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Abstract— Integrating robotic systems in architectural and
construction processes is of core interest to increase the
efficiency of the building industry. Automated planning for
such systems enables design analysis tools and facilitates faster
design iteration cycles for designers and engineers. However,
generic task-and-motion planning (TAMP) for long-horizon
construction processes is beyond the capabilities of current
approaches. In this paper, we develop a multi-agent TAMP
framework for long horizon problems such as constructing a
full-scale building. To this end we extend the Logic-Geometric
Programming framework by sampling-based motion planning,
a limited horizon approach, and a task-specific structural
stability optimization that allow an effective decomposition of
the task. We show that our framework is capable of constructing
a large pavilion built from several hundred geometrically
unique building elements from start to end autonomously.

I. INTRODUCTION

Building construction is the largest industry worldwide.
It consumes around 40% of global resources and energy,
and produces 50% of all waste [1]. Yet, current construction
processes, their planning and supervision, as well as the
building designs are far from optimal. Building informa-
tion modeling (BIM), an increasingly employed method in
construction, comprises digital tools designed to manage
established, primarily manual construction processes with
conventional building elements. We believe that AI and
robotics have the potential to revolutionize the area, moving
towards integrated reasoning about the robotized construction
process jointly with the building design, resource consump-
tion, and uncertainties.

This paper aims to make a first step in this direction.
We address the problem of computing a possible robotic
construction sequence for a given building design. We reason
on the kinematic, geometric and static stability level, ne-
glecting the dynamic constraints and actual control problem
of execution. While assuming the final design as given in
this work, the long term goal is to reason jointly over the
construction process and the building design: Such a com-
plementary design-for-robotic-assembly framework should
suggest modifications that lead to more efficient construction,
and help discover and explore construction processes and
related possible designs that are beyond current designer’s
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(a) Schematic top view. (b) Assembled pavilion.

Fig. 1: BUGA Wood pavilion built by our framework in
simulation.

intuition and conventions. We aim to think of the design
of the architecture and the construction process as a joint
problem. In its current form, our framework supports an
architect in reviewing a potential robotic construction process
for his design, possibly yielding insights to modify the
design.

For the demonstration of the planning framework in this
paper we consider a long-span pavilion design: the BUGA
Wood pavilion (Fig. 1), which was conventionally built in
Heilbronn (DE) at the Bundesgartenschau 2019 [2]. This
example is particularly suitable, as it showcases how the
differentiation of building elements, enabled by robotic pre-
fabrication, results in a high-performance, materially efficient
structure. However, the assembly and construction remained
entirely manual and conventional.

The problem setting is challenging from the perspective of
robot task and motion planning due to several reasons. The
overall construction requires to assemble 376 geometrically
unique pieces – in our model this is done by coordinating 2
robots: one crane and one mobile robot for final placement.
A core issue when scaling TAMP to long horizons is the
trade-off between decomposing the problem and aiming for
joint optimality: Previous work on optimization-based TAMP
treated the whole manipulation path jointly which will not
scale to realistic construction domains. Additionally, for such
long horizon problems, the TAMP-solver needs to be robust
over a wide range of arising motion planning problems,
while still providing solutions in a reasonable timeframe.
Clearly, we can treat many aspects roughly independently
or incrementally provided that certain objectives, e.g., static
feasibility, are satisfied. As such, it should be possible to
achieve close to linear scaling of the planning-complexity
with the number of required manipulation steps. We therefore
believe that one of the core technical challenges is to iden-
tify the (inter)dependence between manipulations/individual
pieces, which in turn would determine planning jointly or
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sequentially.
We propose to follow a limited horizon approach along

with task specific objectives as a form of decomposing the
problem, and introduce sampling-based approaches in com-
bination with optimization-based methods to form a robust
TAMP-solver. We demonstrate this approach in the Logic-
Geometric Programming (LGP) framework introduced in [3],
which formulates the TAMP as an optimization problem.

The key contributions of this paper are:
• A limited (receding) horizon planning approach as a

form of decomposition in task and motion planning,
• Planning for multiple robots with mixed capabilities,
• Introducing methods to robustly solve an LGP problem,

such as sampling-based motion planning and stochastic
restarts,

• Integrating static stability estimates in TAMP planning,
• Demonstrating TAMP methods on architectural con-

struction.

II. RELATED WORK

A. Task and motion planning

A full discussion of the TAMP literature is beyond our
scope. In relation to problem decomposition, Kaelbling et
al. introduced ‘Hierarchical Planning in the Now’ [4], which
decomposes the problem strictly hierarchically, thereby lim-
iting the need for long-term decision making, while still
being suitable for long-horizons. In [5] a highly scalable
symbolic planner is incorporated in the TAMP framework to
achieve longer planning horizons. Recent work also inves-
tigates learning heuristics to guide the high-level planning
in order to scale these methods for long horizon sequential
manipulation problems [6]. However, currently proposed
benchmarks lack very long-horizon problems [7], and to the
best of our knowledge, there has not been any long-horizon
application comparable to the one investigated in this paper
demonstrated so far.

While simplifying problems is a common approach to
make problems tractable in path planning [8] and optimiza-
tion [9] – the two areas from which we leverage methods –
it is not yet investigated in detail within TAMP settings. In
[10] a team of multiple robots assembles a chair, where the
planning problem is simplified by decomposing the problem
into smaller subproblems by regrasping. The research in [11]
suggests the incorporation of hierarchies to solve a problem
with less decisions before moving on to the actual problem,
while noting that the worst-case scenario is still the same.

B. Robotics in Fabrication, Architecture, and Construction

As the interest in autonomous construction increases, [12]
identifies some challenges (e.g., cluttered working environ-
ments, high reliability to be useful, uncertainty in sensing)
and current use cases (e.g., bricklaying, masonry).

Computational and robotic approaches in architecture and
design are becoming more relevant as well and are often
already deployed in reality: [13] discusses the assembly of
specially designed wooden structures using two robotic arms
for precise positioning. The application of a mobile robot

for semi-autonomous construction of a brick wall at the
DFAB house, a demonstrator building for research concepts,
is presented in [14]. In [15], flying vehicles are used for
the construction of a tower consisting of foam-bricks in an
art project. In [16], use-cases in prefabrication and various
mobile robots are presented, while noting that few of them
are currently economically viable due to their specialized use
cases.

While demonstrating use cases of robots in construction,
these projects lack the explicit use of incorporating the
robotic planning in the design process. The robots are used
for the construction, and made fit, rather than informing the
design of what is feasible, which is what we are aiming for.

III. BACKGROUND

A. Logic-geometric programming

In this section, we formulate Logic-Geometric Program-
ming (LGP) [3], [17], as the underlying TAMP framework
for the purpose of this work. The main idea of LGP is to
introduce a discrete variable s ∈ S (the state of a symbolic
domain S) that parameterizes the costs and constraints of
a nonlinear trajectory optimization problem (NLP) over the
(continuous) path x. Let X ⊂ Rn × SE(3)m be the
configuration space of m rigid objects and n articulated joints
of potentially multiple agents with initial condition x0. Given
a goal description g (details in Section IV-B), LGP tries to
find a sequence of symbolic states s1:K , which we call a
skeleton, and a path x : [0,KT ] → X in the configuration
space that minimizes

min
x,K,

a1:K ,s1:K

∫ KT

0

fpath(x(t)) + ψ(x(t), sk̃(t)) dt+ fgoal(x(KT ), g)

s.t. x(0) = x0, s0 = s̃0, hgoal(x(KT ), g) = 0

∀t ∈ [0,KT ] : hpath
(
x(t), sk̃(t)

)
= 0

gpath
(
x(t), sk̃(t)

)
≤ 0

∀k ∈ 1, . . . ,K : hswitch(x̂(t), ak) = 0

gswitch(x̂(t), ak) ≤ 0

ak ∈ A(sk−1)
sk ∈ succ(sk−1, ak)
sK ∈ G(g), (1)

where x = (x, ẋ, ẍ) and x̂ = (x, ẋ). This path consists
of K ∈ N phases (kinematic modes [17]) induced by the
sequence s1:K , each of length T > 0 which should be
chosen large enough to allow sufficient time for all actions.
T can be scaled optionally for each phase individually,
using the technique from e.g. [18]. The number of phases
is part of the optimization problem itself. We assume the
path to be globally continuous and two times continuously
differentiable within each phase. fpath describes path costs,
e.g., squared accelerations. The constraints hpath and gpath in
phase k of the path are parameterized by sk with k = k̃(t) =
bt/T c. Therefore, the symbolic state determines the objective
in each phase, while the optimization problem tries to find
a globally consistent path fulfilling these requirements. The
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transitions of sk−1 to sk are determined by a first-order logic
language (similar to PDDL) through succ(·, ·) as a function
of sk−1 and the discrete action ak ∈ A(sk−1). The two
functions h, gswitch impose transition conditions between the
modes. s̃0 ∈ S is the initial symbolic state. The goal is
defined symbolically by sK ∈ G(g) and kinematically by
fgoal and hgoal for the goal specification g (see Section IV-
B for more details). We extend the formulation of [17] to
include a stability cost function ψ, which we will explain in
Section IV-C.

B. Multi-Bound Tree Search (MBTS)

The logic introduces a decision tree, where each leaf node,
i.e., a node that reaches a symbolic goal state sK ∈ G(g),
corresponds to an NLP as a candidate for the overall TAMP
problem. Solving the LGP (1) therefore includes a tree search
over the discrete actions such that a symbolic goal state
is reached and the NLP is feasible. Using the full path
optimization problem (1) is too expensive to guide the tree
search. Therefore, a key contribution of [3] is to introduce a
sequence of relaxations i of (1) in terms of lower bounds Pi,
i.e., computationally simpler problems that serve as a lower
bound on the cost of the original problem and as a necessary
condition on the feasibility. For a given skeleton, (1) is solved
by discretizing x in time. This work relies on the following
three bounds proposed in [3]: The bound Ppose optimizes
only the final pose for t = KT , and Pseq the switching
poses, i.e., x is discretized with configurations corresponding
to the switching times t = 0, T, . . . ,KT only. The full path
optimization problem is called Pfull, where x is discretized
with nt points for each phase.

For scaling LGP to an architectural setting, we additionally
introduce two new bounds: a stability bound and a sampling-
based motion-planner bound in Section IV-C and Section IV-
D, respectively.

IV. SCALING LGP TO ARCHITECTURAL
CONSTRUCTION

A. Overview

LGP is a very general way to formulate sequential ma-
nipulation problems. However, the existing solver (MBTS)
is fundamentally limited in scalability: while it leverages
approximate bounds to guide tree search over skeletons,
it eventually always tries to optimize the full joint path
over the whole sequence. In our architectural construction
application we need a long sequence of steps, i.e., on the
order of thousands of actions ak, to complete the full task
– optimizing jointly across that many steps is not scalable.
Further, while the optimization based approach provides
many benefits (e.g., in dealing with higher dimensional
multi-robot systems jointly, or optimizing interactions such
as handovers jointly with the motions), the non-convexity
of the motion problems ultimately lead to local optima. To
robustly solve large scale problems we need better guarantees
of the sub-problem solvers: We cannot tolerate that a sub-
problem is labelled infeasible only because an optimizer is

trapped in a local optimum. Sampling-based methods can
help to gain robustness for such non-convex problems.

In this section we describe key aspects of our solver to
address such challenges:

1) We propose an iterative limited-horizon approach to
solve long-horizon LGPs, where the formulation of
subgoals is a key aspect.

2) We propose a sampling-based motion-planner bound
and stochastic restarting to address the challenges of
non-convexity.

3) We propose a novel approach to approximate the static
stability of the construction, leveraging a constrained
optimization solver, which is used as an additional
bound to guide tree search.

The last point is specific to architectural construction, where
the order of assembly should be guided by static stability. To
integrate this reasoning in our framework we need to have
computationally efficient approximations, which we propose
here.

B. Subgoals & Limited-Horizon LGP

We first propose to enable the planner to decompose the
full problem into subgoals, each of which implies a limited-
horizon LGP problem, akin to receding horizon planning.

Specifically, in our case, the overall goal specification
g =

⋃m
i=1 {(qi, pi)} means that m parts qi have to be placed

at their specified target poses pi, which translates to the
constraint on the last symbolic state

sK ∈ G

(
m⋃
i=1

{(qi, pi)}

)
, (2)

where G(·) extracts the symbolic goal state from the goal
specification. Instead of attempting to solve (1) with the
complete goal (2), we introduce a so-called horizon length
nh and replace the symbolic goal constraint with

sK ∈
⋃

{gi⊆g : |gi|=nh}

G(gi). (3)

While with the constraint (2) a symbolic goal state is only
reached if all parts are placed, the subgoal formulation (3)
terminates if at least nh parts are placed. Therefore, the
optimization horizon is automatically limited. The overall
goal is then achieved by solving (1) with the constraint (3)
iteratively for a specified horizon length nh. Parts that have
already been placed in previous iterations are, of course,
excluded from the goal specification in the current iteration.
Note that neither the subgoals nor their order is given explic-
itly, but subject to the planner itself. This requires solving
each subproblem robustly, while ensuring that those solutions
result in physically and kinematically feasible intermediate
goals.

C. Static Stability Bound

In our construction setup, we additionally have to prioritize
which parts of the building should be placed first based
on a stability criterion of the already placed parts. This is
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expressed with the static stability term ψ : (X ,S) → R,
which is added to the path costs in (1) as a function of the
current configuration x ∈ X and the symbolic state s. ψ
contributes to the costs only if in the symbolic state sk a
part is placed.

While existing applications of LGP mainly focused on
solving the underlying TAMP problem, i.e., finding a feasible
solution, here we explicitly want to minimize this additional
cost term. In order to realize this efficiently, we introduce
another lower bound, the stability bound Pstab. This bound
evaluates ψ for each subgoal, i.e., placement of a part,
without taking into account any other constraints or costs
that are induced by parts of the configuration space not
corresponding to placed objects. The stability term also helps
guiding the solver to avoid configurations that make later
placement of parts infeasible.

D. Sampling-Based Motion Planning Bound

Solving the full path optimization problem Pfull in our
setting is challenging due to collision avoidance in the
complex geometries of our building scenario. Therefore, we
introduce another lower bound on Pfull that utilizes sampling-
based motion planning algorithms, specifically RRTs, to
solve this issue. This bound relies on the solution of the
switching configurations from Pseq, which allows us to com-
bine the advantages of jointly optimizing these configurations
including multi-agents and handovers with the path finding
capabilities of the sampling-based planner. In this work, we
use RRT-connect [19] , and thus call the bound PRRT.

Let xseq be the solution of the sequence bound Pseq. The
bound PRRT now aims to connect each consecutive switching
configurations xseq

k−1 = xseq((k − 1)T ) and xseq
k = xseq(kT )

for k = 1, . . . ,K by solving

find xRRT : [(k − 1)T, kT ]→ X
s.t. xRRT((k − 1)T ) = xseq

k−1, xRRT(kT ) = xseq
k

∀t ∈ [(k − 1)T, kT ] : gpath(xRRT(t)) ≤ 0

hpath(xRRT(t)) = 0. (4)

Equality constraints need special attention in sampling based
planners [20]. In our setup, the path constraints hpath and
gpath only consider x, not x, i.e., we neglect the dynamic
constraints for the RRT bound. We note that sampling-based
planners have previously been integrated in logic based task
planners directly as the solver for the arising motion planning
problem [21], but not explicitly as a bound of (1).

E. Stochastic Restarts

Since even the lower bounds for (1) are still non-convex,
and the solver might converge to an infeasible local optima,
we introduce stochastic restarting of the underlying optimizer
(KOMO) [22], which is used to solve the NLPs, with
randomized initial conditions for better reliability.

Specifically, we use restarting when solving the problems
Ppose and Pseq. In both cases, we do not sample the vari-
ables in the full dimensional space X , but select a lower
dimensional subspace to sample from, i.e., the subspace

that influences the basin of attraction of the NLP the most,
and project them up into the full configuration space (see
Section V-D.4 for an example). The other variables are
initialized from the current state as solved in the previous
iteration.

One has to choose carefully how many restarts are al-
lowed, before a given NLP is declared infeasible. We tackle
this issue by introducing a computational budget tmax for the
solution-attempts, and declare a problem as infeasible in case
no solution was obtained.

F. Algorithm and Hierarchy of Bounds

This section describes how the bounds are used to effi-
ciently solve the LGP problem for each subgoal and hence
the overall long-term TAMP problem.

By construction, the hierarchy of our bounds is

Pstab ≺ Ppose ≺ Pseq ≺ PRRT ≺ Pfull, (5)

where ≺ means a lower bound with respect to a necessary
condition of the feasibility of the following bound. Let B
be the set of all symbolic state sequences that reach the
symbolic goal constraint (3) for horizon length nh. The
overall idea of the algorithm is to select s1:K ∈ B and
then test its feasibility by computing the bounds (5) until
either one bound is infeasible or Pfull is feasible and hence
a solution has been found.

However, due to the combinatorial complexity, determin-
ing B fully may not be possible even for short horizon
lengths. To obtain possible action sequences, the logic-tree
is expanded by breadth-first search until a sequence s1:K is
reached that fulfills (3), and Pstab is satisfied as detailed in
Section IV-F.1. For the best candidate according to Pstab we
then attempt to compute the pose and sequence bounds, Ppose
and Pseq, respectively.

According to (5), the RRT-bound PRRT is a lower bound
to Pfull, and should thus be computed first. However, since
the worst-case run-time of PRRT is only limited by a compu-
tational budget, which has to be high enough in order not to
miss feasible solutions, solving PRRT can get expensive. In
comparison, Pfull either gives a solution or returns infeasibil-
ity much faster. Since a local optimizer is not guaranteed to
find a solution for a path between the poses obtained from
Pseq due to non-convexities, the ‘infeasibility’ assignment by
Pfull contains false positives. Therefore, we first solve Pfull
(initialized with Pseq) and only if this returns infeasibility we
utilize the RRT bound, which, in case it can find a solution,
is used as an initialization for a final smoothing step.

1) Details about stability optimization: Ideally, one would
solve

argmin
s1:K

K∑
k=1

ψ(x(kT ), sk) s.t. s1:K ∈ B (6)

to decide which sequence s1:K to evaluate further. However,
we only have access to the set B′ ⊆ B, which is grown
through the expansion of the tree. To balance the tree
expansion and the optimality of the solution, we propose
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Fig. 2: Schematics of the crane with 6 DoF, and the mobile
robot with 6 DoF used in the problem setting.

a scheme that provides such a trade-off, by proceeding with
the solution of Ppose if

K1∑
i=1

ψ(x(1)(iT ), s
(1)
i )−

K2∑
j=1

ψ(x(2)(jT ), s
(2)
j ) < ε(|B′|),

(7)

where s
(1)
1:K1

and s
(2)
1:K2

are the best and the second best
sequence found so far that reach the symbolic goal (3),
respectively. ε is a function of the number of currently found
sequences. We additionally impose a minimum size of the set
B′, and a maximal computational budget for the expansion.
The choice of ε is dependent on the behavior of ψ, and the
tolerable sub-optimality for the specific problem.

V. EXPERIMENTS & RESULTS

A. The BUGA Wood Pavillon

The BUGA Wood pavilion is made of 376 unique wooden
elements which are precisely fabricated by robots. It spans
30 meters, and was assembled by two human operators and
one crane in 10 days. For the fabrication of the timber-
parts, robotic constraints were taken into account, whereas
the construction was manually planned.

In this work, we scale the elements of the pavilion to 80%
of their true size to avoid difficulties for the motion planning
algorithm when placing the part at its final position, as this
positioning is not the main focus of this paper.

B. Robots

In this problem setting, we use two robots with different
sets of capabilities (Fig. 2), which mimic how the construc-
tion process was done in reality before:
• One crane, which is used to lift the parts, and move

them to the handover position. The rotation of the end-
effector of the crane around the x and y axis is limited
to only allow for small rotations.

• One robot with a mobile base, used for final positioning
and placement of the parts. The translation on the z-axis
is limited in height, and the rotation of the arm is limited
to not bend further down than to a 90 degree angle.

C. Assumptions

We assume that the final pose and position of each
part, and thus the whole design of the structure is known
before the construction process starts. Hence, the termination

TABLE I: Predicates to impose constraints on the path
optimization

(touch X Y) distance between X and Y equals 0

(stable X Y) create stable (constrained to zero velocity) free
(7D) joint from X to Y

(postLift X Y) X is above Y with a distance > 0

(preHandover X Y Z) X is above Y, which is the goal of Z, with a
distance > 0

(fitPose X Y) pose of X (7D) is exactly at pose of Y

TABLE II: Action operators and the path constraints they
imply (brackets indicate a non-persistent predicate).

(pick X Y) [touch X Y] (stable X Y)
(liftUp X Y) (postLift X Y)
(handover X Y Z) [touch X Y] (stable X Y) (preHandover X Y Z)
(place X Y) [stable Y X] (fitPose X Y)

criterion of the planner is that each piece has to be placed
at its corresponding final position. We also assume:
• No noise is present in the movement for both the crane

and the mobile robot,
• Stable grasps by touch for both the crane and the mobile

robot.

D. Modeling details
1) Logic: We describe the details of the used logic

predicates for the specific task of building the BUGA wood
pavilion. Most of the implementation details are the same as
in [3], [17], with small changes to account for the differences
in robots and task domain: The predicates, their implicitly
imposed path constraints and the action operators are listed in
Table I and Table II, respectively. They are slightly different
from the ones used in a normal pick-and-place problem, as
we impose that the part has to be placed from above, such
that the mobile robot is only ‘finalizing’ the position of the
part.

2) Subgoals: We define the subgoals gi as having placed
M (M � m) parts qj of the structure successfully, which is
equivalent to a horizon length of nh =M . This translates to
a minimum of 4×M necessary actions to fulfill the subgoal.
The final goal g is the full assembly of the whole building,
i.e., all parts being placed by the robots.

We introduce an adaptive approach of choosing the limited
horizon length: We start the algorithm with nh = nmax,
and decrease it if within a computational budget no feasible
solution has been found. In case we were able to solve the
problem for two consecutive subgoals with horizon length
nh, we increase the horizon length given that nh < nmax.

3) Stability bound: We define two stability functions
ψstatics(x, s), and ψneighbors(x, s), which can be seen as a fast
but inaccurate approximation of ψstatics(x, s), and compare
them. From x we determine the set U of previously placed
parts, and from s the set W of potentially placeable parts in
the evaluated action sequence. We additionally define N (w)
as the set of already placed neighbors of part w:
• ψstatics =

1
|U∪W|Torques(U∪W), i.e., we compute1 the

1For simple structures, this can be done analytically. For the BUGA
pavilion, we numerically simulate the loads, and extract the torques.
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Fig. 3: Usage of the sampling-based planner, required restarts, and computation time using the stability bound ψneighbor and
different nmax.

sum of all torques between neighboring parts, and take
the average over the building to normalize for number
of placed parts.

• ψneighbors = − 1
|W|

∑
w∈W |N (w) ∩ U|, i.e., the average

number of neighbors per part.
We use both versions of the stability bound with a thresh-

old on the cost to make the bound a necessary condition to
avoid attempting to place free floating pieces.

Additionally, we set the maximum size of |B′| = 20 to
impose an upper bound on the computational budget of the
tree-expansion. Relying on ε from (7) alone was not robust
enough for the wide range of different scenarios that occur
over the construction period.

4) Stochastic restarts: For the mobile robot, we randomly
sample the translational coordinates from an uniform dis-
triution, and do not change the other variables. Changing
these coordinates leads to convergence of the switching-
positions from different sides of the pavilion, which helps the
optimizer avoid getting stuck in an infeasible configuration.
For the crane, no variables are randomized.

E. Experimental results

In the following section, we analyze several different
scenarios, and provide detailed analysis to demonstrate the
necessity and the effectiveness of our novel extensions on
the default LGP formulation. If not stated differently, the
experiments2 were run several times with different random
seeds and the evaluated metrics were averaged to reduce the
stochastic effects of the sampling and restarting. A video
of a full run with nh = 1 and ψneighbors is part of the
supplementary material.

1) Robustness: We report the percentage of times the
sampling-based planner was invoked, and the required
restarts over the whole run in Fig. 3a, and Fig. 3b, re-
spectively. As the environment gets harder for the optimizer
to solve for a motion path (i.e., a solution to Pfull using
KOMO is not found), especially with higher horizon lengths,
our framework reliably switches to the RRT-based motion
planner.

2The experiments were run on a single core of Intel(R) Xeon(R) Gold
6148 CPU @ 2.40GHz per experiment.

2) Stability function: The results of applying different
strategies highlight the capability of the developed frame-
work to enable an exploratory functionality that can support
users, and specifically architects for this use-case. In effect,
different sequences arise with two different stability func-
tions (Fig. 4c, Fig. 4d), compared to the baseline without
ordering (Fig. 4b), where we only impose the existence
of one connection to a neighbouring part as the sufficient
condition. The order used when assembled in reality is shown
in Fig. 4a.

3) Horizon length: We compare the required computation
time between different horizon lengths nh over the course of
a run (Fig. 3c). We note that, while longer horizons (nh > 4,
which translates to a minimum of 20 logical actions) are
theoretically possible, our analysis on this is limited due to
computational constraints, namely restrictions in the logical
search which exhibits combinatorial complexity.

Note that while this pavilion was feasible to build with all
horizon lengths, the longer horizon lengths nh can be neces-
sary for successful planning of other assemblies. The longer
horizon lengths enable reasoning about the constraints that
are imposed by placing parts further into the future, and thus
a more robust method to plan. In addition to enabling more
complex construction sequences, a longer horizon length also
enables to optimize the resulting trajectories more.

Table III gives a summary of experiments over a range of
horizon lengths nmax. In the following, we will discuss some
of the results in more detail:
• Comparing RRT usage over horizon-length: The results

indicate that the necessity of using a robust motion plan-
ner becomes more important when dealing with longer
horizon lengths. This is intuitive, since optimization
can not solve the whole path planning problem even
if only one of the ‘sub-problems’ is infeasible. Hence,
the increased reliance on the RRT-planner from nh = 1
to nh = 4 is expected.

• Restarting compared over horizon length: While
roughly 80% of all problems for nh = 1 can be solved

3Percentage of optimization instances where a restart was necessary to
obtain a feasible solution in the optimization problem.
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(a) The assembly order
used in reality.

(b) Without optimization
function.

(c) Using ψneighbor. (d) Using ψstatics.

Fig. 4: Sequences arising from the different stability criteria (dark parts are placed first, light parts at the end) with horizon
length nh = 1.

TABLE III: Average time usage and restart rate for different
combinations of stability bounds ψ and maximum horizon
length nmax.

Time [h]
Restarts3

[%]
RRT
[%]

Logic &
PStab

PPose PSeq
PRRT &
PFull

Total
ψ nmax

statics
1 10.0 33.4 3.81 0.09 0.79 0.83 5.5
2 22.3 64.3 2.87 0.07 2.54 1.40 6.9
3 25.9 77.4 2.70 0.07 3.88 1.53 8.2

neigh-
bors

1 17.9 42.3 0.02 0.12 1.03 1.21 2.4
2 28.7 65.1 0.01 0.09 3.42 1.71 5.2
3 29.2 75.1 0.01 0.07 3.95 1.70 5.7
4 30.7 80.8 0.27 0.07 4.22 1.63 6.2
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n
h nmax = 2
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n
h

nmax = 3

0 50 100 150 200 250 300 350

# Elements
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4
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Fig. 5: Average (dashed) and exemplary (full) trajectories of
horizon length nh for various nmax through a full run.

without any restarts, the utility of the restarting scheme
becomes critical when dealing with larger nh.

• Comparison of the stability functions: The stability
function imposes the order of the parts (Fig. 4). This
is helpful for the feasibility of the following bounds
in the MBTS, which in turn leads to a decrease in
the necessary time for the sequence (PSeq) and motion
(PRRT & PFull) bounds. This comes with a stark trade-
off of necessary computation time. In sum, the total
computation times when using ψstatics are approximately
1.5 to 2 times longer.

• The switching scheme for the adaptive horizon is ag-
gressive in trying to get back to the maximum allowed
horizon length. It can be seen in Fig. 5 that a longer
horizon fails, and oscillatory behavior emerges between

the short and the longer horizon length. This can po-
tentially lead to wasted effort, which could be avoided
by using a more nuanced switching scheme.

VI. DISCUSSION

A. Limitations

The limitations that arise in our demonstration can be
grouped in two major areas: i) issues that prevent scaling
of this approach to other, larger problem instances:

• Decomposing the long-horizon problem into a problem
with multiple disjoint subgoals is not feasible for some
problems that are more reliant on previous decisions of
the TAMP problem. Similar to Model Predictive Control
(MPC), the limited horizon approach we introduce
here decreases the set of feasible solutions for future
decisions. The stability-bound helps mitigate, but does
not resolve possible challenges from this completely.

• Sampling-based approaches do not scale favourably
over multiple agents in the naive compound-
configuration-space formulation. Planning for multiple
agents is still feasible and performant enough for the
case of two agents, but scaling this approach as is to
parallel construction using multiple agents on the same
building is computationally inefficient.

and ii) caveats to the solutions that we introduced for the
increase in robustness of the LGP approach:

• Using sampling-based motion planners offers a solu-
tion to the problem that optimizers fail in cluttered
environments, but they come with their own set of
problems, namely not being able to declare a problem as
infeasible, and computing paths that might be feasible
when ignoring system-uncertainties, but are actually
infeasible.

• The introduced method of restarting the optimizer cur-
rently still suffers from a similar issue as the sampling-
based planner: in a non-linear optimization problem it
is, in general, not known if a solution can be found, or
if a different action sequence should be followed.
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B. Outlook

Solving the issues stated in Section VI-A would allow our
approach to be scaled more efficiently to multiple agents,
leading to more versatile construction processes. A more
intelligent scheme for the determination of the subgoals
should be an area of further research. The incorporation
of future costs in the TAMP framework similar to the
terminal set and the terminal cost in MPC might alleviate
issues that could arise when choosing the subgoals for the
decomposition improperly.

Neglecting the noise and dynamics arising in the real
world makes many of the planned trajectories suboptimal
or even infeasible in the real world. Incorporating measures
akin to the stability function for the controllability would
enable more realistic planning. Future work also targets in-
corporating a more structured sampling of the starting points,
and a (better) stopping criterion, which have previously been
investigated in optimization literature.

VII. CONCLUSION

We introduced a novel TAMP solver incorporating a lim-
ited horizon length and sampling-based planning methods in
combination with novel stability analysis to solve complex,
long-horizon TAMP problems in the construction domain
robustly. Our work can be seen as a first step towards
unifying assembly and construction planning, which in turn
can enable co-design, i.e., the design is iteratively analyzed
and improved in terms of geometric, kinematic, and static
feasibility of the whole construction process.

We combine optimization and sampling-based methods
to combine the strengths of both approaches. We show
that restarts of the optimizer makes our framework more
robust, and thus applicable to complex, long-horizon TAMP
problems.
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