and heavy objects with the help of object-
environment contacts. Our formulation is general enough
to incorporate different objective functions and constraints
based on the physical limits or characteristics of the joint
actuators and objects that are being manipulated. Further-
more, our formulation does not need to approximate the
friction cone constraints at the contacts. We evaluate our
proposed formulation by simulating the task of reconfiguring
two different objects from an initial pose to a goal pose.
Given the object pose, the manipulator configuration, and
the object contacts, we can compute the optimal values of
the contact wrenches required to grasp the object, and also
the joint torques of the manipulators.

Future Work: In the current work, we have assumed that
the path along which the object should move is known.
Further, we assumed that the motion is quasistatic. In future
work, we will consider combining path/trajectory planning
for the pivoting motion along with the force synthesis prob-
lem. This may also involve extending the present formulation
to incorporate the dynamics of the object as well as the
manipulator. We plan to use recent work [27] on using screw-
linear interpolation for motion planning with task space
constraints for the path planning. Future work will also
involve evaluation of the proposed algorithms using dynamic
simulation [28] and experiments.
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