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Abstract— Context-dependent meaning recognition in natural
language utterances is one of the key problems of computa-
tional pragmatics. Abductive reasoning seems apt for model-
ing and understanding these phenomena. In fact, it presents
observations through hypotheses, allowing us to understand
subtexts and implied meanings without exact deductions. For
this reason in this paper, we are going to explore abductive
reasoning and context modeling in human-robot interaction.
Rather than a radical inferential approach, we assumed a
conventional approach towards context-depending meanings,
i.e, they are conventionally encoded rather than inferred from
the utterances. In order to address the problem, a case study
is presented, analyzing whether such a system could manage
correctly these linguistic phenomena. The results obtained
confirm the validity of a conventional approach in context
modeling and, on this basis, further models are proposed to
work around the limitations of the case study.

I. INTRODUCTION
In order to develop artificial systems capable of human-

like verbal interaction and effective results, it is fundamental
to ensure a coherent model of context awareness. In human-
robot interaction, the user normally expects the robot to
execute his commands and orders. Meanwhile when the user
relates to his kind, the requests do not necessarily have to
be direct commands (as “turn the light on” or “bring me
a pen”) [1]. These can be expressed through implications,
circumlocutions, allusions or the expression of specific needs
(e.g. “it’s so dark here” or “I can’t see nothing” for “turn the
light on”) [2]. A robot that aims to react to these stimuli as
an intelligent system should be able to extract from these
expressions the underlying meanings. Context-awareness is
fundamental to understand these non-literal meanings [3],
[4].

In this paper, the problem of recognizing context-
dependent meanings is solved by using pre-existing prob-
abilistic data. Most of the current state-of-the-art in human-
robot verbal interaction follows a keyword-recognition ap-
proach, collecting and categorizing specific triggering words
related to certain command scopes (e.g. the CARESSES
system [5]). This approach can be expanded as well through
Natural Language Processing (NLP) methods, such as Gen-
sim software framework for topic modelling [6], and tools
in the Cloud that make this process easier (e.g. DialogFlow
or IBM’s Watson). However, most of the pre-existing ap-
proaches still require explicit commands from the users,
without taking into account context modeling at all. Com-
pared to the aforementioned techniques, we believe that a
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Bring me a bottle of water!

It's hot here!

Do you want me to open the window?

No, thanks.

I will bring you a bottle of water then.
Ok.

Fig. 1. Example of human robot interaction. On the left, the command
is expressed through a direct speech act [9]. On the right, the desire of
having a bottle of water is expressed through an indirect speech act [9].
In the latter case, the robot asks to perform actions which are close to the
user’s sentence, trying to infer the underlying request. By giving a certain
contextual knowledge, our robot client carries out this task thanks to an
abductive inference model, which is able to infer underlying requests.

context-wise modeling approach, based on abductive rea-
soning formalization, can lead to more efficient solutions,
needing smaller datasets and information.

Abductive reasoning has been extensively used in AI
research [7], [8]. The aim of this paper is to provide a
solution for dealing with indirect speech acts in human-robot
interaction applications (Fig. 1) in a given case study. The
purpose is served through the development of an abductive
reasoning model for context-dependent meaning recogni-
tion. As shown in the experiments, this model ensures a
better accuracy with a small amount of data, paving the
way for abduction-oriented interactive systems. In Section
II we introduce the theoretical framework which inspired
our approach. Meanwhile Section III illustrates the model
definition, Section IV explain how we implemented it in
a case study, and in Section V the experimental results
are shown and discussed. Finally in Section VI further
improvements are proposed.

II. THEORETICAL FRAMEWORK

A. Conventional approach to pragmatics

Pragmatics, which is a subfield of linguistics, is the study
of how context contributes to meaning in linguistic inter-
actions. Therefore, it deals with all those utterances whose
meaning cannot be limited to the literal one. An important
typology of utterances are the indexical expressions [10],
[11] which allude to a specific context. By using indexicals,
one can refer to places, people, instants or objects in a
specific relationship with the speaker. Contrary to context-
free statements, (e.g. “2 + 2 = 4”, or “Dogs are mammals‘”),
indexicals are difficult to be understood without knowing the
context and the relations between them and the speaker (e.g.
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Deduction
x is P
P⇒ Q
x is Q

Induction
x is P
x is Q
P⇒ Q

Abduction
P⇒ Q
x is Q
x is P

6

Fig. 2. Deductive, inductive and abductive reasoning compared. Only de-
duction reaches a logically certain conclusion, while inductive and abductive
inferences are defeasible.

“Someone’s ringing the doorbell” or “I forgot to pack my
luggage”). Bar-Hillel [12] argued that, in natural language,
more than 90% of all declarative utterances are indexical.

Not just indexicals, but many linguistic structures rely
on contextual information, such as presuppositions [13],
conversational implicatures [14], direct and indirect speech
acts [9]. Understanding all the aforementioned structures is
possible when the speaker and the hearer share any pre-
existing knowledge, in other words, these inferences rely on
premises that are not part of the content of the utterance
itself [10]. Grice highlighted how communication is based
on a cooperative principle [14] and from this hypothesis
he defined implicatures as an unreliable form of inference.
Though this emphasis on cooperation has been criticized
[15], the notion of implicature has been widely used to
explain how the speaker expresses his intentions and requests
through indirect speech acts as the following:

“There’s a howling gale in here!”→“Shut the window”.

A radical inferential approach towards implicature anal-
ysis would assume that the speaker’s intentions rely on the
hearer’s ability to make appropriate additional assumptions.
We adopted instead a conventional approach: utterances, like
the one previously mentioned, are conversational gambits
conventionally encoded, and there is no need for long in-
ferential chains to understand them on most occasions [10].

B. Abductive reasoning

Understanding natural language relative to a context in-
volves inferences of abductive nature. Abductive reasoning
seems to be very common in everyday reasoning [10].
However, it does not necessarily lead to correct conclusions
(as well as induction). Peirce [16] introduced the formal
notion of abduction as the third way of reasoning, along
with deduction and induction (Fig. 2). A classical example
is the following one:

All the beans from this bag are white.
These beans are white.

These beans are from this bag.

From the example, it is clear how abduction ends up with
a defeasible hypothesis rather than a true statement. Nev-
ertheless, solid rules which formalize previous knowledge
can lead to accurate results in most cases. To express the
previous knowledge1 consider a set of Horn clauses gathered
in a Knowledge Base set KB

KB = {(¬x1 ∧ ¬x2 ∧ ... ∧ ¬xn ∧ xn+1)⇒ y} (1)

1The formalization of abductive reasoning in our model is based on [17].
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User s̄ {r j} Reaction r̄Identification Inference

Query

Fig. 3. Functional scheme of verbal interaction model. After receiving an
utterance from the user, the robot enters in the identification processes,
where it identifies the contextual situation which the input sentence is
referring to. Subsequently, during the inference process, it abductively
obtains the reactions which can be linked to the situation s̄ identified. After
that, the robot enters the query process, where it asks the users in order to
disambiguate between the reactions, if there are more than one. Finally, the
reaction process executes the action linked to the selected reaction r̄.

It's hot here!

No, thanks.

Do you want me to open the window?

I will bring you a bottle of water then.

Fig. 4. Verbal interaction model processes for the verbal interaction
example illustrated in Fig. 1. Here, two possible reactions are inferred, and
r̄ = r2 is performed. In our model, the querying order of the reactions is
based on a probabilistic-like mapping as the one shown in Tab. II.

and given a set of atomic assumables A, define a scenario
H of 〈KB,A〉 as

H ⊂ A s.t. (KB ∪H satisfiable) (2)

where satisfiable means that no H subset is a conflict for
KB. A proposition u from 〈KB,A〉 has an explanation H
if

(H scenario of 〈KB,A〉) ∧ (KB ∪H |= u) (3)

It is possible to define as well a minimal explanation Hmin

as an explanation of u for 〈KB,A〉 such that

6 ∃H ⊂ Hmin s.t. H explanation of 〈KB,A〉 (4)

Given these rules, we can easily express the abductive
inference process. Pragmatic phenomena, as conversational
implicatures, are understood where it is possible to have a
minimal explanation Hmin which allows to interpret coher-
ently and/or cooperatively the utterance u (for the previous
example, u = “These beans are white.” and Hmin = “These
beans are from this bag.”).

III. MODEL DEFINITION

With our model, we propose to apply the abductive
reasoning formalization of Section II to human-robot verbal
interactions. Given contextual information in a KB form,
the robot’s verbal interaction module should interpret the
user’s input utterances u bearing non-literal meanings. The
reaction of the robot should be compliant to this process
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TABLE I
CONTEXTUAL TABLE

KB
s1 ⇒ r1 s1 ⇒ r2

s2 ⇒ r2 s2 ⇒ r3
s3 ⇒ r2

s4 ⇒ r1

– for example, linking an utterance as “I am freezing”
with the request of either closing an opened window in
the room or turning on the heating system. The case study
we introduced is limited to a constrained situation, allowing
to analyze the system dynamics without addressing bigger
scales issues. Proposals to work around these limitations are
then presented.

We considered a set S of different contextual situations
si and a set R of available robot reactions rj . We divided
human-robot verbal interaction in four processes: identi-
fication, inference, query and reaction (Fig. 3). A verbal
interaction example is reported in Fig. 4.

During identification, the user’s input is processed with
classical NLP techniques. A string u (the user’s utterance)
is returned by the speech-to-text (STT) module of the robot.
Then, u is processed in order to identify a situation s̄ ∈ S
linked to it. This situation belongs to a situations set S which
depends on the modelled context. In our implementation,
identifying the relevant situation is done through the Di-
alogFlow Cloud platform.

For context-recognition modeling, we assumed a conven-
tional approach, as mentioned in II-A. Hence, the system
should not build a complex inferential chain starting from u
in order to recognize a non-literal meaning and then process
in order to have coherent reactions. The system instead, has
a simplified KB in the form

KB = {si ⇒ rj} (5)

Such a KB can be represented with a contextual table
as shown in Tab. I, where each contextual situation si
may implicate different reactions rj . In this example, we
considered a set of situations S = {s1, s2, s3} and a set of
reactions R = {r1, ..., r4}. During inference, a set of possible
reactions {rj} ⊂ R associated to the current situation s̄ is
extracted by means of the abductive reasoning model (R is
the assumable set here). Because of the way we built this
KB, every (minimal) explanation H will contain only one
element of R. For this reason, we can identify Hj with
its rj . At the end of the inference process, the subset of
reactions {rj} ⊂ R which are suitable with the observation
s̄ is returned.

With querying, given the context KB, the system disam-
biguates the reactions in {rj} trying to understand which
reaction would be the most desired one in the specific
situation s̄. As previously shown, in Tab. I we have a table
of linguistic conventions which defines the characteristics
of a determined linguistic context. In order to choose a
priority criteria between reactions, we decided to define

TABLE II
PROBABILISTIC-LIKE MAPPING FOR TAB. I

P : KB → [0, 1]

P (s1 ⇒ r1) P (s1 ⇒ r2) 0
0 P (s2 ⇒ r2) P (s2 ⇒ r3)
0 P (s3 ⇒ r2) 0

P (s4 ⇒ r1) 0 0

a probabilistic-like mapping P : KB → [0, 1] (Tab. II)
which provides a way to queue the different rj in querying
phase before directly addressing the user. Consider to have
a context as the one in Tab. I and suppose s̄ = s2. The
inference process would return {r2, r3}. Supposing P (s2 ⇒
r2) > P (s2 ⇒ r3), a reasonable querying routine would ask
the user to understand whether to perform r3 and then, if
not, will perform r2. For example, for s2 = “room too dark”
triggered by u = “I can’t see anything here”, given r3 =
“draw the blinds” and r2 = “turn the light on” the robot
would ask the users if they want the lights turned on and, if
not, he would draw the blinds.

While for the example illustrated in Tab. I and Tab. II it
is not necessary to detach the KB from the probabilistic
mapping (instead of using a probabilistic lookup table), it is
important to keep the two concepts separated for many rea-
sons. We introduced before a strong limitation on KB, using
just Horn clauses which do not enlist any negated element,
while in general, they are a disjunction of literals with at
most one positive, unnegated, literal. Moreover, KB could
be dynamically modified and expanded (as we proposed as
further work to implement). Keeping detached KB and P
allows to switch more easily between different knowledge
representations paradigms, especially given an automated
mapping process that assigns weights to each element of KB
without human supervision. Moreover, knowledge represen-
tation for abduction does not imply probabilistic weights,
and this should be kept in mind while working with such
models. We can also change mapping techniques or adopt
different maps for different contexts.

The reaction phase is excluded from Fig. 4 because
it consists just in the execution of the robotic operative
correlate to rj . It regards the single implementation and it is
independent of the model workflow.

IV. IMPLEMENTATION

A. Use case definition

The use case presented here is based on three available
reactions

R = {r1, r2, r3} (6)

with some situations si in common. We imagined a robot
interacting with a user in his/her flat. The robot is able
to perform three actions, namely, opening windows (r1),
bringing the user a bottle of water (r2) and turning on the TV
(r3). Intuitively r1 and r2 can be linked by a strong common
cause (e.g. overheating) but they present as well different
characteristics (e.g. one may want to open a window to check
something outside). Moreover, r3 is intuitively less linked
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TABLE III
FIRST FORM RESULTS

S r1 r2 r3

s1 , Overheat 10% 2%
s2 , Bug in the room 7% 2%
s3 , Plants outside need water 4% 8%
s4 , Check the weather 3% 3%
s5 , Air the room 10%
s6 , Noise/stimulus from outside 5%
s7 , Unpleasant smell 4%
s8 , Smell of gas 2%
s9 , Feeling suffocated 2%
s10 , Being thirsty 12%
s11 , Workout, do exercise 5%
s12 , No water at the dining table 4%
s13 , Open fire in the house 4%
s14 , No current water 4%
s15 , Cooking 3% 1%
s16 , Keep up with current events 14%
s17 , Want to watch a film/TV series 10%
s18 , Need to cheer up or relaxing 9%
s19 , Being bored 7%
s20 , Not being able to sleep 3%
s21 , The house is too quiet 2%

Other situations (discarded) 50% 59% 51%

to the first two. Hence, this choice of thee reactions may
show all the different dynamics of the system, e.g. excluding
r3 and disambiguating between r1 and r2 during the query
process.

B. Data collection

We collected a dataset specifically for our use case. This
choice was made to see if such a system could obtain
good accuracy even with a small, noisy dataset which is
not suitable for classical NLP techniques. Two survey forms
have been made, the first one to collect the biggest number
of situations si linked to ri ∈ R and the second one to build
a corpus of sentences associated with each situation si.

The first form was filled by 18 people between 19 and 55
years old (85% about 20 years old and 15% about 50 years
old). We asked the subjects to picture themselves in a certain
situation which required one of the three robot reactions ri ∈
R. In the form, they had to enlist ten causes to that particular
desire. The results are enlisted in Tab. III. As reported, we
selected only the best situations with respect to the number
of reactions linked to them and their frequency in the form
answers (i.e. their “probability”). From the results we can see
how, for example, users suggested that opening the window
may be a consequence of overheat, the presence of a bug,
or a bad smell, just to name a few. Bringing a bottle of
water, instead, could maybe be a consequence of either the
need to water the plants or the fact that the user is thirsty.
Notice that, with a number of samples sufficiently high, the
percentage in Tab. III can be straightforwardly used in order
to compute the probability in Tab. II, as the frequency of the
event si ⇒ rj converges to the probability of the event.2 So
we assumed that the number of answers was high enough to
proceed in this way.

2Recall that the probabilistic-like mapping does not have a probabilistic
connotation by itself. Hence, “probabilities” in Tab. II do not have to sum
up to one. They are rather weights based on first form’s probabilities.

DialogFlow
agent

User	input
(String)

APIsNLP
analysis

Yes

Context
Probability
Table	(KB)

Yes

∃!	rj	?

Reaction	rj

Argmaxm
P(si	⇒	rj)

No

Yes

Reaction	rm

Query
rmNo

No
Identified
si	?

Not	understood
(default	reaction)

Update	P(rm)=0

Fig. 5. Workflow of the client implemented starting from the functional
scheme illustrated by Fig. 5.

The second form was filled by 17 people between 20 and
50 years old who did not fill the first form (94% about
20 years old and 6% about 50 years old). The form asked
the subjects to picture themselves in their house in three
different contexts (with a relative, with some guests or with
their butler, assuming that different degrees of relationship
would imply different wordings of the same request). In the
form, they had to enlist five sentences with which they would
express being in the situations si ∈ S. The total corpus
consisted of a small dataset of 1771 sentences expressed in
Italian3, from 80 to 85 for each of the 21 situations. For
example, a user suggested that, to address the situation s3 =
“plants outside need water”, he would say to a relative “our
plants are not looking healthy”, to a guest “I guess I forgot
to water the plants yesterday”, and to their butler “you have
to water the plants”.

C. Client development

To manage NLP for situation identification we used the
DialogFlow platform. In the DialogFlow Agent we defined
an agent whose intents were the 21 different situations
si.4 Each intent has been trained with the corresponding
85 sentences of the collected corpus, which - as already
explained - represent different ways in which different users
may express their desires in that specific situation when
talking with a relative, a guest, or their butler.

The client was developed in Python and accessed Di-
alogFlow through the provided APIs. 5 The input is taken
from the user’s string and the context probability table based
on the KB. To perform identification, the client relies on
DialogFlow, and it does not involve any of the actual imple-
mentations of the reaction (being a console-based program).
If a situation si is detected, and for that situation it exists only

3The model was implemented for Italian-speaking users.
4For further information about DialogFlow’s Intents see

https://cloud.google.com/dialogflow/docs/intents-overview
5The GitHub repository related to this paper is available at

https://github.com/Davidelanz/nlp-contextual-meaning.
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TABLE IV
DATASET’S SEMANTIC OVERLAPS

Situation expected Test sentence Situation identified

s1 = Overheat I can’t breathe. s5 = Air the room
s5 = Air the room Open the window! s7 = Unpleasant smell
s5 = Air the room It smells like gas in the kitchen. s8 = Smell of gas
s5 = Air the room There’s stale air in the room. s7 = Unpleasant smell
s5 = Air the room There’s a bad smell. s7 = Unpleasant smell
s5 = Air the room I can’t breathe. s9 = Feeling suffocated
s6 = Noise/stimulus from outside Anybody home? s21 = The house is too quiet
s8 = Smell of gas I can’t breathe. s9 = Feeling suffocated
s12 = No water at the dining table There’s no water. s14 = No current water
s12 = No water at the dining table There’s no more water. s14 = No current water

one reaction, it is immediately executed. Otherwise, based on
the context probability table, the system prioritizes reactions
according to their probabilistic-like mapping P (si ⇒ rj),
and queries the user. The client’s workflow is shown in Fig.
5).

V. VALIDATION AND RESULTS

A. Identification validation

The DialogFlow agent accuracy for the identification task
has been tested with k-fold cross validation [18], choosing
k = 5. The accuracy results are reported in the confusion
matrix [19] at Tab. V and synthetically in Tab. VI.6 The
accuracy index has been defined as the correct/total ratio for
the singles expected situations si and for the total matrix.
In Tab. V the additional column D indicates a default
fallback intent returned by DialogFlow, i.e. none of the 21
situations in S identified. This shows that DialogFlow is
accurate enough to match users utterances with situations,
which is the preliminary step for ultimately producing a
reaction. Moreover, since the 21 chosen situations overlap
semantically with each other, it is possible to have in the
dataset similar sentences for different situations. As we can
see from Tab. IV, these overlaps lead to smaller accuracy
results, but they are not as bad as actual identification errors.

B. Experimental results

The system’s total accuracy depends on two main factors:
the effectiveness of the identification process and the quality
of KB modeling. For the final testing, we asked to a test
group of people (different from the two used for collecting
data) to picture themselves in some predefined situations.
Every user was instructed with the three actions the robot
can perform, a set of “forbidden words” to avoid direct
addressing of the desired reaction and seven situations from
S in which picture himself in. An example of the testing
module they received is reported in Fig. 6. Each user inter-
acted with the client 5 times for each situation and annotated
whether the output action was the one he was implying.
The use of forbidden words and the directive of not directly
requesting the desired action allowed us to have a set of input
sentences that resembled the use case real-world situation

6For the 5-fold cross validation, each training fold was composed by 16
test sentences, for a total of 80 test sentences for every intent (the smallest
number of sentences associated to an intent in the dataset). In Tab. V the
expected intents are reported on the rows and the predicted ones on the
columns. The additional column D represents the default intent response.

The robot you are interacting with can:
- bring you a bottle of water,
- turn on your television,
- open the window of the room you are in.

Forbidden Words:
- turn on, open, take, bring, water, bottle,
window, television

-------------------------- Example ------------------------

The given situation is "There is a cake in the oven". You
want the robot to turn off the oven. You have five attempts.
At the first attempt you input "The cake is burning!" and
the robot turns off the oven. Hence you complete this form as
follows:

Situation 0. There is a cake in the oven

Attempt no. 1:
- I wanted the robot to turn off the oven
- Got it? [Y]

-----------------------------------------------------------

Situation 1. There is no water at the dining table.

Attempt no. 1:
- I wanted the robot to -----------------
- Got it? [ ]

Attempt no. 2:
- I wanted the robot to -----------------
- Got it? [ ]

(...)

Situation 7. (...)

Fig. 6. Example of the module given to the users in order to test human-
robot interaction performances in our model. Every module was presenting
7 different situations, for a total of 35 attempts for each user.

here described. To evaluate these experimental results we
defined two performance indexes:

α =
correct runs
total runs

β =
average runs for the
first correct result

(7)

The results obtained are reported in Tab. V. The final result
allows to obtain a value for KB modeling accuracy. In fact,
the accuracy of the system α = 82% depends on the one of
the identification process (αid = 91.5%) and on the accuracy
of the knowledge base (αKB), hence:

α := αKB · αid (8)

Given this and the data we got from the tests, we can
obtain:

αKB =
α

αid
=

82%

91.5%
= 89.6% (9)

It needs to be said that the small amount of users used to
collect data, in addition to the testing methods adopted and
the limited period of time in which the project was carried
out, have surely affected the overall system’s accuracy.
Moreover, the client was evaluated with a human-computer
interaction test, rather than an actual human-robot interac-
tion, therefore, this could have provoked the enforcement of
unnatural and not spontaneous inputs, which concurred in
the precision of the system. In the next Section we describe
our proposals to work around these limitations as well as the
constraints of the use case scenario.

VI. DISCUSSION AND FURTHER WORK
A. Horn clauses extension

In our model, we used Horn clauses made by the single
unnegated literal. An extension to actual Horn clauses which
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TABLE V
5-FOLD CROSS VALIDATION CONFUSION MATRIX

Output
S s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 D

s1 72 2 . 1 2 . . . 2 . . . . . . . . . . . . 1
s2 . 73 3 . . . 3 . . . . 1 . . . . . . . . . .
s3 . . 76 3 . . . . . . . . . . . . . . . . . 1
s4 . . . 77 1 . 1 . . . . . . . . . . . . . . 1
s5 . . . . 62 2 7 1 6 . . 1 . . . . . 1 . . . .
s6 . . . . . 73 2 . . . . . . . . 1 . . 1 . 1 2
s7 . . . . 3 . 72 2 2 . . . . . . . . . 1 . . .
s8 . . . . 1 . 3 72 4 . . . . . . . . . . . . .
s9 . . . . 1 . 1 . 75 2 . . 1 . . . . . . . . .
s10 . . . . . . . . . 76 2 2 . . . . . . . . . .
s11 . . . . . . . . . . 76 2 . . 1 1 . . . . . .
s12 . . . . . . . . . 3 . 65 3 9 . . . . . . . .
s13 . . . . . . 1 . . . . . 73 2 . . . . . . . 4
s14 . . . . . 1 . . . . . 3 . 73 2 . . . . . . 1
s15 . . . . . . 1 . . . . . . . 76 2 . . . . . 1
s16 . . . . . . . . . . . 1 . . . 77 2 . . . . .
s17 . 1 . . . . . . . . . . . . 1 1 75 2 . . . .
s18 1 . . . 1 . . . . . 1 . . . . . . 72 4 . . 1
s19 1 . 1 . . 1 . . . . . . . . . . . . 73 2 . 2
s20 . 1 . . . . . . . . . . . . . . . 1 . 74 3 1
s21 2 1 . . . . . . . . . . . . . . . . 1 . 75 1

TABLE VI
SINGLE SITUATION ACCURACY AND TOTAL ACCURACY

Identification accuracy (%)

s1 90 s2 91.25 s3 95 s4 96.25
s5 77.5 s6 91.25 s7 90 s8 90
s9 93.75 s10 95 s11 95 s12 81.25
s13 91.25 s14 92.25 s15 95 s16 96.25
s17 93.75 s18 90 s19 91.25 s20 92.5
s21 93.85

Overall accuracy: 91.48

TABLE VII
USER-CLIENT INTERACTION RESULTS

S α β S α β
s1 90% 1 s11 84% 1
s2 86% 1 s12 82% 1
s3 86% 1 s13 82% 1,5
s4 84% 1 s14 82% 1
s5 90% 1 s15 74% 1
s6 70% 1 s16 82% 1
s7 82% 1 s17 84% 1
s8 86% 1 s18 70% 1
s9 82% 1,5 s19 86% 1
s10 84% 1 s20 70% 1
s21 86% 1

TOT 82% 1.05

are a disjunction of negated literals with an unnegated one
has to be studied. If it is true that many contextual reactions
to some situations rely on other environmental conditions
(and then a disjunction would be ideal for store these kinds
of information), the complexity of the model may drastically
increase.

B. Dataset automated extension

In this work, it has been demonstrated how it is possible to
achieve effective accuracy results with a small noisy dataset.
Since building a bigger dataset can be an arduous task that
takes too much time, an automatic expansion algorithm could
be an alternative. In fact, starting from the sentences in the
dataset, the algorithm can process them in order to return
most of the common variations for each sentence, according

to a syntactical and semantical point of view [20], [21], [22].

C. Adaptive learning

An interesting improvement could be a system able to start
with an empty KB (or with a minimal general-purpose one)
and so able to learn through a simple command. The system
would add new situations when told by the user, enabling
connections with unrecognized sentences. As shown in Fig.
7, if s̄ can’t be identified, the system would ask the user if
the situation already exists in S (“∃si?”). If not, it should
add it to KB. A correctness check is added as well after
the reaction, to understand if the robot acted accurately. If
not, the robot would be able to decrease the correspondent
weight mapping P .

This system would likely have a slow learning curve,
but it could be a good solution to customize robots in
various contexts not already modeled. Moreover, the KB
from different robots could be integrated into a cloud system
that would fasten the learning process, and so the knowledge
sharing between the robots.

A problem which this extension would address is related to
S increasing size. In fact, the more the sets are composed by
different situations, the more the P weights might be reduced
and be close in value so that selecting the wrong reaction
from R would be more probable. This phenomenon would
be even worse with real-world cases with a high amount of
available reactions.

One could argue that the number of reactions is, at
a certain extent, limited to the scope of the robot, and
so the number of situations can intensify, but this does
not necessarily produces a more homogeneous table. This
problem should be addressed with use cases on a larger
scale, trying to improve the model if needed. For example,
by adding an intermediate query process, where the robot
asks something like ”what do you mean?”, in order to
have multiple identification results and reduce uncertainty
by intersecting them.
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D. Improved identification

In this project, we demanded NLP situation identification
to DialogFlow. This choice was made because the aim was
to focus on the inference modeling part. Identification can
be improved using classical NLP literal-meaning recognition
techniques. Tools as Gensim [6] and state-of-the-art methods
can enhance the identification accuracy.

VII. CONCLUSIONS

In conclusion the study aims to make a first step towards
abductive reasoning modeling for a human-robot verbal
interacting case study. By employing abduction, the robot
is able to extract, through contextual information, the un-
derlying context-dependent meanings borne by utterances:
including indexicals, conversational implicatures, and oth-
ers. The study, therefore, has analyzed the effectiveness
of a conventional approach to linguistic forms decoding.
The agent responds correctly to statements of these types,
by demonstrating a good accuracy, considering the limited
toy model. On this basis, further developments have been
proposed in order to overcome these limitations.

Being the problem extremely complex, there is no pre-
sumption here to claim that we designed a system capable
of reacting to contextual utterances correctly. However, it
has been shown that, especially in limited contexts, the con-
ventional approach - combined with probabilistic modeling
of the abductive hypotheses - leads to remarkable results.
The further work proposal has to be read as the next step
to approach coherent modeling of the phenomenon in its
entirety.
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