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Abstract— Multi-functional cells with cooperating teams of
robots promise to be flexible, robust, and efficient and, thus, are
a key to future factories. However, their programming is tedious
and AI-based planning for multiple robots is computationally
expensive. In this work, we present a modular and efficient two-
layer planning approach for multi-robot assembly. The goal is
to generate the program for coordinated teams of robots from
an (enriched) 3D model of the target assembly. Although the
approach is both motivated and evaluated with LEGO, which
is a challenging variant of blocks world, the approach can be
customized to different kinds of assembly domains.

I. INTRODUCTION

LEGO is a construction toy with hundreds of different
pieces leading to a high variability of possible structures.
The main components of every structure are LEGO bricks
of different sizes. A brick is a cuboid with knobs on the top in
a given grid and precisely fitting counterparts on the bottom.
Bricks can be stacked within this grid using right-angled
rotations. As putting two LEGO bricks together can be seen
as a joining process [1], the building of LEGO structures
is a perfect example for assembly. Due to its combinatorial
complexity, the LEGO domain is a suitable representative
for automatically planning robotic assembly sequences and
for evaluating different approaches and algorithms.

In contrast to common blocks world examples for plan-
ning [2], LEGO offers additional challenges. Fig. 1a shows a
situation in which a LEGO brick can no longer be placed in
its target position due to the knobs. This exclusion problem
requires to dismantle the structure partially in order to
place the missing brick. A related problem occurs when a
LEGO brick cannot be placed due to a collision between
neighboured bricks and the gripper holding this brick (cf.
Fig. 1b). In both situations, a planner can still explore a huge
set of further states without detecting this deadlock situation.
This requires appropriate strategies for backtracking at an
early stage in order to efficiently find a plan.

If LEGO bricks are assembled in order to form a staircase,
the structure will collapse from a certain height due to its
own weight. The staircase depicted in Fig. 1c is only stable
if its upper part is supported, e. g., by the other structure
shown. If you imagine a manual assembly of such a staircase,
every placement of a brick would have to be supported by
a second hand until the overall construction reaches a stable
condition. Hence, the statics of LEGO structures must be
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Fig. 1: Planning challenges inherent to the LEGO domain in
contrast to other common blocks world examples.

regarded during planning. Another challenge, the overhang
problem, is shown in Fig. 1d. Here, a straightforward bottom-
up construction would not lead to a valid plan, since the
bricks of the overhanging substructure can only be attached
towards the end, although they belong to lower levels. That
is why a simple bottom-up strategy – level by level – is not
feasible in general. Instead, a planning approach is required
that is independent of the spatial position of LEGO bricks.

In this paper, we propose an AI-based planning approach
and its formal description for coordinated multi-robot as-
sembly. Forming coordinated teams of robots leads to multi-
functional robot cells with drastically increased flexibility,
performance and robustness [3] which are key requirements
of future factories according to the paradigm shift of Indus-
try 4.0. Even though our approach is illustrated and evaluated
with LEGO structures, we are confident that it is a general
approach for assembly with coordinated teams of robots due
to its modular organization which allows for customising to
different domains. The LEGO example help us to isolate
genuine planning issues, and to separate them from domain-
specific complications.

A systematic approach [4] is essential as the programming,
coordination and scheduling of robot teams is a tedious and
complex task. Hence, the main contributions of the paper are

1) the introduction of our modular, two-layer planning
approach for multi-robot assembly in Sect. III,

2) an associated formal description of the planning do-
main (cf. Sect. IV),

3) a planning algorithm (cf. Sect. V) based on the formal
description, and

4) an evaluation in Sect. VI based on two different LEGO
constructions.

For the experimental setup (cf. Sect. II), we have chosen
to use LEGO DUPLO, which has larger bricks compared
to classical LEGO and, thus, facilitates handling with in-
dustrial robots and grippers. To show the advantages of our
approaches, related work is presented in Sect. VII. Finally,
the paper concludes with Sect. VIII by giving a discussion.
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II. EXPERIMENTAL SETUP

To automatically perform planning steps like allocating ap-
propriate robots based on reachability analysis and collision-
free motion planning, spatial information about robots and
grippers as well as LEGO bricks and structures is needed.
A virtual model representing the real robot cell contributes
such information (see Fig. 2a). For modelling the robot cell
with its devices, we use the Robotics API [5] which allows
for reasoning about geometric and semantic information [6].
Moreover, the Robotics API is able to simulate even co-
ordinated motions of multiple robots during planning and
is subsequently able to execute these motions with real-
time guarantees [7]. Hence, we have a kinematic digital
twin with robots, grippers and LEGO bricks as well as their
semantically enriched relations available during planning.

For the DUPLO case studies, the initial robot cell (see
Fig. 2a) consists of a large DUPLO ground plate which is the
foundation of every structure to be built. The robots, which
will be used for planning and assembly, are arranged around
this ground plate. For our experiments, we are using up to
three lightweight robots each with a parallel gripper. Due
to special clamps with a negative brick profile, the grippers
can reliably handle DUPLO bricks. Moreover, each robot
is also equipped with a dedicated smaller DUPLO plate for
supplying bricks. The position of the robots with respect
to the ground plate largely influences the planning as the
kinematic digital twin verifies reachability. Hence, there will
be no solution, if the setup of the robot cell is unfavourable.

The first of two LEGO case studies is the DUPLO house
which is depicted in Fig. 2b. The house has an area of
128mm× 128mm and a height of approximately 116mm.
It consists of a lower base part with one door and three
window sides and a pyramid like roof top. The structure is
built on a ground plate with 26 bricks on 6 levels: 4 red and
9 yellow bricks with a grid of 2× 2 knobs as well as 10 red
and 3 yellow bricks with 4× 2 knobs are used. The house
can be constructed using one or more robots and contains
multiple deadlock situations on the corner bricks of the roof
top due to the collision problem depicted in Fig. 1b. Such a
deadlock situation is not detectable at the time it originally
occurs, because there are still many permissible subsequent
steps. This leads to high planning times with exponential
complexity subject to the number of bricks and skills. Even
this rather simple example might not be solvable in adequate
time when having to examine all these possibilities.

The second LEGO case study is the DUPLO bridge which
is depicted in Fig. 2c. The arch bridge spans approximately
290mm and is built on a ground plate with 64 LEGO bricks
on 14 levels: 32 yellow bricks with a grid of 2× 2 knobs,
22 yellow bricks with 4× 2 knobs, one yellow brick with
10× 2 knobs as well as 6 yellow bricks with 2× 1 knobs
and double height are required for the arch. For the road on
top, 3 grey bricks with a grid of 8× 2 knobs are necessary.
This case study was chosen because it can only be assembled
with at least three robots and it shows all the problems of
the LEGO domain introduced in Fig. 1. If the arch bridge

(a) Simulated robot cell for assembling LEGO structures

(b) House (c) Bridge

Fig. 2: The coordinated multi-robot assembly uses up to three
lightweight robots grouped around a DUPLO ground plate
(a) in order to build the two DUPLO case studies (b), (c).

is built from one side, the remaining stones on the other
side of the arch can be added from the top brick to the
bottom and, thus, can be viewed as an overhang. However,
this overhang situation would also lead to an exclusion, since
at least the last brick between the almost finished arch and
the base plate can no longer be inserted. Moreover, the
exclusion problem can occur at both abutments of the arch.
Below the imposts, there are a large number of possible
sequences to place the LEGO bricks in order to form both
pillars, which lead to collisions between gripper and bricks.
In general, an arch bridge is a self-supporting structure which
transfers its weight and its loads partially into a horizontal
thrust restrained by abutments at both sides. However, if
you remove any brick from the arch, the self-supporting
property is no longer given and the bridge would collapse.
As a consequence, both sides of the arch become unstable at
a certain height during construction and must be somehow
supported as long as the uppermost brick is missing. That is
also why the bridge can only be constructed with at least
three robots: two robots are required for supporting both
sides of the arch and one for placing the uppermost brick.
Hence, the statics problem is apparent for the LEGO bridge
and must be coped with in the planning approach.

III. PLANNING APPROACH

Fig. 3 shows a schematic overview of the planning ap-
proach which is divided into three different phases: (A)
structural analysis, (B) process planning, and (C) production
planning. Whereas the first two phases are domain-specific
in order to decompose the problem and find a feasible
task sequence, the last phase is responsible for finding
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Fig. 3: Overview of the presented planning approach which is divided into three different phases. The main idea is to
distinguish between domain and automation planning, but still to interweave both parts in an appropriate way.

suitable robotic devices which are capable to manufacture
the product. The customisation to the domain and to specific
automation devices is achieved by expert modules contribut-
ing to the planning at defined points (marked as green boxes
in Fig. 3). In this way, expert domain as well as expert
automation knowledge can be fed into planning.

In phase A, i. e., structural analysis, the model of the prod-
uct to be manufactured is converted into a format suitable for
planning [8]. The formatting step (1) is used to translate the
product model, which is often available as 3D CAD data or in
a proprietary data format, into a uniform product description
that spatially represents the overall construction. In a second
step, the extraction (2) identifies existing relationships (e. g.,
joining processes, mechanical fasteners) between the various
components of the assembly and converts them into a repre-
sentation for planning, the so-called goal product situation.
In our LEGO example, the description of a construction is
usually available as a set of pictures. The used DUPLO
bricks are identified during the formatting step and their
spatial position is determined. During extraction, the spatial
information is used to determine which relationships between
individual bricks must be present in the overall construction
(i. e., which knobs must be connected to which bricks).

In phase B, i. e., process planning, an initial planning takes
place at an abstract domain-specific level without consid-
ering the available robots and tools [9]. The identification
step (3) determines possible domain tasks for establishing
the aforementioned relationships and concatenates them to
potential process workflows. During this step, the initial
product situation is required in addition to the desired goal
product situation in order to derive possible domain tasks
based on the differences of both. Due to a filtering step (4),
invalid process workflows are excluded from the planning
at an early stage in order to simplify further planning. For
LEGO, the process planning identifies possible sequences
in which the bricks can be put together for establishing the

overall construction in an appropriate way. Hence, sequences
in which exclusions occur are discarded.

Phase C, i. e., production planning, is dedicated to generate
a specific automated solution for previously selected process
workflows with the robots and tools available [9]. During
the assignment step (5), a given robot cell definition is used
to calculate how the individual steps of a process workflow
can be realised with the available skills of the robot cell. For
the parametrisation of skills, techniques for including expert
knowledge [10], [11], programming by demonstration [12],
[13] or constraint-based programming [14], [15] can be
applied. The resulting possible automation workflows are
examined in a subsequent validation step (6) in order to filter
invalid workflows, e. g., with colliding robots or impossible
intermediate product situations. Because the remaining valid
automation workflows contain only sequences of tasks, their
overall execution time can be reduced by using parallel
scheduled robots for assembly. This is done in the optimisa-
tion step (7) to obtain the best possible planning result. In our
LEGO example, abstract assembly steps (e. g., “process the
next brick”) are transferred to automation sequences, e. g.,
by grasping, transporting and placing a brick with a specific
robot and gripper. However, this can lead to collisions or
unstable intermediate structures (e. g., a partially built bridge
without necessary support) which are filtered out.

In general, there are countless options to determine a
specific automation workflow from a given product descrip-
tion. Already in the identification step (3), there are usually
many possibilities how the product can be assembled from
an abstract point of view. Each possible process workflow
consists of a sequence of domain tasks, for which there
is a large number of possible automation solutions in the
assignment step (5), depending on the robot cell itself. If
you combine all possible solutions of each domain task with
all possible process workflows, it will lead to an immense
solution space, in which the search for an optimal solution
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– maybe even for an existing solution – is computationally
expensive. An examination of all possible workflows – both
in process and in production planning – is therefore not
feasible, especially for complex planning problems.

Instead, our planning approach follows an interwoven,
incremental strategy (indicated by the dashed arrow in Fig. 3)
that pursues a two-layer planning procedure with a macro
and micro step division between process and production
planning [9], [16]. During process planning, a first process
step is determined that brings the initial product situation
closer to the goal product situation. Following the idea of
a search corridor, only for this domain task, an automation
solution (i. e., a sequence of automation tasks) that is valid
on the one hand and as optimal as possible on the other
hand is calculated during the subsequent production planning
in steps (5) – (7). Once an optimal automation solution
for this domain task has been determined, process planning
starts again at step (3) and, based on the previous result, is
continued with the selection of the next domain task to be
examined. If, however, no automation solution can be found
for a domain task, an alternative is searched for at the level of
process planning. This procedure is repeated until a workflow
is found that describes the complete assembly of the desired
goal product situation.

IV. FORMAL DEFINITION

For describing planning states and planning progress, a
concept named Attribute is used. An attribute a is given as
predicate that indicates whether a relationship or a property
of the product is valid (constructed) at a given stage of
assembly. For example, an attribute might express a stacking
of two DUPLO bricks with a specified geometric offset. It
is distinguished between attributes which reference solely
assembly parts of the product, which are called product
attributes, and attributes which also relate robotic devices,
as for example the grasp of a part by the gripper. These are
called actuator attributes. The set of all attributes is called
A, while A�Product ⊆ A denotes all product attributes and
A�Actuator = A \ A�Product all actuator attributes. For
subsets of attributes, a predicate cons : ℘A → B expresses
consistency. A set is called consistent, if and only if all of
its attributes can coexist in real without contradictions.

For planning on both macro and micro level (i. e. process
and production planning), two different state representations
are required. A planning situation s ⊆ A, on the one hand,
describes a consistent set of attributes (i. e., cons(s)) that
are constructed at a given stage of assembly. The set of all
situations is called S. On the other hand, a set of product
attributes is given as product situation p ⊆ A�Product if
it describes a certain product state during planning. For a
planning situation s, its corresponding product situation is
defined as s�Product . It is S�Product = {s�Product |
s ∈ S} the set of all product situations. An example of
a LEGO product state described by a product situation is
given in Fig. 4. Four valid product attributes (details see
below) establish the structure, each connecting two bricks.

Fig. 4: LEGO structure described by a product situation

The overall aim of assembly planning is to find robotic
tasks which result in a planning situation that represents the
completely assembled product according to a goal product
situation. In this final planning situation, the specific con-
stellations of the actuators do not matter to the reached goal.
Instead, only product related parts of the planning situation
count for the assembly process. A planning situation s ∈ S
fulfils a product situation p ∈ S�Product , if and only if s
and p contain the same product attributes; which is s  p
exactly if s�Product = p.

Let t be a Task and T the set of all tasks. Attributes,
which are explicitly named by a task t ∈ T to be constructed
after its execution, are called ExplEffect+(t) ⊆ A. In turn,
ExplEffect−(t) ⊆ A denotes the set of attributes which are
explicitly named to be removed after the task’s execution.
For each task t, ExplEffect+(t)∩ExplEffect−(t) = ∅ holds.
Thus, the pair

ExplEffect(t) = (ExplEffect+(t),ExplEffect−(t))

completely describes the defined attribute change that takes
place after execution of t. For the planning on macro level,
a special form of task is introduced: The set of domain
tasks t is defined as T �Product so that ExplEffect+(t) ⊆
A�Product and ExplEffect−(t) ⊆ A�Product . That is,
domain tasks do only construct or remove product attributes.
A task t ∈ T \ T �Product that also influences actuator
attributes is called automation task.

Besides the attributes explicitly defined by a task, other
attributes may also be affected by a task’s execution. As-
sume a task explicitly constructing attribute 2 in Fig. 4.
Having attributes 3 and 4 already assembled before, also
attribute 1 is constructed by the task. In a product situation
where none of the attributes exists before, however, only
attribute 2 is constructed by the same task. Which attributes
actually are modified depends on the situation the task is
executed in. Given a task t ∈ T and a situation s ∈
S, Effect+(t, s) and Effect−(t, s) describe disjoint sets of
attributes that are actually constructed or removed by t in s,
with: ExplEffect+(t) ⊆ Effect+(t, s) and ExplEffect−(t) ⊆
Effect−(t, s). Analogously, the pair

Effect(t, s) = (Effect+(t, s),Effect−(t, s))

completely describes the actual attribute change that takes
place after execution of t in s. The resulting situation
next(t, s) after execution of t in s is given by

next(t, s) = (s \ Effect−(t, s)) ∪ Effect+(t, s) .
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Knowing all attributes that are constructed explicitly and
those that are actually constructed, the pair

CollEffect(t, s) = (CollEffect+(t, s),CollEffect−(t, s))

with CollEffect+(t, s) = Effect+(t, s)\ExplEffect+(t) and
CollEffect−(t, s) = Effect−(t, s) \ ExplEffect−(t) names
all those attributes that are collaterally constructed or re-
moved by task t in situation s. With all this at hand, the real
effects of tasks can be considered during planning.

V. PLANNING ALGORITHM

Whether a planning problem can be solved, depends,
amongst others, on the available actions that constitute the
state space for the search. For more complex problems,
where the state space may be huge and only certain paths
lead to valid goal states (e. g., the corner bricks of the house
that cause collision problems), classical search strategies
such as depth-first search and breadth-first search fail with
given resources and time, while others like A* require at least
highly specialised heuristics [17]. Our proposed two-layer
planning strategy for multi-robots (Multi-Robot Planning
Algorithm, MRPA) is based on macro and micro steps and
aims at outperforming classical strategies due to optimisation
techniques assumed valid for general assembly planning.
On the macro step level, i. e., process planning, a sequence
of abstract domain tasks is searched which are planned
with automation tasks each on the micro step level, i. e.,
production planning.

Fig. 5 describes the strategy for searching the state space
where planning situations are used as states and tasks
as transitions. Given an initial product situation pinit ∈
S�Product , in which assembly starts, and a goal product
situation pgoal ∈ S�Product , which describes the final
artefact (1), first a respective planning situation sinit ∈ S
with pinit = sinit�Product is retrieved from the production
planning layer (2, 3) which also describes the robot cell
on assembly start. sinit is added to the set M of states
which have to be further investigated (4). From this set
of known planning situations, one is selected as next (it
is sinit in the first run) and all its possible next domain
tasks (e. g., assemble a brick) as macro steps are determined.
From those, one domain task is selected as next abstract task
tnext (5). tnext and situation s, in which tnext is performed,
are given to the production planning layer which performs
a local A* on micro step level with adapted search scope
in order to provide executable automation tasks – maybe
hierarchically nested – for the abstract domain task (6, 7).
Technically, the result is returned as iterator that performs
production planning only if next() is invoked and provides
all alternatives for the local assembly.

In order to determine resulting planning situations during
production planning, the determination of collateral effects
is used. A solution t is returned, if and only if its resulting
planning situation sres = next(t, s) (8) fulfils the require-
ments of tnext, i. e.,

sres  (s�Product \Effect−(tnext)) ∪Effect+(tnext) .

5:
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3:

2:
1:
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7:

8:
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Fig. 5: Algorithm description with macro and micro layer.

Each such t is – if approved to be valid by all validation
modules – handled as potential next step to the overall
solution and its resulting planning situation sres is added
to the set M (9), from where it is selectable as new initial
state for a further step of assembly planning. As long as
no s ∈ M fulfils the goal state s  pgoal, i. e., all product
attributes of the final product are constructed in s, planning
is continued.

Key to the success of the MRPA is also the specific
strategy of selecting the next state for planning as it directly
influences the overall performance of the search. Assuming
that the chosen order of assembly steps on macro level (5)
does not play a major role to the overall performance of the
final assembly, the selection of next domain tasks is done in a
depth-first like manner, where special backtracking strategies
apply for avoiding exhaustive planning due to deadlocks [9].
However, the selected domain task sets a corridor for further
planning at micro step level. Here, the local A* search for
finding suitable automation tasks is restricted to skill modules
that only affect the respective assembly part. The number
of combinational possibilities is thus drastically reduced.
Assuming n as the number of parts that can be assembled
independently (i. e., domain tasks) and k as the number of
actions (i. e., automation tasks needed in order to fulfil such

TABLE I: Size of state-space with n as number of parts to
be assembled and k as number of actions needed per part.

n 1 2 3 4 5
k full corr. full corr. full corr. full corr. full corr.

1 states 1 1 4 6 15 27 64 124 325 645
paths 1 1 2 2 6 6 24 24 120 120

2 states 2 2 18 12 270 54 7,363 248 326,010 1,290
paths 1 1 6 2 90 6 2,520 24 113,400 120

3 states 3 3 68 18 5,247 81 1,107,696 372 492,911,195 1,935
paths 1 1 20 2 1,680 6 369,600 24 168,168,000 120
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TABLE II: Evaluation runs for LEGO house and bridge, each solved with classical A∗ and the multi-robot planning algorithm.

Problem: LEGO house LEGO bridge
Solver: A∗ MRPA A∗ MRPA

# Robots: 1 robot 3 robots 1 robot 3 robots 3 robots 3 robots
Successful runs: 250 / 250 167 / 250 250 / 250 250 / 250 1 / 250 250 / 250

Planning time: 2.17 s ± 3.34 s 15.20 s ± 35.53 s 0.39 s ± 0.32 s 1.98 s ± 1.76 s 277.36 s ± N/A 64.84 s ± 44.94 s
Domain tasks: 52 ± 0 52 ± 0 52 ± 0 52 ± 0 141 ± N/A 141.2 ± 1.1

Automation tasks: 338 ± 0 338 ± 0 338 ± 0 338 ± 0 872 ± N/A 873.06 ± 3.20
Execution time: 230.39 s ± 0.15 s 174.42 s ± 16.59 s 230.39 s ± 0.15 s 90.14 s ± 3.51s 489.47 s ± N/A 431.98 s ± 32.41 s

a domain task). Table I contains the number of states and
paths available in the state-space for both, a full and a
corridor-guided search. Even for a small planning problem
with n = 5 parts and k = 3 steps per part, almost half of a
billion states span the search-space. In contrast, the corridor
approach requires only about 2,000 states for planning. It can
be observed that states increase only linearly with the number
of actions k for the corridor approach in this example.
Noticeably decreasing the state-space, this forms a major
benefit to planning performance.

VI. EXPERIMENTAL RESULTS

For enabling the planner to handle LEGO planning prob-
lems in general, a series of expert modules have been
developed. Analysis Modules identify and extract LEGO-
specific types of attributes from a given 3D model. The
so-called LegoPlacementAttribute describes that a brick is
being stacked on top of another with a given geometric offset.
LegoSupportAttribues are used during planning and indicate
that a robot is giving additional support to a brick in order to
stabilize the construction. Validation Modules reject invalid
planning states from further planning: While one LEGO-
specific module aims at discovering exclusions as motivated
in Fig. 1, another module also considers robots and performs
statics analysis in order to determine the stability of a
construction. Fragile constructions, which are not adequately
supported by robots and, thus, would collapse due to their
own weight, are reliably rejected.

The planning of micro steps uses Skill Modules to retrieve
possible automation tasks that can be performed with robots
in a current planning situation. For each robot, a PickAnd-
PlaceSkill is provided that creates pick-and-place tasks in a
given situation for each brick that is reachable by the robot.
Such a task usually removes the LegoPlacementAttribute
between a brick and its underlying bricks and constructs
new ones at its new position respectively. In addition to
the overall construction stability, all pick-and-place tasks fur-
thermore require their underlying bricks to stand placement
forces. As further skills for each robot, a SupportSkill and
an UnsupportSkill provide tasks that construct or remove
a LegoSupportAttribute between a robot and the construc-
tion. For providing bricks initially to the assembly process,
suppliers have a skill named SupplySkill that constructs a
LegoPlacementAttribute between a new brick and a supplier
plate from which the brick can later be taken by a robot.

Equipped with these domain and automation modules, the
planning approach is evaluated for each of the two LEGO
problems. As the planning approach is implemented in Java,
the evaluation is performed inside a JVM. The host machine
provides 16 GB RAM and an Intel(R) Xeon(R) CPU E31230
(3.20GHz) 4-core processor with hyper-threading enabled.
Each planning problem is evaluated in two different ways.
First, evaluation runs are performed by a classical A* search
strategy [17]. For the cost function in the LEGO domain,
the overall execution times are used along with a kind of
qualitative process reliability. Due to the immense variations
of planning with multiple robots, the A* heuristics is an
approximation that leads planning towards good results, not
guaranteeing the very optimal solution. The A* search is
equipped with all modules as introduced before to expand
and validate the state space, enabling a comparison of its
performance to our proposed MRPA that is used for a
second evaluation. Here, evaluation runs profit from the
corridor-guided search strategy and the early identification of
deadlocks to avoid excessive planning time. For the planning
with MRPA on micro step level, the same cost function and
heuristic are used as for the A* evaluations. All evaluation
runs longer than 300 s are discarded in both setups and
are not considered in the computed evaluation statistics. To
improve execution times of retrieved plans, a downstream
optimization for multi-robot assembly is used to parallelise
the strict sequential plan and allow asynchronous execution.

Table II shows the summarized evaluation statistics. For
each evaluation, the number of successful runs and the
average planning time with its standard deviation is recorded
to analyse the planners’ overall performance. For analysis of
result quality, the number of domain and automation tasks
respectively as well as the average execution time with the
given number of robots – again complemented by its standard
deviation – are shown. The LEGO house is planned by
A* within about 2 s for one robot, resulting in a program
with an execution time of almost 4min. Planned for three
robots, A* actually finds shorter solutions where robots work
in parallel. Planning times, however, increase non-linearly
and find valid solutions in only 67 percent of all runs.
Especially the standard deviation is even worse compared to
the planning time. The deadlock problem of the roof corner
stone is assumed to be responsible for that, as it might arise
arbitrarily several times or not at all during planning.

In contrast to A*, MRPA provides results in all of its 250

9093



(a) Two robots (R1, R2) are supporting. (b) R3 overtakes support on the left side ... (c) ... so that R1 can release its support ...

(d) ... and overtake the support of robot R2. (e) The now freed robot R2 can now ... (f) ... place the critical connection brick.

Fig. 6: Example of robot team cooperation as valid assembly solution found by the planner.

runs for both house evaluations – with one and with three
robots. The planning time is drastically reduced, while find-
ing the very same results as A* with one robot. With three
robots, MRPA even finds far better solutions. The proportion
of average planning time and its standard deviation is clearly
improved with MRPA, expressing a reduced exposure of the
planner to random good or bad decisions. The results of all
evaluations with the house always count 52 domain tasks
and 338 executed automation tasks, which indicates correct
solutions as each of the 26 bricks requires a supply and a
pick-and-place skill to be performed.

When planning the bridge, at least three robots are re-
quired in order to safely build the bridge structure with
supports. A* returned a valid solution in only one of its
250 runs after approximately 4.5min, which seems to be a
rather exceptional coincidence of lucky decisions that led to
the solution. Although validation modules are used to reduce
the state space, the bridge is still too complex for the A*-
planner due to its huge set of possibilities, also owed to
multiple robots and the supports needed in this example. In
comparison, MRPA succeeds in all 250 runs within about a
minute owing to its elaborate corridor-guided search strategy.
In contrast to the house, variations in concretely chosen skills
and tasks may apply, e. g., the specific supports that are actu-
ally performed. The average planning time, however, is still
not exceeded by its standard deviation, which indicates rather
reliable planning times. Although the high complexity of the
planning problem, the overall planning time is remarkably
good and still just a fraction compared to the execution time.

For building the bridge, a suitable set of robot cooperation
is required to guarantee a non-collapsing assembly. A key
moment of assembling the bridge is the placement of the
uppermost brick of the arch which first connects both side
parts. Here, the planner has to find a coordinated application

of the right skills that never leave parts of the bridge
unsupported (cf. Fig. 6). In the situation described by (a),
two robots R1 and R2 are supporting each one part of the
bridge at the second topmost brick. Robot R3 is not able
to place the final connection brick as it would cause the
directly underlying bricks to break. Thus, robot R3 moves
in position to support one of these upper bricks (b), which
enables R1 to release its support on this side (c). Repeating
this scenario with Robot R1 on the other topmost brick (d),
R2 is free to release its support (e) and to care about the
critical connection brick which can now safely be placed (f).

VII. RELATED WORK

In the field of planning, two different approaches have
received great research interest. On the one hand, planning
has been performed in state space, concentrating on the
STRIPS formalism [18] and developments up to solvers
for the planning domain definition language (PDDL) [19].
In these approaches, planning starts with a given initial
situation, and searches for steps that lead towards a given
goal. This principle allows performing planning as long as
the possible steps can be defined, however the great amount
of different step sequences often limits these approaches to
rather small problems. To overcome them, various improve-
ments have been suggested, from heuristics to guide search
in a domain-specific manner [20] to abstractions that try to
reduce the size of the planning system [21], however no
solution for all of these problems has been found.

On the other hand, planning in plan space starts with
a complex task description for the complete problem, and
refines these tasks into combination of smaller tasks. Here,
the concept of Hierarchical Task Networks (HTNs) [22]
has found widespread use. These approaches make use of
explicit abstractions given in the form of decomposition
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rules, which leads to more directed search and allows solving
bigger problems, while requiring more domain knowledge
incorporated into the planning process.

For use in realistic robotic applications, combinations of
these approaches are often used, applying decomposition
based planning for solving the overall symbolic task and
assigning it to multiple robots, while search-based and
sampling-based approaches are used to solve the continuous
space motion planning [23], [24]. These solutions are applied
to industrial robots that assemble parts [25], [26], [27], but
also to mobile robots used in furniture assembly [28]. Still,
they are only applied to relatively small problems (about
ten parts). In contrast, the work of this paper combines these
approaches with previous work of the authors, and focuses on
relatively large planning problems that handle both symbolic
planning on the domain level and geometric planning in
continuous space.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we presented a modular planning approach
for coordinated multi-robot assembly. Besides a formal defi-
nition which allows for transfering the approach to different
assembly domains, an overview of the underlying planning
algorithm is given. We proposed several optimisation ideas
to state-space planning that enable automated programming
of coordinated multi-robot applications for assembly. The
proposed concepts and the multi-robot planning algorithm
have been successfully evaluated against planning problems
in the field of LEGO. The overall planning performance
as well as the resulting programs are convincing for even
complex and challenging planning problems such as the
introduced LEGO bridge, where three robots and cooperation
is needed in order to safely build the structure.

Although collision detection is performed during plan-
ning for sequential programs, collision avoidance of asyn-
chronously moving robots, e. g., when optimising the pro-
gram, has not yet been addressed. Hence, only the house
as been assembled in reality using one robot. All other
assemblies using three robots are executed in simulation
instead. Next steps will be the extension of collision detection
also for optimised programs and, thus, the realisation of
the assemblies with three robots. Moreover, we are working
on transfering the planning approach to further domains,
such as the assembly of airplane parts made of carbon-fibre
reinforced polymers [4].
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