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Abstract— Point-clouds are a popular choice for robotics and
computer vision tasks due to their accurate shape description
and direct acquisition from range-scanners. This demands the
ability to synthesize and reconstruct high-quality point-clouds.
Current deep generative models for 3D data generally work on
simplified representations (e.g., voxelized objects) and cannot
deal with the inherent redundancy and irregularity in point-
clouds. A few recent efforts on 3D point-cloud generation offer
limited resolution and their complexity grows with the increase
in output resolution. In this paper, we develop a principled
approach to synthesize 3D point-clouds using a spectral-domain
Generative Adversarial Network (GAN). Our spectral represen-
tation is highly structured and allows us to disentangle various
frequency bands such that the learning task is simplified for
a GAN model. As compared to spatial-domain generative ap-
proaches, our formulation allows us to generate high-resolution
point-clouds with minimal computational overhead. Further-
more, we propose a fully differentiable block to transform
from the spectral to the spatial domain and back, thereby
allowing us to integrate knowledge from well-established spatial
models. We demonstrate that Spectral-GAN performs well for
point-cloud generation task. Additionally, it can learn a highly
discriminative representation in an unsupervised fashion and
can be used to accurately reconstruct 3D objects. Our codes
are available at https://github.com/samgregoost/Spectral-GAN/.

I. INTRODUCTION
Point-clouds are a popular 3D representation for real-

world scenes and have attracted great interest in robotic
vision [28, 30, 10, 21, 18, 23]. Particularly, efficient synthesis
of 3D data is critical in cases where labeled real data is lim-
ited. In comparison to other representations such as voxels,
mesh and truncated signed distance function (TSDF), point-
clouds are often an attractive choice for 3D data because they
capture shape details accurately, are computationally efficient
to process and can be acquired as a default output from
several 3D sensors (e.g., LiDAR). However, point-clouds
pose a major challenge for deep networks, particularly the
generative pipelines, due to their inherent redundancy and
irregular nature (e.g., permutation-invariance).

Due to the complexity of point-clouds, most 3D synthesis
approaches are inapplicable. For example, generative ap-
proaches designed for voxelized inputs [31, 12, 32, 34, 11],
cannot work with the irregular point sets. To overcome this
challenge, some recent generative approaches solely focus on
point-cloud synthesis. For example, Achlioptas et al.[1] use a
GAN framework for 3D point-cloud distribution modelling
in the data and auto-encoder latent space, Yang et al.[35]
sample 3D points from a prior spatial distribution and then
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transform them using an invertible parameterization while
[24, 29] employ graph-structured networks for point-cloud
generation. Further, [5] directly operates on meshes and [4]
proposes an implicit field decoder to generate the 3D objects.
Moreover, [3] use a differentiable rendering framework from
3D to 2D for 3D object generation.

All such efforts so far, operate in the ‘spatial-domain’ (3D
Euclidean space) which makes the modelling task relatively
difficult due to arbitrary point configurations in 3D space.
This leads to a number of roadblocks towards a versatile
generative model e.g., considering a fixed set of points [1]
and limited scalability to arbitrary point resolutions [24,
29]. As opposed to previous works, we perform generative
modelling in the spectral space using spherical harmonic
moment vectors (SMVs), which inherently offers a solution
to the above mentioned problems. Specifically, generating 3D
shapes via spectral representations allows us to compactly
represent redundant information in point-clouds, easily scale
to high-dimensional point-cloud sets, remain invariant to
the permutations in unordered point sets and generate high-
fidelity shapes with relatively minimal outliers. Besides, our
spectral representation allow us to develop an understanding
about the frequency domain functional space of generic 3D
objects. Our main contributions are:
• To handle the redundancy and irregularity of point-

clouds, we propose the first spectral-domain GAN that
synthesizes novel 3D shapes by using a spherical har-
monics based representation.

• A fully differentiable transformation from the spectral
to the spatial domain and back, thus allowing us to inte-
grate knowledge from well-established spatial models.

• Through both quantitative and qualitative evaluations,
we illustrate that Spectral-GAN can generate high-
quality 3D shapes with minimal artifacts and can be
easily scaled to high-dimensional outputs.

• Our proposed framework learns discriminative unsu-
pervised features and can seamlessly perform 3D re-
construction from 2D inputs. Moreover, we show that
Spectral-GAN is scalable to high-resolution outputs
(40× resolution increase with just 4× parameters).

II. RELATED WORK

Generative models in spectral-domain: Yang et al.[36]
and Souza et al.[27] develop methods for MRI reconstruction
using GANs, and use Fourier domain information to refine
the output. In both these approaches, networks operate on
both spatial and spectral domains and exchange information.
A significant drawback of these approaches is that output res-
olution is tightly coupled to the network design and thus, they
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lack scalability to high dimensions. In a different application,
Portilla et al. [17] present a method to synthesize textures
as 2D images based on a complex wavelet transform. They
parameterize this operation using a set of statistics computed
on pairs of coefficients corresponding to basis functions at
adjacent spatial locations, orientations, and scales. However,
their approach is not a learning model, which offers less
flexibility. Furthermore, Zhu et al. [39] recently proposed
a model that initially processes undersampled input data
in the frequency domain and then refines the result in the
spatial domain using the inverse Fourier transform. They
approximate the inverse Fourier transform using a sequence
of connected layers, but one disadvantage is that their trans-
formation has quadratic complexity with respect to the size of
the input image. Furthermore, the above works are limited to
2D and do not study the 3D point-cloud generation problem
in spectral domain.

3D GANs in spatial-domain: 3D GANs can be primarily
categorized into two types: voxel outputs and point-cloud
outputs. The latter typically entails more challenges as point-
clouds are unordered and highly irregular in nature.

For voxelized 3D object modeling, several influential
methods have been proposed in the literature. Wu et al. [31]
extend the 2D GAN framework to 3D domain for the first
time. Following their work, Smith et al. [26] use a novel
GAN architecture for 3D shape generation by employing
Wasserstein distance as the loss function. A recent work by
Khan et al. [11] presents a factorized 3D generative model
that sequentially generates shapes in a coarse-to-fine manner.
Our approach also uses a two-step procedure–a forward pass
and backward pass—to refine a coarse 3D shape, but a
key difference here is that they use spatial information to
refine the shape, while our method depends on frequency
information.

Naive extensions of traditional spatial GANs to 3D point-
cloud generation do not produce satisfactory results, due to
their inherent properties such as being an unordered, irregu-
larly distributed collection (see Sec. III). Achlioptas et al.[1]
were the first to use GANs to generate point-clouds. They
first convert a point-cloud to a compact latent representation
and then train a discriminator on it. Matsuzaki et al.[16] also
use a latent representation and additionally employ parallel
sub-decoders that can reconstruct the local regions of the
input point-cloud more accurately. Although we also use a
compact representation, i.e., the SMV to train the GAN,
SMVs provide a richer representation compared to latent
space approximations and theoretically guarantee accurate
reconstruction of the 3D point-cloud. Moreover, Valsesia
et al.[29] propose a graph convolution based network to
extract localized features from 3D point-clouds, in order to
reduce the effect of irregularity. A drawback of their method,
however, is the rather high computational complexity of
graph convolution, and less scalability with the resolution
of the point-cloud. A recent work by Shu et al.[24] also
propose a tree-structured graph convolution network, which
is more computationally efficient. The model proposed by Li
et al.[14] attempts to handle the irregularity of point-clouds

using a separate inference model which captures a latent
distribution, to deal with the irregularity of point-clouds. In
contrast, we effectively reduce the problem to the standard
GAN setting by using a fixed-dimensional representation for
point-clouds.

III. MOTIVATION

An exchangeable sequence is a sequence of random vari-
ables X̃ = {xi}ni=1, where the joint probability distribution
of X̃ does not vary under position permutations. Formally,
Definition: For a given finite set {xi}ni=1 of random vari-
ables, let µx1,x2,...,xn be their joint distribution. This finite
set is exchangeable if µx1,x2,...,xn = µxπ(1),xπ(2),...,xπ(n)

, for
every permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}.

The spatial representation X of a point-cloud correspond-
ing to an object, is a set of d-dimensional vectors e.g.,
d = 3 in case of Euclidean geometry. A set is a collection of
elements without any particular order and thus, p(X) is fixed
irrespective of the order of X . Therefore, X an exchangeable
sequence. We argue that GANs, in their conventional form,
are not well suited for modeling exchangeable sequences,
since the discriminator learns to distinguish between fake and
real distributions by observation. For example, let πm(X) be
an arbitrary permutation m on the set X = {xi}ni=1. Then,
each element of the set φ = {πm(X)}Mm=1 pretends to be
a unique data instance to the GAN, although the elements
of φ represent the same data instance. In other words, the
GAN cannot learn p(X) by just observing the marginal
distributions of X . In contrast, GANs perform well on 2D
image data, since they are an ordered representation on a
2D plane and hence not exchangeable. A possible solution
is to learn a latent variable which determines the order of
X while modeling the original data distribution. However,
this can hinder the performance of the generator by putting
an extra overhead on it. Another seemingly straightforward
approach to resolve this problem is to model point-cloud
data as ordered, fixed-dimensional vectors. However, this
approach does not hold the integral probability metric (IPM)
guarantees of a GAN [14].

On the contrary, we propose to model point-cloud data as
SMVs, which effectively reduces the problem to the tradi-
tional case in two ways: 1) SMVs encode the corresponding
shape information in a structured, fixed dimensional vector
and 2) the vector elements are highly correlated with each
other. The task of learning the distribution of elements of
SMVs is theoretically similar to learning the pixel distribu-
tion of images, as in the latter case also, we only need to
capture the joint probability distribution of pixels of each
instance. In the case of image synthesis, however, GANs
exploit the correlation of pixels using convolution kernels,
which is not possible in the case of SMVs as correlation does
not depend on proximity. Furthermore, different frequency
portions of the SMVs show different characteristics. To han-
dle these specific attributes, we propose a series of cascaded
GANs, each consisting of only fully connected layers. Since
each GAN only needs to generate a specific portion of the
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SMV, they can be designed as shallow models with fewer
floating point operations (FLOPs).

IV. SPECTRAL GAN

We propose a 3D generative model that operates entirely in
the spectral domain. Such a design offers unique advantages
over spatial domain 3D generative models: (a) a compact
representation of 3D shapes with an intuitive frequency-
domain interpretation, (b) the flexibility to generate high-
dimensional shapes with minimal changes to the model
complexity, and (c) a permutation invariant representation
which handles the irregularity of point-clouds. Below, we
first introduce the spherical harmonics representations that
serve as the basis for our proposed Spectral GAN model.

A. Spherical Harmonics for 3D Objects

Spherical harmonics are a set of complete and orthogonal
basis functions, which can efficiently represent functions on
the unit sphere S2 in R3. They are a higher dimensional
analogy of the Fourier series, which forms a basis for
functions on unit circle. The spherical harmonics are defined
on S2 as,

Y ml (θ, φ) = Nm
l P

m
l (cosφ)eimθ, (1)

where φ ∈ [0, π] is the polar angle, θ ∈ [0, 2π] is the azimuth
angle, l ∈ Z+ is a non-negative integer, m ∈ Z is an
integer, |m|< l, i =

√
−1 is the imaginary unit, Nm

l =

(−1)m
√

2l+1
4π

(l−m)!
(l+m)! is the normalization coefficient and

Pml (x) = (−1)m (1−x2)
m
2

2ll!
dl+m

dxl+m
(x2 − 1)l is the associated

Legendre function. Since spherical harmonics are orthogonal
and complete over the continuous functions on S2 with finite
energy, such a function f : S2→R can be expanded as,

f(θ, φ) =

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ), (2)

where cml =
∫ π

0

∫ 2π

0
f(θ, φ)Y ml (θ, φ)† sinφdφdθ. The suf-

ficient conditions for the expansion in Eq. 2 are given in [8].
In practical cases, a bounded set of spherical harmonic basis
functions (M + 1)2 is defined, where M is the maximum
degree of harmonics series.

The process of 3D shape modeling via spherical harmonics
can be decomposed into two major steps. First, sample points
from the 3D shape surface and then computing spherical
harmonic moments. Any polar 3D surface function can be
represented as r = f(θ, φ), where f(θ, φ) is a single valued
function on the unit sphere S2, r is the radial coordinate with
respect to a predefined origin inside an object, and (θ, φ) is
the direction vector. Thus, we can compute moments cml of
the corresponding 3D point-cloud. One seemingly possible
drawback in using spherical harmonics to model 3D objects
can be the smoothing effect that can occur when projecting
the object function to the unit sphere (S2). However, we
reduce this effect by casting two sets of rays, in slightly
different angle settings, and obtaining the last and first ray
hit locations as object points, respectively.

B. Cascaded GAN Structure

SMVs provide a highly structured representation of 3D
objects, as explained in Sec. IV-A. Due to this structured
nature, the margin for error is significantly lower in our
setup, compared to GANs that try to produce spatial do-
main representations. Also, different frequency bands of the
SMV typically entail different characteristics, which makes
it highly challenging for a single GAN to generalize over
the complete SMV. Therefore, to overcome this obstacle, we
use multiple cascaded GANs, where each GAN specializes
in generating a pre-defined frequency band of the SMV.

Our approach uses a combination of T GAN models to
generate the SMV of 3D shapes. Among them, the first
model is a regular GAN while the remaining T − 1 models
are conditional GANs (cGAN). The objective of initial GAN
model is given by a two-player min-max game,

min
G1

max
D1

LGAN (G1,D1) = Eḡ1 [logD(ḡ1)]+

Ez1 [log(1−D(G(z1)))], (3)

where ḡi ∼ pg is the SMV band sampled from the spectral
coefficient distribution and z ∼ pz is the noise vector sam-
pled from a Gaussian distribution. In a cGAN, synthetic data
modes are controlled by forwarding conditioning variables
(e.g., a class label) as additional information to the generator.
In our case, we use a specific band of SMVs gi predicted by
the previous generator to condition the subsequent generator.
Then, the cGAN objective becomes,

min
Gi

max
Di

LcGAN (Gi,Di) = Eḡi [logD(ḡi)]+

Egi−1,zi [log(1−D(Gi(gi−1, zi)))] : i > 1. (4)

Each GAN generates a portion of the complete spherical
moment vector for the next GAN to be conditioned upon.
The setup includes two major steps: (i) forward pass and
(ii) backward pass. Accordingly, the overall architecture can
be decomposed into two sets of generators Gf and Gb, that
implement the forward and backward functions, respectively.
In the forward pass, the model tries to generate a coarse
shape representation, and the backward pass refines the
coarse representation to generate a refined representation.
The basis of our design is the Markovian assumption, i.e.,
given the outputs from the neighbouring generators, a current
generator is independent from the outputs of the rest. We
describe the two generation steps in Sec. IV-B.1 and IV-B.2.

1) Forward pass: In the forward pass, we have a set of
T ′ generative models Gf = {G1, . . . ,GT ′}, which work in
unison to generate a coarse representation of a 3D shape.
Each Gi ∈ {G2, . . .GT ′} is conditioned upon the outputs of
Gi−1, and generates a predefined frequency band (Si) of the
complete spherical harmonic representation (S) of the corre-
sponding 3D shape. It is worthwhile to note that the forward
pass is sufficient to generate the complete SMV without the
aid of a backward pass. However, a critical limitation of
this setup is that each GAN is only conditioned upon lower
frequency bands of the SMV. In practice, this results in noisy
outputs. Therefore, we also perform a backward pass, which
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Fig. 1: Overview of the Spectral Generative Adversarial Network. An unrolled version (with an explicit forward and backward pass) of
the training scheme is shown for clarity.

allows the GANs to refine the generation by observing the
higher frequencies. This procedure is explained on Sec. IV-
B.2.

2) Backward pass: As explained in Sec. IV-B.1, the aim
of the backward pass is to generate a more refined SMV,
which produces a more refined 3D shape. Similar to forward
pass, the backward pass is implemented using another set
of generators Gb = {GT ′+1, . . .GT }, where T = 2T ′ − 1.
Each Gi ∈ Gb is conditioned upon the outputs of Gi−1 and
generates a specific portion of the complete SMV. In the
training phase, we first transfer the trained weights from
{Gf\GT ′} to Gb, before training {Gb}. Therefore, this can
be intuitively considered as fine-tuning {G1 . . .GT ′−1} based
on higher frequencies. The training procedure is explained
in Sec. VI.

V. SPATIAL DOMAIN REGULARIZER

Since SMVs are highly structured, each element of a
particular SMV is crucial for accurate reconstruction of its
corresponding 3D point-cloud. In other words, even slight
variations of a particular SMV cause significant variations in
the spatial domain. Therefore, it is cumbersome for a GAN to
synthesize SMVs, corresponding to visually pleasing point-
clouds, by solely observing a distribution of ground truth
SMVs.

To surmount this barrier, we use a spatial domain reg-
ularizer that can refine the weights of our cascaded GAN
architecture, in order to synthesize more plausible SMVs.
The spatial domain regularizer provides feedback from the
spatial domain to the GANs, depending on the quality of
the spatial reconstruction. Firstly, we employ a pre-trained
PointNet [19] model on the reconstructed synthetic point-
cloud, and extract a global feature. Secondly, using the same
procedure, we obtain another global feature from a ground
truth point-cloud from the same class, and compute the L2

distance between these two features. Finally, using back

back-propagation, we update the weights of all the generators
G = {Gf ∪ Gb} to minimize the L2 distance. The final
architecture of the proposed model is shown in Fig. 1.

In order to back-propagate error signals from the
spatial domain to the spectral domain, we require
∂L/∂g, where g is the SMV and L is the loss. To
this end, we derive the following formula: let g =
(g0

0 , . . . , g
m
l , . . . g

K
K )> be the SMV of a particular instance

and {r(θ0, φ0), . . . , r(θn, φn), . . . , r(θN , φN )} be the corre-
sponding reconstructed points on S2 for the same instance.
Then, using the chain rule it can be shown that,

∂L
∂gml

=
∑
θ

∑
φ

∂L
∂r(θ, φ)

∂r(θ, φ)

∂gml
, (5)

where, r(θ, φ) =

M∑
l=0

l∑
m=−l

gml Y
m
l (θ, φ). (6)

Combining Eq. 5 and 6, we obtain,

∂L
∂gml

=
∑
θ

∑
φ

∂L
∂r(θ, φ)

Y ml (θ, φ). (7)

The above expression can be written as a matrix-vector prod-
uct to obtain derivatives ∂L/∂g. This makes the transformer
a fully differentiable and a network-agnostic module which
can be used to communicate between spectral and spatial
domains.

VI. NETWORK ARCHITECTURE AND TRAINING

Our aim is to generate a compact spectral representation,
i.e., a vector, instead of a irregular point set. In the spatial
domain, points are correlated across the spatial space, and
convolutions can be adopted to capture these dependencies.
In fact, convolution kernels extract local features, under
the assumption that spatially closer data points form useful
local features. In contrast, closer elements in spectral domain
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Algorithm 1: Training procedure for the Spectral-GAN.

G = {Gf ∪ Gb};
Ro = A set of samples from ground truth point-clouds;
for i iterations do

for each Gk ∈ Gf do
for j iterations do

Train Gk;

Gb
Weights
←−−−−− {G1, . . .GT ′−1};

for each Gk ∈ Gb do
for j iterations do

Train Gk;
for p iterations do

g
SYNTHESIZE←−−−−−−−− {GT ′ ∪ Gb};

rg ← RECONSTRUCT(g);
fg ← POINTNET(rg);
fo ← POINTNET(ro ∼ Ro);
L←‖fg − fo‖2;
G← UPDATE(G, L);

representations do not necessarily exhibit strong correlations.
Therefore, convolutional layers fail to excel in this scenario
and thus, we opt for fully connected (FC) layers in design-
ing our GANs. Interestingly, however, our GANs learn to
generate quality outputs with a low depth architecture.

Generator architecture: For our main experiments, we
choose the maximum degree of SMVs and the number of
GANs as M=100 and T=7, respectively, where Gf =
{G1, ..,G4} and Gb = {G5,G6,G7}. We observed that the
output quality decreases when T is too low, as the generator
has to predict a wider band. Similarly, if T is too high,
the propagated error becomes larger. Therefore, we found
T=7 to be a empirically good number. Each generator in Gf
respectively generates frequency bands (0 ≤ l ≤ 50,−l ≤
m ≤ 0), (0 ≤ l ≤ 50, 0 < m ≤ l), (50 < l ≤ 100,−l ≤
m ≤ 0) and (50 < l ≤ 100, 0 < m ≤ l). Since G5,G6,G7

are used to fine tune G1,G2,G3, they generate the same
frequency portions as the latter set. For all the generators,
we use the same architecture, except for the last FC layer.
Each generator consists of three FC layers, first two layers
with 512 neurons each, and the number of neurons in the last
layer depends on the output size. For the first two layers, we
use ReLU activation and the final layer has a tanh activation.

Training: The input to each of our generators, except
to G1, is a 300-d vector: a 200-d noise vector concate-
nated with a 100-d vector sampled in equal intervals from
the previous generator output. For G1, we use a 200-d
noise input. We use RMSprop as the optimization algo-
rithm with ρ=0.9, momentum=0, ε=10−7, where symbols
refer to usual notation. Surprisingly, we observed that more
commonly used optimizers such as Adam show inferior
performance. For Gf and Gb, we use learning rates 0.001 and
0.0001 respectively, and for discriminators, we use a learning
rate 10−5. While training, we use three discriminator updates
per each generator update. Our training scheme is illustrated
in Algorithm 1.

VII. 3D RECONSTRUCTION FROM SINGLE IMAGE

As a different application, we propose a generative model
which can reconstruct 3D objects by observing a single RGB
image. The model follows the network architecture proposed
in Sec. VI, with a few alterations. Instead of randomly
choosing the latent vector z, we use a set of image encoders
to obtain an object representative vector ẑ, by taking a 2D
image as the input. We use the same image encoder proposed
in [32], which consists of five spatial convolution layers with
kernel size {11, 5, 5, 5, 8} with strides {4, 2, 2, 2, 1}. We use
batch normalization after each layer, and ReLu activation as
the non-linearity.

We use T ′ such image encoders for each Gi ∈ Gf , and
use the same ẑ vectors generated for {G1, . . . ,GT ′−1} when
training Gi ∈ Gb. Each image encoder is trained end-to-
end with Gi ∈ Gf . The training procedure is similar to
Algorithm 1, although we use different loss functions in
this case. To optimize the GANs in spectral domain, we use
two loss components: an adversarial loss Lad and a spectral
reconstruction loss Lsr. Thus, the final spectral domain loss
is,

Lspectral = Lad + αLsr, (8)

where Lsr is the L2 distance between the ground-truth
SMV and the generated SMV from G′T ∪ Gb and Lad =
logD(x) + log(1−D(G(E(y)))). Here, E(·) is the encoder
function, D(·), G(·) and y are discriminator function, gen-
erator function and image input, respectively. we choose
α = 0.1 empirically. For the spatial domain optimization, we
replace spatial regularization loss with the Chamfer distance
as follows:

Lspatial =
∑
u∈S1

min
v∈S2

‖u− v‖22 +
∑
v∈S2

min
u∈S1

‖u− v‖22 , (9)

where S1 and S2 are ground-truth and generated point sets,
respectively. First, we obtain S2 by converting the SMV to
a point-cloud using Eq. 2 and then compute the loss (Eq. 9).

VIII. EXPERIMENTS

In this section, we evaluate our model both qualitatively
and quantitatively, and develop useful insights.

A. 3D shape generation

Qualitative results: We train our model for each category in
ModelNet10 and show samples of generated 3D point-clouds
in Fig. 2. As expected, the reconstruction from SMV adds
some noise to the ground truth point-clouds. An interesting
observation, however, is that the quality of generated point-
clouds are not far from from the reconstructed point-clouds
from the ground-truth. Since the network only consumes the
reconstructed ground-truth, this observation highlights the
ability of our network in accurate modeling of input data
distributions.
Quantitative analysis: To assess the proposed approach
quantitatively, we compare the Inception Score (IS) of our
network with other voxel-based generative models in Tab. II.
In this experiment, we use [20] as the reference network. IS
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Fig. 2: Qualitative analysis of the results. From the left, 1st column: Ground truth, 2nd column: ground truth point-clouds reconstructed
by SMV, 3rd − 7th columns: generated samples using spectral GAN.

TABLE I: 3D shape classification results on ModelNet10.
Method Type Accuracy

3D-ShapeNet (CVPR’15) [32] Supervised 93.5%
EC-CNNs (CVPR’17) [25] Supervised 90.0%
Kd-Network (ICCV’17) [13] Supervised 93.5%
LightNet (3DOR’17) [38] Supervised 93.4%
SO-Net (CVPR’18) [15] Supervised 95.5%

Light Filed Descriptor [2] Unsupervised 79.9%
Vconv-DAE (ECCV’16) [22] Unsupervised 80.5%
3D-GAN (NIPS’16) [31] Unsupervised 91.0%
3D-DesNet (CVPR’18) [34] Unsupervised 92.4%
3D-WINN (AAAI’19) [9] Unsupervised 91.9%
PrimtiveGAN (CVPR’19) [11] Unsupervised 92.2%

Spectral-GAN (ours) Unsupervised 93.1%

Method 3D Data Accuracy

3D-ShapeNet [32] (CVPR’15) voxel 4.13 ± 0.19
3D-VAE [12] (ICLR’15) voxel 11.02 ± 0.42
3D-GAN [31] (NIPS’16) voxel 8.66 ± 0.45
3D-DesNet [34] (CVPR’18) voxel 11.77 ± 0.42
3D-WINN [9] (AAAI’19) voxel 8.81 ± 0.18
PrimitiveGAN [11] (CVPR’19) voxel 11.52 ± 0.33

Spectral-GAN (ours) p-cloud 11.58 ± 0.08

II: Inception scores
(IS) for 3D shape
generation. We only
compare with voxel
based methods since
no point-cloud (p-
cloud) based method
reports IS.

evaluates a model in terms of both quality and diversity of
the generated shapes. Overall, our model demonstrates the
second highest performance with a score of 11.58. To the
best of our knowledge, our work is the first 3D point-cloud
GAN to report IS.

We further evaluate our model using Frechet Inception
Distance (FID) proposed by Heusel et al. [7], and compare
with state-of-the-art. IS does not always coincide with human
judgement regarding the quality of the generated shapes,
as it does not directly capture the similarity between the
synthetic and generated shapes. Therefore, FID is used as
a complementary measure to evaluate GAN performance.
Huang et al. [9] were the first to incorporate FID to 3D
GANs, and following them, we also use [20] as the reference
network. As evident from Table III, our results are on-
par with state-of-the-art, getting highest scores in three

TABLE III: FID scores for 3D shape generation. (lower is better)
All the methods except ours are voxel based.

Method D
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D
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3D-GAN [31] (NIPS’16) - - - 469 - 517 - - - 651
3D-DesNet [34] (CVPR’18) 414 662 517 490 538 494 511 574 - -
3D-WINN [9] (AAAI’19) 305 474 456 225 220 151 181 222 305 322

Spectral-GAN (ours) 462 195 452 472 522 180 192 230 208 354

TABLE IV: Comparison with point-cloud generative models. We
randomly hand picked three classes to better illustrate the results.

Method Class MMD-CD MMD-EMD

r-GAN (dense) [1] 0.0029 0.136
r-GAN (conv) [1] 0.0030 0.223
Valsesia et al. (no up.) [29] Chair 0.0033 0.104
Valsesia et al. (up.) [29] 0.0029 0.097
TreeGAN [24] 0.0016 0.101
Spectral-GAN (ours) 0.0012 0.080

r-GAN (dense) [1] 0.0009 0.094
r-GAN (conv) [1] 0.0008 0.101
Valsesia et al. (no up.) [29] Airplane 0.0010 0.102
Valsesia et al. (up.) [29] 0.0008 0.071
TreeGAN [24] 0.0004 0.068
Spectral-GAN (ours) 0.0002 0.057

r-GAN (dense) [1] 0.0020 0.146
r-GAN (conv) [1] 0.0025 0.110
Valsesia et al. (no up.) [29] Sofa 0.0024 0.094
Valsesia et al. (up.) [29] 0.0020 0.083
Spectral-GAN (ours) 0.0020 0.080

r-GAN (dense) [1] 0.0021 0.155
TreeGAN [24] All classes 0.0018 0.107
Spectral-GAN (w/o backward pass) 0.0020 0.127
Spectral-GAN (ours) 0.0015 0.097

categories: toilet, night stand and bath tub. Interestingly, our
Spectral-GAN generally performs better with objects that
have curved boundaries, which is a favorable characteristic,
as curved boundaries are generally difficult to generate in
Euclidean spaces. Note that we convert the point-clouds to
meshes before evaluating with both IS and FID.

Comparison with point-cloud generation approaches: We
use two metrics proposed in Achlioptas et al.[1] (i.e., MMD-
CD, MMD-ED) to compare the performance of the proposed
architecture with other point-cloud generation methods, and
display the results in Table IV. In this experiment, we use
16 classes of ShapeNet [37]. As shown, our network gives
best results. Intuitively, this suggests that shapes generated
by our network have high fidelity compared to the test set.

In Table V we compare our method against the recently
proposed work of Matsuzaki et al.[16] on the ModelNet10. In
this comparison, we use MMD-EMD and Coverage (COV)
as the evaluation metrics. As illustrated, our method achieves
superior performance in terms of both COV and MMD-
EMD.

Scalability to high resolutions: A favorable attribute of our
network design is the ability to scale to higher resolutions
with minimal changes to the architecture. To verify this, we
vary the degree of SMV, and train our model separately
for each case. Since the number of points n is tied to
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TABLE V: Comparison with the state-of-the-art on ModelNet10.
Values scaled by 10 for clarity.
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Matsuzaki et al.[16]
M

M
D 0.514 0.587 0.692 0.629 0.560 0.413 0.514 0.482 0.510 0.768

Spectral-GAN (ours) 0.420 0.314 0.518 0.726 0.524 0.553 0.396 0.466 0.492 0.553

Matsuzaki et al.[16]

C
O

V 0.475 0.517 0.435 0.472 0.507 0.451 0.447 0.487 0.464 0.450

Spectral-GAN (ours) 0.570 0.578 0.539 0.558 0.574 0.568 0.541 0.559 0.482 0.528

Fig. 3: Scalability of the proposed network with resolution. We
obtain increasingly dense resolution by only changing the output
layer size in each training phase. Number of points from the left:
302, 602, 1002, 1502 and 2002

.

the maximum degree M of SMVs as n=4M2, we obtain
samples with different resolutions for each case (see Fig. 3).
A key point here is that we only change the output layer
size of the generator (according to the length of SMV)
to generate point-clouds with different resolutions. Fig. 4
illustrates the variation of resolution with the number of
FLOPs. Remarkably, we are able to generate high-resolution
outputs up to 40, 000 points with only 0.3B FLOPs. Another
intriguing observation is that our network is able to increase
the output resolution by a factor of 40, while the number of
FLOPs is only increased by a factor around 4.
Usefulness of backward pass: Fig. 5 illustrates the effect
of performing a backward pass. As shown, the forward
pass only generates a coarse representation of the shapes
without fine details. This is anticipated, since cascaded GANs
can only observe the lower frequency portions of SMV in
the forward pass. In contrast, the backward pass observes
the higher frequency portions, and fine tunes the coarse
representation by adding complementary details.

B. Unsupervised 3D Representation Learning

In this section, we evaluate the representation learning
capacity of our discriminator. To this end, we pass relevant
SMV frequency bands of 3D point-clouds through trained
discriminators, extract the features from the third FC layer,
and finally concatenate them to create a feature vector. This
feature vector is then fed through a binary SVM classifier
and the classification results are obtained as one-against-the-

4: Spectral GAN can gen-
erate high-resolution out-
puts with minimal compu-
tational overhead. We in-
crease resolution approxi-
mately by 40× with only
an increase of 4× in the
total number of FLOPs.

Fig. 5: Effect of backward pass. Top row: samples generated using
only forward pass. Bottom row: same samples after passing through
both forward and backward pass. Backward pass refines the image
by adding more fine details.

Fig. 6: Qualitative
results for 3D point-
cloud reconstruction
from a single image.

rest. The classification results on ModelNet10 are depicted
in Table I. As evident, we achieve the highest result with a
value of 93.1%, which highlights the excellent representation
learning capacity of our discriminators.

C. 3D reconstruction results

In this section, we evaluate the performance of the 3D
reconstruction network proposed in Sec. VII. First, we ran-
domly apply a rotation R = (Rx, Ry, Rz) to each 3D model
from the IKEA dataset 15 times, and render the rotated model
in front of background images obtained from [33]. After-
wards, we save the rendered images and the corresponding
3D models to create ground-truth image-3D model pairs.
The ground truth 3D-models are manually aligned using
the Iterative closest point (ICP) algorithm. While applying
rotations, we set the constraints −π6 < Rx, Ry < π

6 and
−π < Rz < π and crop the rendered images for the object
to be in the center of the images. For the test set, we use the
original images provided in the IKEA dataset and test our
network on four object classes: chair, sofa, table and bed. We
train our model separately for each category and use mean
average precision (mAP) to evaluate the performance. In
evaluation, we voxelize the generated and ground truth point-
clouds using a 20×20×20 voxel grid, and obtain average
precision for voxel prediction. The results and illustrative
examples are shown in Table VI and Fig. 6, respectively. As
depicted, we surpass state-of-the-art results in sofa and bed
categories, while achieving second best results in the table
category.

Method Chair Sofa Bed Table

AlexNet-fc8 [6] 20.4 38.8 29.5 16.0
AlexNet-conv4 [6] 31.4 69.3 38.2 19.1
T-L network [6] 32.9 71.7 56.3 23.3
3D-VAE-GAN [31] 47.2 78.8 63.2 42.3
VAE-IWGAN [26] 49.3 68.0 65.7 52.2
PrimtiveGAN [11] 47.5 77.1 68.4 60.0

Spectral-GAN (ours) 42.3 81.2 71.4 48.3

TABLE VI:
Average precision
for 3D point-cloud
reconstruction from
single image. The
point-clouds are
voxelized before
obtaining the score.
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IX. CONCLUSION

We propose a generative model for 3D point-clouds that
operates in the spectral-domain. In contrast to previous meth-
ods that operate in the spatial-domain, our approach provides
a structured way to deal with the inherent redundancy and
irregularity of point-clouds. We demonstrate that our model
generates sound 3D outputs, can scale to high-dimensional
outputs and learns discriminative features in an unsupervised
manner. Further, it can be used for 3D reconstruction task.
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