2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Acquiring Mechanical Knowledge from 3D Point Clouds

Zijia Li, Kei Okada and Masayuki Inaba

Abstract— We consider the problem of acquiring mechanical
knowledge through visual cues to help robots use objects in
new situations. In this work, we propose a novel deep learning
approach that allows a robot to acquire mechanical knowledge
from 3D point clouds. This presents two main challenges. The
first challenge is that a robot needs to infer novel objects’
functions from its experience. Secondly, the robot should also
need to know how to manipulate these novel objects. To solve
these problems, we present a two-branch deep neural network.
The first branch detects function parts from the point clouds
while the second branch predicts offset poses. Fusing the results
from these two branches, our approach can not only detect what
functions the novel objects may have but also generate key
object states which can be used to guide a robot to manipulate
these objects. We show that even though most of the training
samples are synthetic data, our model still learns useful features
and outputs proper results. Finally, we evaluate our approach
on a real robot to run a series of tasks. The experimental
results show that our approach has the capability to transfer
mechanical knowledge in new situations.

[. INTRODUCTION

Through daily experiences and intuition, humans can
easily recognize various kinds of objects and their functions
at first glance. For example, a button is associated with the
action press and a door with handle implies that the handle
can be used to open the door. This kind of intuition is
known as affordance in the psychology field, developed by
Gibson [1]. The concept of affordance is widely implemented
in product and web design to improve user experience. In
terms of robots, this knowledge allows them to perform
manipulation tasks in unknown situations.

Since the idea presented by Gibson is abstract, modeling
object affordances in the real world becomes a difficult
problem. In robotics, many previous works treat affordance
as a property of an object [2], similar to color, shape, etc.
Furthermore, different parts of an object may have different
affordances [3, 4, 5, 6]. For example, a hammer’s handle
affords “grasping” and the hammerhead affords “striking”.
However, in neuroscience, Osiurak et al. [7] argue that the
term ‘“affordance” should be redefined in a more precise
way, otherwise it will become progressively useless and
eventually meaning everything and its opposite. According
to their definition, affordances are animal-relative, hand-
centered properties. For example, a cup affords push-ability,
grasp-ability or throw-ability, while actions such as pouring
liquid into a cup and using a cup to support an apple
are not driven by affordance, because these skills are tool-
centered and human acquires these skills by interacting with

Z. Li, K. Okada and M. Inaba are with Department of Mechano-

Infomatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-
8656, Japan; zijia@jsk.t.u-tokyo.ac. jp

978-1-7281-6211-9/20/$31.00 ©2020 IEEE

Experience

New Situation

Fig. 1.
situation.

An example of transferring mechanical knowledge to a new

environmental objects. The authors in [7] call these skills as
mechanical actions, and the relevant knowledge is called
mechanical knowledge.

The capability of acquiring mechanical knowledge from
the environment is necessary for robots to handle new
situations. For example, if a robot has the experience of
opening a kitchen drawer and putting things into the drawer,
the robot should also know how to use other drawers to store
things without further human demonstrations (Fig. 1).

We consider mechanical knowledge should contain infor-
mation about: (1) what function an object may have; (2)
which part of the object has this function; (3) how to use
the object to achieve this function. In this work, we present
a two-branch deep neural network for acquiring mechanical
knowledge from training data and adapting this knowledge
to novel scenarios. Our network takes 3D point clouds as
inputs, the outputs of the network are point labels and key
object states. The point labels contain information about what
functions the input point clouds have and where the functions
locate, while the object states are used to generate motion
trajectories for robotic manipulation.

In this paper, our primary contributions are as follows:

o We present a two-branch deep neural network for me-
chanical knowledge acquisition from object pair 3D
point clouds.

« We show that our network is able to learn useful features
even though most of the training samples are synthetic
data.

o We show how to use a pre-trained model to learn a new
task with a few demonstration data.

II. RELATED WORKS

The concept of affordance is considered as a key for
developing intelligent agents [8] because it reveals how
an animal may interact with the environment. In some
researches, affordance is viewed as a hint to reveal object

8065

functions [3, 4, 5, 6]. For example, a knife’s handle affords
“grasping” and the knife blade affords “cutting”. However,
Osiurak et al. [7] pointed out that the concept of affordance
is generating confusion due to different interpretations. They
formulated a more conservative definition of affordance and
proposed the concept of mechanical knowledge to describe
how tools and objects can be used together mechanically.
When interacting with new tools, humans can use mechanical
knowledge to infer a potential utilization by reasoning the
physical properties of the tool. Therefore, an intelligent agent
should also be able to use mechanical knowledge to detect
novel tools’ functions by recognizing their visual features
such as shapes and geometries.

Detecting objects’ visual features for robotic manipula-
tion has been studied for a long time and many insightful
approaches have been proposed. In robotic grasp detection,
Jiang et al. [10] used the support vector machine (SVM) to
learn hand-crafted features and applied the trained model to
detect grasping rectangles on 2D images. As deep learning
methods become popular in the past several years, authors
in [11, 12, 13] replaced the SVM with deep neural networks
to learn visual features for grasping rectangle detection. In
object function detection or affordance detection, Nguyen et
al. [9] presented a method to identify object affordances via a
deep convolutional neural network, their model successfully
identified object affordance at the pixel level. Similarly,
[5] and [6] improved the deep neural network structure
and reached a higher accuracy. Although these approaches
achieved success in detecting what functions the input image
contains and where these functions locate, the outputs of
these approaches do not tell a robot how to do.

On the contrary, deep reinforcement learning methods can
tell robots how to manipulate objects by outputting robotic
control signals such as joint angles. Levine et al. [14] used
a convolution neural network to learn visuomotor policies.
Their network takes RGB images as input and output motor
torques on a real robot, According to the results, their model
enables a real robot to finish some complex tasks such
as hanging a coat hanger on clothes rack, screwing a cap
onto a bottle, etc. Matas et al. [15] achieved the goal of
teaching a robot to manipulate deformable objects. They
employed domain randomization in a simulation environment
to train a deep learning agent and successfully transferred
the policy from simulation to the real world. However, deep
reinforcement learning methods can not explicitly provide
information about the objects’ functions because the learned
visual features are encoded in the network. Furthermore,
when implementing reinforcement learning methods, users
are difficult to know about the goal at the beginning, due
to the fact that deep reinforcement learning methods only
output one step in each time.

Beyond these methods, we propose a mechanical knowl-
edge acquisition network. Given object pair point cloud in-
puts, our network is able to output information of mechanical
knowledge, including what functions the point clouds have,
which parts contain these functions, and how to achieve these
functions.

III. ACQUIRING MECHANICAL KNOWLEDGE FROM 3D
PoINT CLOUDS

A. Problem Statement

Given an input 3D point cloud that contains an activated
object Oy, its associated object Oy, our network aims at
acquiring mechanical knowledge via visual features. The
network has two outputs, a classification output that predicts
every point’s function label; a regression output that consists
of multiply states (waypoints) {Ss,Sm1,...Sg} to form a
motion trajectory, where S; is the start state, S, is the goal
state and others are middle states, each state contains 6D pose
information. According to the detected function, a trajectory
may represent the states of either the activated object or
the associated object. For example, given a point cloud that
contains a plate (activated) and a cup, the desired function of
this object pair is “support” and the corresponding trajectory
represents the cup’s states. On the other hand, if a point
cloud contains a hammer (activated) and a walnut, the desired
function of this object pair is “pound” and the corresponding
trajectory represents the hammer’s states. On the contrary, if
the walnut is activated, we may want the network outputs
“no function” because a walnut can not smash a hammer.
Besides, the network also accepts one object as input, in this
case, the output function is always “grasp” and all the output
states are the same, which represent one potential grasp pose
of that object.

B. Two-Branch Network Architecture

Our deep neural network is built upon the deep learning
architecture described in [16, 17]. Specifically, two main
components allow our network to handle unordered point
data. The first one is the Set Abstraction module, which is
responsible for encoding hierarchical point set features. a
complete Set Abstraction module is composed of a sampling
layer, a grouping layer, and a PointNet layer. The sampling
layer is designed to gather a subset from an input point
cloud using the iterative farthest point sampling algorithm,
elements in the subset are considered as centroids of local
regions. The function of the grouping layer is to construct
local region sets by searching neighboring points around
the centroids. The PointNet layer then encodes these local
region patterns into feature vectors. The second component
is the feature propagation module, similar to the transposed
convolution layer in CNNs, this component can be seen as
a decoder network, and it achieves the feature propagation
function by interpolating feature values.

An overview of our network is shown in Fig. 2. The
network takes Nx(3+1) matrixes as input, where N is the
number of points in the input point cloud, each point has a
3-dimensional value (x, y, z) plus an extra activated channel.
The activated channel indicates whether a point belongs to
the activated object, we set this value to one for points
from the activated object, otherwise set to zero. The feature
encoding part consists of three set abstraction modules.
In the first set abstraction module, we set the number of
points in the sampling layer (npoint) to 512, the number of

8066

Set Abstraction Module [. Feature Propagation Module © Fully Connected Layer' Network Input/Output

Function Detection

Feature Encoding

|
reshape,

L

-

Offset Poses Prediction

n
_ 1

Key Object States

. Motion Trajector
Fusion) ¥

Fig. 2. An overview of our mechanical knowledge acquisition network.

neighboring points in the grouping layer (nsample) to 32 with
the radius of 0.02, and the neurons of multi-layer perceptron
(MLP) network inside the PointNet layer are set to 32, 32,
64 separately. The second set abstraction module has the
parameters (npoint = 256, radius = 0.05, nsample = 64, MLP
= [64, 64, 128]), and the parameters in the third one are set
to (npoint = None, radius = None, nsample = None, MLP =
[128, 256, 512]).

The function detection branch is composed of three feature
propagation modules, the MLP parameters that we use in
each layer are [128, 128], [128, 64], [64, 64, 64] separately.
After that is a 1D convolutional layer which has 128 neurons
and a dropout layer with the dropout rate of 0.5, the last layer
is another 1D convolutional layer which outputs a tensor with
the shape (2400, 5), where 2400 is the number of points and
5 is the number of classes (“no function”, “grasp”, “pour”,
“pound” and “support”). The second branch consists of three
fully connected layers to predict offset poses, the numbers
of neurons in these layers are [256, 128, 3x7], where 7
represents an offset pose (3 values for position and 4 values
for orientation in quaternion form), 3 is the number of poses.
We can use the following equation to recover the offset poses
to the original poses:

Poriginal (LU, Y,%2,47,qY, 4z, w) =

Poffset(m +Cz, Y + ¢y, 2+ 2,97, qY, 2, w)

B Ziv Point;(z,y, 2))
N

Where N is the number of points in the corresponding

point set, C(x,y, z) is the centroid of the point set. Using

the offset position instead of original position can be viewed
as a kind of normalization that helps the network learn better.

(D

C(x,y,2)

C. Fusing Network Outputs

The fusion module will not be trained because it is a logic
module. According to the function detection output, the fu-

sion module will decide which object should be manipulated
and recover the offset poses to generate a motion trajectory.
For example, the output function in Fig. 2 is “pounding”
because the hammer is activated, which means a robot can
use the hammer to pound the apple. Therefore the fusion
module assigns the start state on the hammer and the rest
states on the apple, notice that the position of the start state
is calculated by adding up the position of the first offset pose
and the centroid of the hammer’s function part (the blue part),
similarly, the second and third states are calculated by adding
up the rest offset poses and the centroid of the apple. When
there is only one activated object in the input point cloud,
the output function is “grasp”. The grasp pose is calculated
by adding up the first offset pose and the centroid of the
corresponding point set.

D. Network Training

During the training phase, we apply the sparse softmax
cross entropy to measure the classification loss, while the
regression loss is measured by the mean squared error,
the total loss is given by 0.9 * classification loss + 0.1 *
regression loss because the classification loss is much larger
than the regression loss. The training label for offset pose
is computed by subtracting the corresponding part centroids
from the state labels, and the training label for function
detection is a (1, 2400) tensor which indicates each point’s
class. The number of epochs is set to 200. In each epoch,
we randomly shuffle the training set then loop over all
the training data with the batch size of 32. We use Adam
optimizer with an initial learning rate of 0.001 and decay
exponentially by a factor of 0.7. It takes us about 5 hours
to train the network on an NVIDIA GTX 1080Ti GPU until
convergence.

E. Training Data Collection, Augmentation and Annotation

Since our goal is helping robots manipulate tools in real
scenes, the objects that we use to train our network ought to

8067

B
- R
N
X o e
\ 0 -
e
\ B :

;=T

B-0 <y >-% 4
-l >

[~/<, >

Fig. 3.
models.

A demonstration of how to generate training data from CAD

be commonly seen in daily life and manipulatable by general
robots. Utilizing the existing resources, we have found an
RGB-D object dataset [18] that provides RGB-D scans of
real objects. However, only several categories are suitable for
our experiments and the number of samples in each category
is small. To train a robust network, we need more categories
and samples.

Inspired by the work presented in [20], we introduced the
CAD models from the ModelNet40 dataset [19] to augment
the training dataset. Generally, most of the models that we
obtain from 3D depth sensors are partly occluded, but CAD
models from the ModelNet40 dataset are fully visible. If we
train the network using the fully visible models and test it
on the partially occluded models, the network’s performance
will become very poor. To solve this problem, we generated
partly occluded point clouds from fully visible point clouds
via different viewpoints, then used these partly occluded
point clouds to train our network. The concrete steps are
as follows:

1) Firstly, we sample 100000 points uniformly from a
CAD model’s mesh surface.

2) The sampled point cloud will then be scaled to real
object size and translated to zero-centered.

3) We assign labels to every point in the point cloud by
segmenting function parts of the object.

4) We put virtual cameras on various viewpoints to gen-
erate partly occluded point clouds from a fully visible
point cloud using the z-buffer algorithm [21] and the
OpenGL library. For every fully visible point cloud,
we generate 10 partly occluded point cloud samples.

A demonstration is shown in Fig. 3, notice that invisible
points are removed after step 4. On the other hand, samples
from the RGB-D object dataset are partly occluded point
clouds, these samples will not be processed, we also pick 10
samples from every instance.

In particular, the CAD models of bottles, bowls, cups and
some plates (which are mixed in the “bowl” class) are from
the ModelNet40, the scenes of plates and foods (lemon,
orange, peach, pear, potato, tomato) are from the RGB-
D object dataset. Besides, we also collect CAD models of
hammers from the internet. Some examples are shown in Fig.
4. The bottle, bowl and cup class in our training set contain
30 instances separately, the plate, hammer, and food class

£
L e

Fig. 4. Example of the objects in our training dataset. (a) objects from the
ModelNet40 dataset [19]. (b) objects from the RGB-D object dataset [18].
(c) objects that we collected from the Internet.

contain 15, 8 and 33 instances separately, the total number
of instances in our dataset is 146 and the number of samples
is 1,460. We then randomly pick three instances from each
category to build a validation set and keep the remains for
training.

Given these objects, we have five function classes: “no
function”, “grasp”, “pour”, “pound” and “support”. Each
time we randomly pick two samples from the correspond-
ing object classes to generate an object pair point cloud.
Specifically, the objects in the “grasp” class are bottles,
cups, hammers, and food samples. The object pairs in the
“pour” class are (bottle, cup), (bottle, bowl), and (cup,
bowl). The object pairs in the “pound” class are (hammer,
cup), (hammer, bottle), (hammer, bowl), and (hammer, food).
The object pairs in the “support” class are (plate, cup),
(plate, bottle), and (plate, food). The object pairs in the “no
function” class are (other objects, hammer), (other objects,
plate). Here the first object is the activated object and the
second object is the associated object. Notice that in the
“pour” class, only points in the mouth part of the activated
object and associated object have the “pour” label, and the
label of other points are set to “no function”. This means the
robot should focus on the mouth part of the two objects when
performing the pouring task. Similarly, we put the “pound”
label on the hammerhead and the whole associated object to
present that the robot can pound anywhere of the associated
object.

When processing state labels, we first sort out an object
category’s corresponding scenes, for example, the food class
may appear in the “pound”, “support” and “no function”
scenes, then we manually attach the corresponding states
separately for all food samples. Besides, state labels in the
“no function” class are set to zeros. Finally, we combine
these states when generating object pair point clouds. For
functions such as “pour”, we also consider whether the
other object locates on the left-hand side or right-hand side,
therefore we create “pouring from left” and “pouring from
right” states (see Fig. 5 (a)). Since there are countless valid
trajectories for each function, to get better performance, we

8068

(b)

Fig. 5. (a) A demonstration of how to generate state labels. (b) Example
of point clouds and labels in our training dataset. Top: The object in red
color is the activated object and the object in white color is the associated
object. Bottom: Blue points have the “pound” label, magenta points have
the “pour” label, sky blue points have the “support” label and green points
have the “no function” label.

keep the trajectory similar to each other in the same function
class.

In order to augment the dataset, when generating point
clouds, we randomly assign a translation factor between [-1,
1] and a scale factor between [0.8, 1.2] to each object to
change their positions and scales. To avoid overlapping, we
compute the distance between the centroid of two objects,
for a distance less than 0.2 (or 20cm), we will reassign the
translation factor. Finally, we resize the point clouds to the
size of 2,400 through uniform sampling (for point clouds
that have points less than 2,400, we pad them with zeros).
For each object pair mentioned above, we generate 500 point
clouds for training and 50 point clouds for validation (some
examples are shown in Fig. 5 (b)). The total number of point
clouds for training is 12,000 (2,000 for “grasp”, 1,500 for
“pour”, 2,000 for “pound”, 1,500 for “support” and 5,000 for
“no function”) and the number of point clouds for validation
is 1,200.

IV. EXPERIMENTS

Through our experiments, we seek to answer the following
questions: 1) Given the synthetic data, can our approach
effectively learn useful features? 2) How well does the
trained model adapt the knowledge to novel objects? 3)
How well does a robot run manipulation tasks following
the generated trajectories? To answer these questions, we
conduct a series of experiments on a TOYOTA’s HSR robot

Fig. 6. Objects used in our test set and robotic experiments.

[22].

A. Pouring, Pounding, and Placing

Based on our training data, we consider three different
tasks: pouring, pounding, and placing. During the evaluation,
we used the following metrics to define success for each
task: success if the robot grasps an activated object and the
mouth part of the activated object is put within the mouth
part of the associated object for the task pouring; success if
the robot grasps a hammer and uses the hammerhead to hit
the associated object for the task pounding; success if the
robot grasps the associated object and places it on the plate
for the task placing.

B. Test Data Collection

In order to evaluate the performance of our approach, we
prepared five bottles, five bowls, five cups, five plates, two
hammers, and three plastic food models, so the number of
test objects is 25 (see Fig. 6). We captured five samples for
every object through the HSR robot’s head-mounted RGB-D
camera, thus the number of samples is 25 * 5 = 125. During
the collection, we put the objects in different poses and
scanned them from different viewpoints to avoid repetition.
Similar to the training set creation process, we randomly
selected two samples from two object classes to generate a
test point cloud. Finally, we generated 400 point clouds for
the ’grasp’ class, 300 point clouds for the “pour” class, 400
point clouds for the “pound” class, 300 point clouds for the
“support” class, and 1,000 point clouds for the “no function”
class. Therefore, the size of our test set is 2,400.

C. Results

Table I shows the results of using different point cloud
types as training data. The fully visible point clouds were
generated by sampling points from the CAD models directly
then combine different samples to generate object pair point
clouds. The results clearly show that using the processed
partly occluded point clouds as training data significantly
improves the system performance.

In Table II, we apply the Mean Absolute Error (MAE) to
measure the error between the positions of predicted states
and the positions of ground truth states. Notice that we add
state labels to the test set in the same way as what we do to

8069

TABLE I
FUNCITON CLASSIFICATION ACCURACY WHEN USING DIFFERENT POINT
CLOUD TYPES AS TRAINING DATA

Fully Visible | Partly Occluded
Pour 84.38% 91.29%
Pound 49.22% 93.69%
Support 100.00% 100.00%
TABLE 11
COMPARE THE MEAN ABSOLUTE ERROR (CM) BETWEEN DIFFERENT
METHODS
Validation Set Test Set
Offset | Origin | Offset | Origin
Grasping 0.9 2.8 1.6 18.8
Pouring 1.5 33 2.9 324
Pounding 2.1 39 3.1 23.7
Placing 2 3.5 2.7 13.7

the training set, although the state labels are not unique, a
valid prediction should not deviate far from our annotation.
From the results, we can see that benefit from the data
normalization, using offset poses as training labels achieves
much higher accuracy than using original poses as training
labels on the test set.

D. Evaluation on Real Robot

We evaluate our system’s performance in real-world sce-
narios on the HSR robot platform. The robot has an RGB-
D camera on its head so that we can obtain point clouds
from the environment. To segment target points from the
background, a Mask-RCNN model [23] is trained to get the
target objects’ masks from RGB images, the corresponding
depth images are then used to unproject pixels within the
masks into 3D space to generate input point clouds, at the
same time, activation signals are assigned to corresponding
points. Remember that we assume the input point cloud
of our model has no more than two objects. When more
than two candidates are detected, the system will generate
different object pair combinations and send them to our
model one by one to get corresponding results. The predicted
function class is determined by the number of function points
in each class (function classes other than “no function”), the
function class with the largest number is the output function
class. If the number of function points is less than 100, the
object pair is considered no function.

According to the predicted function, the system will decide
which object is manipulatable. The manipulatable object
will then be separated from the point cloud and sent to

TABLE III
RESULTS ON ROBOTIC EXPERIMENTS

Our ICP Estimation
Pouring 93.33% 30.0%
Pounding 80.0% 6.7%
Placing 96.67% 83.67%

Fig. 7. (a) Examples of output motion trajectories for different tasks using
different approaches. Top: Our method. Bottom: The ICP estimation method.
(b) The HSR robot is following the trajectory to perform a pounding task.

the trained model again to predict a grasp pose. In our
case, the grasp pose is consistent with the tool frame of the
HSR robot’s end effector. The system will also calculate a
transformation between the grasp pose and the start state,
then apply the transformation on other states to get the
robot motion trajectory. In this paper, we assume that the
test objects are put in free space, therefore we adopt linear
interpolation to complete the whole motion trajectory. In
more complex situations, users can combine motion planning
approaches with state labels to avoid collisions.

During the evaluation, we ran 30 trials for each task. In
each trial, object pairs were randomly picked from the test
objects. To test how well our method learns the mechanical
knowledge, we compare its performance against the ICP esti-
mation method. The ICP estimation method is built upon the
ICP (iterative closest point) algorithm [24], which is widely
used for estimating the rigid registration of 3D point sets.
The implementation of the ICP estimation approach is stated
as follows: (1) Loop over all the relevant training samples
and apply the ICP algorithm to compute the transformation
as well as fitness score (sum of squared distances from the
source point cloud to the target point cloud) between the
input object point cloud and the training samples. (2) Find
out the sample with the lowest fitness score, then apply the
transformation to its corresponding state labels to generate a
motion trajectory for the task. Table III shows the comparison
results, we can see that our approach is much better than the
ICP estimation approach when dealing with novel objects.
The reason is that the ICP estimation approach requires a
training sample that has a similar shape and size with the test
object, while our approach can learn the visual and geometry
features from the point cloud. The output states (the green
and blue markers) of the two approaches are shown in Fig. 7
(a) and Fig. 7 (b) shows how to use the predicted trajectory to
guide our robot to perform a pounding task. Since the robot
motion trajectory is calculated based on the transformation
between the grasp pose and the start state, the difference

8070

Fig. 8. Left: When there are multiple candidates, our system will predict
multiple trajectories and randomly select one trajectory to execute. Right:
One of the cups is turned upside-down. Our system detects this cup does
not have the pour function in this state. Green points are function points
and white points are no function points.

between the real grasp pose and the predicted grasp pose may
cause failures. Take the pounding task as an example, during
grasping, the hammer’s orientation may be changed due to
the predicted grasp pose is imperfectly aligned with the
hammer’s current direction. A large change may lead to the
real motion trajectory deviate from the excepted trajectory
and cause failures.

Beyond the aforementioned robotic experiments, we also
conducted a more complex experiment to verify whether our
model learns useful geometry patterns. In this experiment,
we first put two different cups and a bottle on the desk to
detect the pour function, then we turned one of the cups
upside-down and executed the program again to observe the
outputs. The experimental results are shown in Fig.8. In this
figure, function points are colored in green for visualization.
From the figure in the bottom right corner, we can see that
points of the upside-down cup are labeled with “no function”,
which means our model successfully connects the mouth
shape pattern to the function “pour”. We also tried other
cups within the test objects, finally, we got 9 successes in
10 trials.

E. Learning Mechanical Knowledge on New Task

Finally, we implemented our model on a new scenario
using a few training data to estimate the scalability of
our approach. Specifically, we collected 14 kitchen drawer
point clouds (7 samples for closed state and 7 samples for
opened state) and 15 banana case point clouds from different
viewpoints (Fig. 9 (a)). Then we manually labeled function
points and attached the state labels to every scene (grasping
the kitchen drawer handle, grasping the banana case, and
putting the banana case into the opened state kitchen drawer).
Following the aforementioned training process, we generated
50 samples for each scene and used these training data to
fine-tune our pre-trained model.

In the test scenario, we prepared some drawers placed
in the stair structure, the shape and location of the drawer
handle are different from the training object. We also put
an eyeglass case on the floor. In this task, the robot is

Fig. 9. (a) Top: Training objects for the new task. Bottom: Training data
for the new task. Red points have the “grasp” label, white points have the
“no function” label and yellow points have the “contain” label. The marker
in the first two columns represents a grasping pose and markers in the last
column represent object states. (b) The HSR robot is performing a new task
by leveraging mechanical knowledge.

required to open a drawer, pick up the eyeglass case, put
it into the drawer, and finally close the drawer. To finish this
task, our network needs to predict three key actions: grasping
the drawer handle to open the drawer; grasping the eyeglass
case in random orientation; placing the eyeglass case into the
drawer. We also trained a Mask-RCNN to detect the banana
case and the drawer (closed state) to obtain the corresponding
point cloud. The task starts with detecting grasping pose on
a drawer’s handle, if the robot successfully opened a drawer,
the robot has to go back to the starting point because it
only has a single arm. At the same time, the system will
record the handle as well as the drawer’s location. Given
the drawer’s point cloud and the robot’s moving distance,
the system computes a 3D bounding box and use this 3D
bounding box to crop the points of the opened drawer. After
that, the system puts the opened drawer points and eyeglass
case points together to get an input point cloud. This input
point cloud is then passed to our model to get a trajectory.
Finally, the robot grasps the eyeglass case, puts it into the
drawer following this trajectory, and closes the drawer. An
example of the task is shown in Fig. 9 (b). We have run
10 trials and got 8 successes. It shows that our network
has the ability to learn mechanical knowledge from a few

8071

demonstration data and transfer this knowledge to a novel
situation.

V. CONCLUSION

In this paper, we introduced a novel approach for acquiring
mechanical knowledge from 3D point clouds. Different from
the previous approaches, our approaches can not only detect
object functions and their location but also predict trajecto-
ries to guide a robot to perform tasks. Since the available
3D data is lacking, we used the generated partially occluded
point clouds to train our deep neural network and tested
the trained model on real-world scenes. Experimental results
showed that given most of the training data are synthetic
data, our model still learned useful features and generated
valid motion trajectories. Furthermore, we implemented our
system on the HSR robot. Following the predicted trajectory,
the robot performed various manipulation tasks at a high
success rate. Finally, we conducted a new experiment and
the experimental results showed that our approach has the
capability of acquiring mechanical knowledge from a few
demonstration data and adapting the knowledge to a new
situation.

REFERENCES

[1] J. J. Gibson, The Ecological Approach to Visual Perception. classic
edition. Psychology Press, 2014.

[2] T. Hermans, J. M. Rehg and A. Bobick, “Affordance prediction
via learned object attributes,” in IEEE International Conference on
Robotics and Automation (ICRA): Workshop on Semantic Perception,
Mapping, and Exploration, 2011, pp. 181-184.

[3]1 A. Myers, C. L. Teo, C. Fermuller and Y. Aloimonos, “Affordance
detection of tool parts from geometric features,” in 2015 [EEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 1374-1381.

[4] A. Nguyen, D. Kanoulas, Darwin G. Caldwell and Nikos G.
Tsagarakis, “Object-based affordances detection with Convolutional
Neural Networks and dense Conditional Random Fields,” in IEEE
International Conference on Intelligent Robots and Systems (IROS),
2017. pp. 5908-5915.

[5] T.-T. Do, A. Nguyen, I. Reid, D. G. Caldwell and N. G. Tsagarakis,
“Affordancenet: An end-to-end deep learning approach for object
affordance detection,” arXiv preprint arXiv:1709.07326, 2017.

[6] K Chaudhary, K Okada, M Inaba and X Chen, “Predicting Part
Affordances of Objects Using TwoStream Fully Convolutional Net-
work with Multimodal Inputs,” in IEEE International Conference on
Intelligent Robots and Systems (IROS), 2018.

[7]1 F. Osiurak, Y. Rossetti and A. Badets, “What is an affordance? 40
years later,” in Neuroscience & Biobehavioral Reviews, pp. 403-417,
2017.

[8] N. Yamanobe, W. Wan, I G. Ramirez-Alpizar, D. Petit, T. Tsuji, S.
Akizuki, M. Hashimoto, K. Nagata and K. Harada, “A brief review
of affordance in robotic manipulation research,” in Advance Robotics,
pp. 1086-1101, 2017.

[9] A. Nguyen, D. Kanoulas, D. G. Caldwell and N. G. Tsagarakis,

“Detecting object affordances with convolutional neural networks,”

in IEEE International Conference on Intelligent Robots and Systems

(IROS), Oct 2016, pp. 2765-2770.

Y. Jiang, S. Moseson and A. Saxena, “Efficient grasping from rgbd

images: Learning using a new rectangle representation,” in /EEE

International Conference on Robotics and Automation (ICRA). 1EEE,

pp. 3304-3311, 2011.

I. Lenz, H.Lee and A. Saxena, “Deep learning for detecting robotic

grasps,” in Proceedings of Robotics: Science and Systems, Berlin,

Germany, June 2013.

J. Redmon, and A. Angelova, “Real-time grasp detection using con-

volutional neural networks,” in IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 1316-1322, 2015.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

8072

S. Kumra and C. Kanan, “Robotic Grasp Detection using Deep
Convolutional Neural Networks” in Intelligent Robots and Systems
(IROS). IEEE, pp. 769-776, 2017.

S. Levine, C. Finn, T. Darrell and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” in Journal of Machine Learning Research
(JMLR), 2016.

J. Matas, S. James and A. J. Davison, “Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation,” in Conference on
Robot Learning (CoRL), 2018.

C.R. Qi, L. Yi, H. Su and L. J. Guibas, “PointNet++: Deep Hierarchi-
cal Feature Learning on Point Sets in a Metric Space,” arXiv preprint
arXiv:1706.02413, 2017.

C. R. Qi, H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” ArXiv preprint
arXiv:1612.00593, 2016.

K. Lai, L. Bo, X. Ren and D. Fox, “A Large-Scale Hierarchical Multi-
View RGB-D Object Dataset,” in IEEE International Conference on
Robotics and Automation (ICRA), 2011.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J.
Xiao, “3d shapenets: A deep representation for volumetric shapes,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19121920, 2015.

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani. C. Anil,
T. To, E. Cameracci S. Boochoon and S. Birchfield, “Training Deep
Networks with Synthetic Data: Bridging the Reality Gap by Domain
Randomization” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

E. Catmull, “A Subdivision Algorithm for Computer Display of
Curved Surfaces,” PhD Thesis, Dept of Computer Science, University
of Utah, Salt Lake City, Utah, U.S.A., 1974.

T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara and K.
Murase, “Development of Human Support Robot as the research
platform of a domestic mobile manipulator,” in ROBOMECH Journal,
2019.

K. He, G. Gkioxari, P. Dollar and R. Girshick, “Mask R-CNN,” in
IEEE International Conference on Computer Vision (ICCV), Oct 2017.
P.J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 1992.

