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Abstract— The development of modern sensitive lightweight
robots allows the use of robot arms in numerous new scenarios.
Especially in applications where interaction between the robot
and an object is desired, e.g. in assembly, conventional purely
position-controlled robots fail. Former research has focused,
among others, on control methods that center on robot-
environment interaction. However, these methods often consider
only separate scenarios, as for example a pure force control
scenario. The present paper aims to address this drawback and
proposes a control framework for robot-environment interac-
tion that allows a wide range of possible interaction types. At
the same time, the approach can be used for setpoint generation
of position-controlled robot arms, where no interaction takes
place. Thus, switching between different controller types for
specific interaction kinds is not necessary. This versatility is
achieved by a model predictive control-based framework which
allows trajectory following control of joint or end-effector
position as well as of forces for compliant or rigid robot-
environment interactions. For this purpose, the robot motion
is predicted by an approximated dynamic model and the force
behavior by an interaction model. The characteristics of the
approach are discussed on the basis of two scenarios on a
lightweight robot.

I. INTRODUCTION

Industrial robots have been automating processes in in-
dustry for many years. However, the robots mainly act
in a position-controlled manner, so that a physical robot-
environment interaction is not the primary focus. This is now
being changed by the use of modern sensitive lightweight
robots. Already the construction of these robots is designed
for a possible interaction, e.g. with humans. The lightweight
construction of the robots reduces, for example, the energy
transferred during collisions. In addition, special control
techniques have been developed to provide compliance in
case of interaction [1]. Furthermore, sensitive manipulation
is possible by means of force control methods [2]. These
methods have already been known since the 1980s, see
e.g. early works on hybrid position/force control [3] and
impedance control [4].

A more recent field for dealing with this requirement is
the use of model predictive control (MPC). This method
is supposed to explicitly comply with force constraints or
to enforce a defined behavior in case of contact loss. In
[5], an approach for model predictive admittance control is
presented, which allows an explicit consideration of force
constraints. In this context, the use of MPC for interaction
control is discussed in general. The work of [6] combines
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compliance control with model predictive path-following
control by considering an additional admittance dynamic.
A similar approach is followed by the work of [7], which
combines model predictive path-following control with force
control. The author of [8] transforms occurring contact forces
into an evasive velocity for a model predictive pose trajectory
control. Similar to admittance control, this leads to a new
trajectory, which differs from the original desired trajectory,
but minimizes contact forces. In [9], the interaction force
is introduced as a separate state of the prediction model to
realize a parallel position/force control. The previous work
of the authors [10] catches up the idea of formulating the
force as a state variable and presents a universal framework
based on MPC for interactions with elastic environments.

For the prediction of the interaction forces in the internal
optimization problem, a spring model which considers the
environmental stiffness is often assumed. To this end, the
stiffness of the environment must be estimated either before
an interaction in an offline procedure or during the interaction
with an online method. Three different methods for stiffness
estimation are discussed, for example, in [11] in the context
of classical impedance and force control.

This paper presents an approach for model predictive
control of robot-environment interaction, which is able to
handle interaction with both elastic and rigid environmental
behaviors. If only the environmental stiffness is considered
in the prediction model, a limitation of compliant robot-
environment interaction is required. This is because in a
rigid interaction, the stiffness of the environment becomes
infinite, which leads to numerical instabilities. The presented
approach addresses this by explicitly considering the stiffness
of the underlying position controller.

The MPC acts as a setpoint generator for the robot internal
position control. The dynamics of this underlying control
is therefore also considered in the joint space in order to
apply the approach for position-controlled robots. Due to the
position control, the robot behavior can be approximated as
a linear spring-damper system. Furthermore, an interaction
dynamic is taken into account in the MPC framework.
Since the behavior of the environment is described by a
spring model, the interaction between robot and environment
can be regarded mathematically as a parallel connection of
position controller and environmental stiffness [12]. This
has the consequence that the lower stiffness dominates the
interaction model. Thus, an ideal rigid contact results in an
interaction stiffness equal to the controller stiffness of the
internal position controller. The advantage of this approach
is a universal usability for lightweight robots. At the same
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time, the MPC can be used to achieve a desired impedance
behavior, even though this may be a compliant or rigid
behavior. Furthermore, the approach can be extended to a
position and force trajectory tracking control. This leads to
a powerful framework for the control of robot-environment
interactions, since in addition kinematic and force constraints
can be explicitly considered by the MPC. The properties
of the proposed methods are discussed on the basis of two
control scenarios with a 7-DOF lightweight robot.

II. MODELING

In this section the model of robot-environment interaction
is discussed. First, the controlled robot system is derived and
then the interaction is addressed.

A. Robot System

The dynamic model of a robot arm with n joints

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ J − τ ext, (1)

describes the relationship between the resulting motion of the
generalized coordinates q ∈ Rn and their time derivatives
due to the applied generalized forces τ J ∈ Rn. The external
torques τ ext ∈ Rn are the result of an external force on
the robot structure. In the case of an external force at the
end-effector, the external torques τ ext = J(q)TF ext are
obtained from the (6×1) wrench vector F ext = [F T

ext,m
T
ext]

T,
composed by the forces and torques at the end-effector, using
the transposed end-effector Jacobian J(q).

An underlying position control realizes the stabilization
of a desired position qd for which the corresponding joint
torques τ J = u are calculated. For this purpose, the non-
linear system (1) is first transferred to a linear decoupled
system using the approach of exact linearization

u = M(q)y + n(q, q̇) (2)

via state feedback [13]. The nonlinear term n(q, q̇) =
C(q, q̇)q̇ + g(q) and the mass matrix M(q) are feedfor-
warded to compensate for them exactly. The resulting new
input y can be chosen as a linear and decoupled PD control

y = q̈ = KP(qd − q)−Dq̇ (3)

to shape the dynamics of the controlled system according to

q̈ = KP(qd − q)−Dq̇ − J(q)TF ext . (4)

The (n×n) gain matrices are selected as diagonal matrices,
e.g. KP = diag([kP,1, . . . , kP,n]), with the gain factors of
the individual joint variables. Instead of (2), the PD control
with gravitational compensation

u = τ J = KP(qd − q)−Dq̇ + g(q) (5)

is a popular control method in robotics due to its simplicity,
but also due to the fact that it provides asymptotic stability
[13]. The closed loop of the PD controlled robot

M(q)q̈+C(q, q̇)q̇ = KP(qd−q)−Dq̇−J(q)TF ext (6)

is obtained by substituting (5) in (1). During interaction,
typically only low velocities are realized. Therefore, dynamic

effects such as inertia, Coriolis and centripetal effects can be
neglected (M(q)q̈ ≈ C(q, q̇)q̇ ≈ 0). Such an approxima-
tion may also be applied to the inverse dynamics approach
(4), where q̈ ≈ 0 is assumed. This simplifies the dynamics
of the controlled robot in both cases to a first-order system

q̇ = D−1KP(qd − q)−D−1J(q)TF ext . (7)

The model describes the controlled robot system during free
motion (F ext = 0) as well as under the influence of external
forces (F ext 6= 0) during an interaction. On this basis, the
contact situation is modelled subsequently.

B. Robot-Environment Interaction

In principle, two basic types of contact can be distin-
guished in an interaction situation between robot and en-
vironment. On the one hand, the interaction with a rigid
body causes a constraint on the permitted robot motion.
The second case involves dynamic interaction with a body.
Fundamental mechanical effects such as inertia, dissipation,
or elasticity thereby describe the interaction dynamics. The
presented approach should be able to handle both cases of
interaction. For this purpose, the interaction model in the
case of a purely linear elastic interaction is derived first. It is
assumed that no dissipative and inertial effects occur in the
direction of the interaction motion. In addition, a purely rigid
robot system is supposed by localizing all intrinsic passive
robot compliance in the environment. Thus the interaction
can be described according to a mechanical spring [12], [14]

oF env = oKedpo,e , (8)

where the penetration dpo,e = p − po results from the
displacement of the end-effector frame Σe with respect to
the task frame Σo located on the object surface. Note that
the force oF env is referred to the task frame Σo. In addition,
the pose vector

p(q) = [t(q)T,φ(q)T]T = bT e(q) (9)

composes the end-effector position t and the orientation,
denoted by the Euler angles φ, which is calculated by
the coordinate transformation of the joint position to the
Cartesian base frame Σb. For the sake of clarity, no super-
script indices are added for quantities defined in the base
coordinate system and the location and rotation of the frames
in the base frame is determined by the respective pose. The
elastic wrench F env depends, as pictured in Figure 1, on the
penetration of the robot end-effector into the object. Thereby,
the resistance to penetration is defined by the (6× 6) sym-
metric positive (semi)-definite stiffness matrix oKe. Under
the neglection of the coupling stiffness between translational
and rotational stiffness, the environmental stiffness oKe =
diag(oK trans,

oK tors) is composed by the (3×3) translational
and rotational stiffness matrices oK trans and oKrot [14]. Due
to the location of the task frame Σo on the object surface,
the stiffness matrix oKe can be selected according to the
restricted directions. In the example of Figure 2, only the
normal of the surface is motion constrained. Therefore the
stiffness matrix has only entries for the respective direction.
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Fig. 1. PD-controlled robot in inter-
action with an environment.

Σo B

Σd

Σe

dpo,d

dpo,e

dpe,d

Σb

Fig. 2. Frames in robot-environment
interaction.

In contrast, the PD-controlled robot reacts according to the
approximated spring-damper system (7). The stiffness of this
system is defined by the joint space controller stiffness KP.
The force of the controller acting in the static case

F ctr = KP, cartdpe,d (10)

results from the weighted error of desired and current end-
effector position. Note that the (6 × 6) Cartesian controller
stiffness matrix results from the locally valid transformation

KP, cart = (J(q)T)#KP(J(q))# (11)

of the joint space stiffness matrix to the Cartesian space with
the matrix pseudo inverse (·)# [15] [16].

If the equality dpo,e = dpo,d − dpe,d and F ctr = F env
[17] according to Figure 1 and 2 is considered, the resulting
external wrench on the end-effector is the equivalent spring

oF ext = (oKe + KP, cart)
−1 oKe KP, cartdpo,d

=
o
K̄dpo,d . (12)

The overall stiffness o
K̄ thus results mathematically from

the parallel connection of the individual stiffnesses [12]. In
order to express the force in the base frame, the wrench
oF ext in the object frame has to be rotated using the rotation
matrix bRo = Rb

TRo. This results in the elastic wrench in
the base frame

F ext =

[
bRo

T 0

0 bRo
T

]
o
K̄dpo,d = K̄dpo,d . (13)

The aim of the presented approach is to handle the force as a
state variable in the MPC. To this end, the dynamic behavior
of the force has to be considered for the assumption of a
constant task frame on the object surface. Thus, the time
derivative of the force is determined according to

Ḟ ext = K̄J(q)q̇d . (14)

The authors are aware that (14) only holds locally. This is
due to the position dependency of KP, cart and K̄ from (11).
However, this can be neglected in the MPC sense if the
prediction horizon is sufficiently small and the velocity in
the direction of interaction is assumed to be low. Basically,
the model (14) shows how the forces increase or decrease in
the individual Cartesian directions during a particular desired
motion ṗd = J(q)q̇d. Note, that the Cartesian pose motion

ṗ(q, q̇) = [v(q, q̇)T,ω(q, q̇)T]T = J(q)q̇ , (15)

described by the translational and the angular velocities of
the end-effector v(q, q̇) and ω(q, q̇), is determined by the
product of the Jacobian J(q) and the joint velocity q̇.

However, the equations (8), (12), and (14) only hold in the
case of a contact. Therefore, it is necessary to distinguish
between free motion and contact. One possibility is the
evaluation of the end-effector forces by a threshold value

oKe,i(t)

{
= 0 if oF ext,i < εi or omext,i < εi

> 0 else .
(16)

If this threshold εi is exceeded in a certain Cartesian direction
i, the end-effector is in contact in this direction. Another
possibility is to create a model with geometry and mechanical
features of the environment using, for example, camera
data or information from previous contact situations. This
information is generally used to model the object surface and
the stiffness oKe. In this case, oKe is selected in dependence
on the environment model

oKe,i(t)

{
> 0 if opi ∈ B
= 0 else ,

(17)

whereby it is analyzed whether the end-effector has pene-
trated the object B. From this point on, the respective object
stiffness is assigned to the prediction model. Due to the
model predictive character of the presented approach, this
can be used to react prior to contact. Thus, the motion can
already be slowed down when predicting the contact in order
to reduce occurring force peaks.

However, there remains the question of how to handle a
rigid contact with the approach. It can be seen from (12) that
due to the parallel connection of the stiffnesses, the total
stiffness K̄ is always smaller than the smallest stiffness.
For the case of oKe,i → ∞, the overall stiffness o

K̄i =
oKP,cart,i thus results in the Cartesian controller stiffness.
Thus, the interaction stiffness is of a convenient order of
magnitude. The simultaneous consideration of controller and
environmental stiffness yields a numerically more stable
formulation of the interaction model.

III. MODEL PREDICTIVE CONTROL FORMULATION

Model predictive control is based on the iterative (subop-
timal) solution of a dynamic optimization problem

min
u

J(u;xk) = V (x(T )) +

∫ T

0

l(x(τ),u(τ)) dτ (18a)

s.t. ẋ(τ) = f(x(τ),u(τ)) , x(0) = xk (18b)
x(τ) ∈ X , u(τ) ∈ U (18c)

over a moving horizon τ ∈ [0, T ] with length T . The
characteristic of MPC is that the optimization problem is
initialized with the current measured or estimated value xk

of the state variables in each sampling step and the initial
solution of the control variable is taken from the optimization
of the last time step. Subsequently, the first part of the
optimal solution is applied to the controlled system up to
the next time step.
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Fig. 3. System layout of the model predictive interaction control for
generalized robot-environment interaction.

The entire system of the model predictive interaction
control is schematically shown in Figure 3. The MPC, which
is solved with the GRAMPC toolbox [18], considers the
dynamics of the controlled robot and the interaction, marked
with dashed boxes. The degree of freedom in the choice
of cost functions and reference values is problem-specific
and varies according to the application. In the following, the
individual parts of the problem (18) are introduced.

A. System Dynamics

The robot-environment interaction can be described by the
set of states x =

[
q qd F ext p

]T
. The dynamics of

the robots joint position in free motion as well as during
interaction is directly derived from (7). The desired joint
position qd actuates the robot system dynamics (7). As
pictured in Figure 3, this is forwarded to the robot system
as control variable. However, to avoid steps in the control
trajectory, the first derivative of the desired position u = q̇d
is internally handled as MPC control variable. Since the
external force is considered as a state variable, its dynamics
must also be considered in the optimization problem. This is
done via equation (14) and the conditions (16) or (17). For
reasons of computational efficiency, the end-effector pose is
also chosen as a state, whereby its dynamics can be described
using (15). This leads to the overall nonlinear dynamics (18b)
during a contact situation according to

q̇
q̇d
Ḟ ext
ṗ

 =


D−1KP(qd − q)−D−1J(q)TF ext

u
K̄J(q)u
J(q)q̇

 . (19)

The initial state value x(0) = xk is thereby initialized by
the measurements of the respective state in step k.

B. Cost Function Design

The control target of MPC is defined in the cost function
(18a). With the presented method, an offline calculated
trajectory xdes(t) of the state variable has to be stabilized op-
timally. By penalizing the deviation from a desired trajectory,
the optimization problem tries to minimize these deviations.

Therefore, the cost function (18a) may be based for example
solely on the integral cost term

l(x,u) = lpos(q) + lpose(p) + lforce(F ext) + lctr(u) . (20)

The problem of trajectory tracking can be handled by penal-
izing the deviation of a quantity x̃(τ) = x(τ)−xdes(τ) , τ ∈
[0, T ] to the desired trajectory xdes(t) by using the weighted
norm ‖x̃‖2A = 1

2 x̃
TAx̃ with the positive (semi)-definite

weighting matrix A. Note that the choice of the individual
penalty terms depends on the respective application and can
also be set to zero. Some example applications are presented
in Section IV and in the previous work of the authors [10].

C. System Constraints

In addition, the MPC scheme allows to consider con-
straints (18c) systematically. In the case of interaction con-
trol, system-related constraints, such as limited joint position

q ∈ [q−, q+] , (21a)

as well as task-related constraints, such as a limited
workspace or limited interaction forces

p ∈ [p−,p+] (22a)

F ext ∈ [F−
ext,F+

ext] (22b)

can be taken into account. The potential constraints are not
limited to box constraints of the state variables as shown.

IV. EXPERIMENTAL VALIDATION

The presented approach is validated in two scenarios
with a 7-DOF Franka Emika Panda robot. The external
wrench at the end-effector is estimated using the build-in
joint torques measurements with a generalized momentum
observer [19]. Alternatively, the force can also be measured
using a force/torque sensor on the end-effector. However,
the approach is not limited to measured states. Estimated
quantities can also be used, e.g. following the approach of
[20] or [21].

In the first scenario, a pure force trajectory is applied to
materials with different stiffness up to a rigid contact. The
second scenario pairs the force control for a rigid contact
with a motion control in the complementary directions. For
this purpose, the robot arm is drawing a curve on a plane with
chalk. The orientation of the object surface is set horizontally
so that the orientation of the object frame and base frame is
identical. Thus, no rotation of the wrench (12) is necessary.

The sampling time of the MPC is set to 10 ms and
the underlying PD control with gravitational compensation
according to (5) is running with a sampling time of 1 ms.

A. Comparing Different Stiffness

First, the approach is demonstrated for the interaction with
different object stiffness. For this purpose, an interaction
setup as schematically shown in Figure 3 is assumed. The
robot shall apply a defined force of −2 N in z-direction to
different objects. On the one hand, a foam with a stiffness
of oke,z = 500 N m−1 and, on the other hand, the rigid table
surface is chosen for the interaction. The object stiffness
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Fig. 4. Comparison of force trajectories in different interactions.

was calculated offline before interaction. However, an online
stiffness estimation as presented in [10] is also possible.

Figure 4 shows the force trajectory for three different
cases. The first plot shows the trajectory for the elastic
interaction. Due to the low object stiffness, the overall stiff-
ness K̄ is significantly reduced compared to the transformed
controller stiffness KP, cart. This allows the robot to react fast
enough to the contact that occurs at approximately 0.5 s. The
desired reference value is thus reached after an additional
time of 0.6 s without overshoot.

The second plot of Figure 4 shows the rigid interaction
with the table surface. Due to the object stiffness tending
towards infinity, the total stiffness K̄ is equal to the trans-
formed controller stiffness KP, cart. As with the elastic inter-
action, contact occurs shortly before 0.5 s and the setpoint is
reached after another 0.6 s. Theoretically, the object stiffness
has to be defined as infinitely high. In practice, especially
when using lightweight robots, the stiffness of the joints
with approximately 104 N rad−1 will become noticeable. By
assuming a concentration of robot intrinsic stiffness in the
environment, the joint stiffness is dominating the object
stiffness. This means that the joint stiffness can be used to
specify the object stiffness in the rigid case.

The last plot of Figure 4 shows the behavior of the control
in case of a wrong assumption of the object stiffness oKe.
Again, the robot is interacting with the rigid table surface, but
assumes a compliant object stiffness of oke,z = 500 N m−1.
Thus, a significant overshoot can be seen in the transient
zone, since the controller expects a weaker increase of the
forces. In the Cartesian case, this would mean that the
controller initially places the target position of the underlying
PD controller further into the object.

However, the previous tests only considered a constant
setpoint. As the presented methodology also allows time-
variant setpoints, a force trajectory following control is
examined in the following for a soft contact interaction. The
target trajectory is chosen to

Fext, z, des(t) = 5N sin(πt+ 0.1)− 7N . (23)

0 2 4 6 8

4

0

−4

−8

−12

time [s]

F
ex

t,
z

[N
]

desired
measured

Fig. 5. Oscillating force trajectory applied on a compliant surface.

In addition, the absolute force in z-direction is constrained to
a maximum of 8 N. The Figure 5 shows a continuous interac-
tion with an oscillating force trajectory from the beginning.
The constraint at −8 N is continuously satisfied during the
subsequent trajectory course. In case of a setpoint within the
permissible range, the trajectory is followed sufficiently well.

B. Writing with Chalk

The second application aims to demonstrate the applica-
bility of the methodology as hybrid force/motion control
for rigid contact. For this purpose, the robot has to draw
a path on a blackboard with a piece of chalk. The degrees
of freedom of the end-effector are divided for this purpose
into position and force controlled subspaces. In the following
example, the x-direction is supposed to be stabilized to a
constant value of 5 N, while the y- and z-direction shall
follow a trajectory according to a Lissajous figure

tx,des(t) = 0.1 sin(0.15 · 2πt) (24a)
ty,des(t) = 0.1 sin(0.075 · 2πt) + 0.9 , (24b)

whereby the orientation is kept to a constant value. The
constraints (21a) are considered in the optimization problem.

The path followed by the end-effector is shown in Figure 6
for two Lissajous repetitions, whereas the corresponding
trajectories are given in Figure 7. The motion starts with
an initial offset from the desired trajectory that is corrected
immediately. When considering the MPC parameters in
Table I, it is noticeable that especially the deviation to the
desired trajectory is highly weighted in order to achieve a
good trajectory tracking. In contrast, the deviation of the
force to the reference value is less penalized, which results
in a worse force tracking accuracy. It can be seen that the
maximum values in the periodic force trajectory correlate

TABLE I
MPC PARAMETERS FOR THE HYBRID FORCE/MOTION CONTROL.

prediction horizon T 0.3 s
sampling points Nhor 30
max. gradient iterations igrad 4
max. multiplier iterations imult 1
position weights Qp diag([0, 104, 104, 10, 10, 10])
interaction force weights QF diag([0.5, 0, 0, 0, 0, 0])
control weights R diag([0.1, . . . , 0.1])
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Fig. 6. Path of the end-effector while writing with chalk.

with the writing direction. If the chalk is rather pushed, larger
forces result. On the other hand, the forces decrease as soon
as the chalk is pulled. However, if Figure 7 is considered with
the background of a moving interaction under the influence
of friction, the force trajectory still represents a good com-
promise. The experiments have revealed that with a higher
weighting of the force deviation, the force tracking becomes
significantly better. However, the quality of the end-effector
trajectory deteriorates as a result. In addition, a reduction
of the end-effector trajectory velocity also improves force
tracking noticeably.

The controllers are computed for both scenarios on a
Ubuntu 18.04 OS with Intel(R) Core(TM) i5-8250U CPU.
With the MPC parameters from Table I, an average com-
puting time of 3.0 ms and a worst case computing time of
4 ms is achieved. Thus, the computing time is well within
the 10 ms MPC sampling time.

V. CONCLUSIONS

This contribution presents an MPC-based approach to con-
trol the robot-environment interaction. The handling of the
problem using MPC results in a flexible and comprehensive
framework for various application scenarios where interac-
tion with an environment is desired including interactions
with a rigid environment. The results of the experimental
validation show that even small forces can be realized with
a good control quality during an end-effector motion. This
allows to use the approach for sequential manipulation tasks
such as the classical peg-in-hole problem to avoid switching
between different controller types. Further work will focus
on the topic of environment modeling based on camera and
tactile data. This improves the approach by predicting the
contact before interaction. Further downloadable material
for this article is available at http://ieeexplore.ieee.org. The
material includes a video that illustrates the writing with
chalk scenario.
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