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Abstract— Compared with the maturity of 2D gaze tracking
technology, 3D gaze tracking has gradually become a research
hotspot in recent years. The head-mounted gaze tracker has
shown great potential for gaze estimation in 3D space due to
its appealing flexibility and portability. The general challenge
for 3D gaze tracking algorithms is that calibration is necessary
before the usage, and calibration targets cannot be easily
applied in some situations or might be blocked by moving
human and objects. Besides, the accuracy on depth direction
has always come to be a crucial problem. Regarding the issues
mentioned above, a 3D gaze estimation with auto-calibration
method is proposed in this study. We use an RGBD camera
as the scene camera to acquire the accurate 3D structure
of the environment. The automatic calibration is achieved by
uniting gaze vectors with saliency maps of the scene which
aligned depth information. Finally, we determine the 3D gaze
point through a point cloud generated from the RGBD camera.
The experiment result demonstrates that our proposed method
achieves 4.34◦ of average angle error in the field from 0.5m to
3m and the average depth error is 23.22mm, which is sufficient
for 3D gaze estimation in the real scene.

I. INTRODUCTION

Gaze estimation is the process of predicting where some-
one is looking, either as gaze directions or as points of
regard (PoR) in space. As human beings, vision is the
primary resource of collecting the surrounding information
in our daily lives. While we observe surroundings, our eyes
will turn towards the person or the object we are looking.
According to the analysis of researchers in the United States,
the degree to which we rely on each sense in the performance
of everyday activities is approximately: taste 1%, touch
1.5%, smell 3.5%, hearing 11%, and visual 83%. Therefore,
estimating users’ gaze vectors or gaze points will be of
great help to understand human activities. Nowadays, gaze
estimation techniques have been applied in many fields, such
as human-computer interactions, assisted driving and surgery
assistance.

Gaze estimation systems can be generally classified into
remote devices and head-mounted devices (HMD) [1]. The
remote device is a screen-based interaction system which
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works at a distance from the subject [2], [3]. It contains
at least one user-facing camera to capture images of the
subject’s face so that the PoR can be estimated according to
the extracted features from face images. Even some remote
devices have been applied in open interaction settings, it still
needs the participant’s head to be in the field of the camera all
the time, which limits the participant’s head-body mobility.
In contrast, HMD is designed as head equipment that can
acquire clearer eye images and allows users to move their
head freely. HMD usually consists of a scene camera and
two eye cameras. The scene camera is used to obtain scene
images that the user sees, and eye cameras are used to record
eyes’ movement while the user is looking at the scene. In
this way, HMD estimate human’s PoR in the scene camera’s
coordinate based on eye images. Recently, lightweight HMD
has become a popular topic for gaze researchers due to its
flexibility and mobility. It extends the user’s gaze estimation
field from desktop or computer screen into other scenes
which greatly rich the collection of human gaze data.

After years of studies that predict the PoR on the scene
image plane or the screen, there is an increasing inter-
est in estimating human’s gaze location in 3D coordinate
nowadays. 3D gaze estimation not only predicts PoR in the
field of view with the depth information but also prove the
connection between the scene’s saliency and human-related
motion. To our knowledge, one of the earliest methods
that is able to predict 3D PoR requires the subject’s head
fixed to the camera [4]. Kwon et al. introduce a innovative
binocular technique, in which gaze direction is computed by
using glints on the corneal and then depth is inferred by
interpupillary distance. Though 3D gaze estimation has been
widely studied in remote gaze estimation [5], [6], research on
HMD is still limited. For both gaze estimation systems, most
approaches determine their 3D gaze points by calculating
the midpoint of the shortest segment between both eyes’
visual vectors [7]–[9]. However, deviations in the eye gaze
vector’s calculation are likely causing significant variance in
the PoR’s depth direction. To address this problem, Ji Woo
Lee et al. use multi-layered perception to obtain the depth
gaze position [10]. But the method employs dual Purkinje
images as the input, which is hard to be detected in practice.

Another challenge for 3D gaze estimation is that the
gaze tracker needs to be calibrated for each user before the
estimation. During the calibration step, the subject needs to
stare at the specific reference marker, yet sometimes such
active personal calibration interrupts user-scene interactions.
Although the calibration procedure has become much sim-
pler, the number of calibration markers has been reduced
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Fig. 1. The calibration procedure in our method

down to one in some works, it still requires the user to
participate in the calibration task actively.

Several approaches have been proposed to avoid the
person-specific calibration process. Alnajar et al. find out that
some subjects’ gaze patterns can provide important cues to
achieve auto-calibration in [11]. By making use of the topol-
ogy of the pre-recorded gaze pattern, a mapping function is
calculated to transform the initial fixate location to match
the subject’s gaze pattern. Sugano treats mouse clicks on the
computer screen as gaze points to train the mapping function
between the eye features and PoR [12]. Similar to [12], the
algorithm in [13] detects the user’s hand and fingertip which
indicate the user’s point of interest. This method can easily
collect calibration samples in different environments quickly,
and the proposed method achieves comparable accuracy to
standard marker-based calibration. Moreover, Lander and
his co-workers combine the pupil center position and the
scene reflection on the corneal surface to predict actual
PoR in real world [14]. All these approaches have tried to
avoid using calibration markers. Nonetheless, they all rely
on observations of a specific person or environment, which
limits their applicability. Apart from these studies, visual
saliency also has been taken into consideration for the gaze
tracker’s auto-calibration. As there are experiments show
the correlation between bottom-up saliency and gaze points’
position [15]. Several works have applied the visual saliency
to calibrate their gaze trackers [16]–[18], yet they are all
designed for remote devices.

In this paper, we propose a novel method to estimate
3D fixation for HMD, which combines with the saliency-
based algorithm thereby achieving auto-calibration without
pre-setting markers and any external assistance. For HMD’s
architecture, we replace the regular RGB camera with an
RGBD camera, which provides accurate 3D data in the scene.
During the usage, participants can change their location and
head pose with no constraint. In the calibration section, we

utilize a salience algorithm to generate saliency maps of
scene images. By merging saliency maps and gaze vectors,
we can determine two rotation matrices that convert gaze
vectors from both eye camera coordinates into the scene
camera coordinate. To the best of our knowledge, this is the
first work to apply the saliency-based method into automatic
calibration for HMD’s 3D gaze estimation. In the gaze
estimation section, we use the scene image and its depth
data to generate a point cloud of the scene, and the PoR is
obtained as the point from the point cloud which is closest
to both visual vectors.

The rest of this paper is organized as follows. The details
of our algorithm are presented in section II. The experiment
result and evaluation are shown in Section III. Section IV
gives the conclusion of this paper.

II. METHODOLOGY

A. Architecture for HMD

The head-mounted gaze tracker consists of two parts: an
Intel RealSense D435 RGBD camera is used as the scene
camera to provide scene images with the depth measure-
ment range of 10m. Two IR cameras are leveraged as eye
cameras to capture IR eye streams. Besides, there is an IR
light illuminating eye regions. All the capture devices are
connected to a laptop, and they are set to be triggered at the
same time so that we will capture two IR eye images, one
RGB scene image and one depth image simultaneously.

As the scene camera, Intel RealSense D435 RGBD camera
contains two modules: the RGB module captures RGB scene
images; the depth module has two IR cameras and an IR
projector for obtaining depth images of the scene. With the
software module in librealsense libraries, the depth image
can be easily aligned to the RGB image. Thus, all the scene
image pixel’s 3D position can be obtained in the scene
camera coordinates.
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Fig. 2. Examples of scene images and their saliency maps.

Fig. 3. The process of obtaining calibration targets’ dataset. The upper
row shows the operation on the single scene image and its corresponding
depth image. The lower row demonstrates the operation on a set of scene
images and their corresponding depth images.

B. Calibration Procedure

The calibration procedure is shown in Fig. 1. In the pro-
cess of calibration, the participant can scan the surrounding
environment randomly. For RGB scene images, we apply the
algorithm in [19] to generate saliency maps, which represent
the distinctive features of scene images. Fig. 2 presents some
examples of scene images and their corresponding saliency
maps. After the generation of each saliency map, we pick out
pixels

{
{(u, v)i}j

}
whose saliency value higher than the

pre-setting threshold. Then we employ a clustering method
based on [20] to remove noise and improve reliability of
the saliency map. Consequently, the target data set can be
collected

{
{ti}j

}
for all the 3D coordinates of the space

points that correspond to the pixels we choose. {ti} stands
for the selected 3D targets of the saliency map, and j is the
image’s index. The details of the data acquisition process are
outlined in Fig. 3.

There are generally two types of methods to establish the
associations between eye features and targets in the scene:
the regression-based and model-based approaches. Unlike
regression-based approaches that directly create a mapping
relationship between eye features and gaze points, model-

based approaches firstly use extracted eye features to build
the eyeball model. Once the model is built, the initial gaze
vectors would be obtained, and it will be used to determine
the real gaze vectors in the scene camera coordinates. In this
paper, we adopt the 3D eyeball reconstruction method as in
[21]. When modeling the camera imaging sensor as a pinhole
model, the pupil contours on the eye images can be back-
projected into 3D space as circles. Then a 3D eye model can
be built based on the multiple reprojected pupil contours in
3D space. Assuming that every space circle would be tangent
to the ball at the center of the circle, we can find a set of
circles’ normal passing through their centers. The point that
closest to each normal is determined as the eyeball center.
Once the eyeball center is recovered, 3D gaze vectors can
be calculated in the eye camera coordinate system. Let nlj ,
nrj represent the gaze vector of jth left and right eye image
respectively.

Since each user has the specific gaze habit in the scene,
the salience part is not sufficient enough for determining the
exact position as the calibration marker does. To combat this
problem, we propose a robust method to find relationships
among the saliency map and two gaze vectors.

Considering short Euclidean distances between the user’s
eyes and the scene camera are within a few centimeters,
while PoR locate at much longer distances in practice, it is
reasonable to assume that the user’s eyeball center coincides
with the scene camera coordinate system’s origin. Thus,
the eyes and scene camera observe the object with the
approximately same viewing directions.

For the computation of the extrinsic parameter between
the left eye camera coordinate system and the scene camera
coordinate system, the target data set is acquired as {ti}j
for jth saliency map and the corresponding gaze vector nlj .
Each target vector can be represented as ti − el where el
stands for the user’s left eyeball center location in the scene
camera’s coordinate system. We apply a pair of angle αli

and βli to represent the vertical and horizontal angle between
the gaze and target vectors, respectively. Then the specific
rotation matrix Rli can be represented as

Rli =

 cosβli sinβli sinαli sinβli cosαli

0 cosαli − sinαli

− sinβli cosβli sinαli cosβli cosαli

 (1)

We obtain the rotation matrix set {Rli} through

Rlinlj =
ti − el
|ti − el|

(2)

Similarly, we can further acquire a set of rotation matrices{
{Rli}j

}
that corresponds to all the gaze vectors and

all selected pixels in all the saliency maps. During the
calculation, a two-dimensional cumulative array A(αli, βli)
is created to count the frequencies of angle pairs (as shown
in Fig. 4). We can see from Fig. 4 that the distribution
of angle pairs’ frequencies keeps changing as the number
of obtained saliency maps increasing. As we assume that
people tend to look at salience part in the scene, the unique
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Fig. 4. The most frequent angle set changes as the number of scene saliency maps increases. From (a) to (f), the number of scene saliency maps are: 1,
10, 50, 100, 200, all the saliency maps.

Scene camera’s coordinate system

Gaze point

Rotated gaze vectors

Fig. 5. The point cloud of the environment. The gaze point is defined as
the point with the minimal distance to both rotated gaze vectors.

relationship between gaze vectors and targets i.e. the most
frequent angle pair can be determined once we collected
enough calibration data (like (f) in Fig. 4). We determine the
final angle pair when its maximum frequency is greater than
2 times of the second largest frequency. After the calculation,
the most frequent Rli is leveraged to restore the extrinsic
parameters Rl between the left eye camera and the scene
camera coordinate systems.

With the same method, we can also recover the extrinsic
parameters between the right eye camera and the scene
camera coordinate systems, which is represented by Rr.

0.5m 1m 2m 3mSubject

(a) (b)

Pt1 Pt2

Pt3Pt4
Pt5

(c)

Fig. 6. The setup of our experiment indoors. (a) The gaze estimation
accuracy test in the office. (b) 5 concentric circle targets on a board. (c)
The 4 different depth that the board is put in this setup.

The two rotated gaze vectors are shown as follows:

Vli = el +Rlnlj (3)

Vri = er +Rrnrj (4)

C. Gaze Estimation

For the traditional model-based gaze estimation method,
the gaze point in 3D is computed as the midpoint of the
shortest segment between two rotated gaze vectors. However,
due to the short baseline between the human eyes, small an-
gle calculation errors in rotated gaze vectors can cause large
deviations in the Z direction of the gaze point estimation.
To refine the raw 3D gaze estimate method, we generate a
point cloud of the environment (as shown in Fig. 5). For two
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Fig. 7. The mean PoR angular estimation errors of 5 subjects over 4
different test distances.
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Fig. 8. The mean PoR depth estimation errors of 5 subjects over 4 different
test distances.

rotated gaze vectors in space, we define the gaze point by
minimizing the equation as follows

d =
|Vli × (pi − el)|

|Vli|
+
|Vri × (pi − er)|

|Vri|
(5)

where pi is the point in the point cloud and d represents
the sum distance from the point to two rotated gaze vectors.

III. EXPERIMENT AND EVALUATION

Our experimental system is based on a low-cost HMD
developed by our lab, which applies Intel RealSense D435
RGBD camera as the scene camera and two IR cameras as
eye cameras. All the cameras run at approximately 25fps
during the experiment procedure with resolutions of 640*480
pixels. Before the calibration and the estimation, three cam-
eras have been calibrated, and as a result, the lens distortion
can be corrected by the MATLAB toolbox. The proposed
gaze tracking algorithm in this paper is achieved by using
hybrid programming in C++ and MATLAB on a laptop PC
with an Intel i7 2.70GHz, 2.90GHz quad core CPU and an
8.00GB RAM.
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Fig. 9. Visualization of 3D estimated gaze points from subject A at 3m. Red
dots indicate the ground truth, while blue crosses represent the estimated
PoR.

TABLE I
POR ESTIMATION ERROR

Subject ADE(mm) AAE(deg)

A 20.23 4.27

B 23.89 4.28

C 25.78 4.46

D 19.40 4.34

E 26.80 4.36

Average 23.22 4.34

Fig. 6 demonstrates the setup of our indoors experiment.
We have invited 5 subjects to evaluate the accuracy of our
method. During the calibration step, subjects are allowed to
look randomly at the surroundings with no limitation on their
head poses and standing positions. The whole calibration
process averagely takes 20 seconds, as the algorithm costs
some time to establish eyeball models. In the step of gaze
estimation, we apply a board with 5 concentric circle targets
to test the angle and the depth accuracy of our method. Taken
the RGBD camera’s depth measure range and the room size
into consideration, four tests are carried out by putting the
board at 4 different depth from the subject: 0.5 m, 1 m, 2
m, and 3 m. For each depth, subjects are told to fixate at
the 5 targets in the same order: top-left, top-right, bottom-
right, bottom-left, center, each target for 2 to 3 seconds.

The experiment result is shown in table I, ADE is the
average depth error, and AAE represents the average angular
error. The overall average depth error is 23.22mm and the
average angular error is 4.34 degree. Fig. 7 illustrates the
PoR estimation errors in degrees of 5 subjects at 4 different
distances while the depth estimation error is shown in Fig.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART 3D GAZE

ESTIMATION METHODS

Method AAE ADE

[22] 4.9◦ 194mm for the test distance range
from 0.75m to 2.75m

[23] 6.0◦ 110mm for the 1m test distance

[24] 5.27◦ -

[25] 1◦ 80mm for the distance of 1m; 500mm
for the distance of 6m

Ours 4.34◦ 23.22mm for the test distance range
from 0.5m to 3m

8. And the distribution of 3D PoR from a subject (subject
A) with the test distance of 3m is presented in Fig. 9.

We can see from Fig. 7 that all 5 subjects give relatively
steady performance in the experiment, and their average
angular error decreases when the test distance broadens
from 0.5m to 3m, we think this phenomenon may due to
our assumption that ignores the Euclidean distance between
the user’s eye and the scene camera. When the test depth
is relatively short, this eye-camera distance can cause the
deviation on the calculation of rotation matrices. However,
with the increase of the estimation field, it will bring less
effect on the result.

In Table II, we compare the proposed method with head-
mounted-based gaze estimation methods. In contrast to al-
gorithms in [22], [23] and [24], our gaze system achieves
better accuracy on average angular error. Besides, we have a
significant improvement in depth estimation. The average an-
gular error of [25] is indeed smaller. However, their approach
requires complex hardware setups and time-consuming cali-
bration period, and our method performs better in the depth
estimation.

IV. CONCLUSIONS

In this paper, we propose a novel 3D gaze estimation
framework with automatic calibration method. For the hard-
ware designing, we replace the regular RGB camera of
head-mounted gaze tracker with an RGBD camera to obtain
the depth information of the scene. During the calibration
procedure, the saliency algorithm is introduced to find salient
parts in scene images. We align those pixels to the depth
image and use them as 3D calibration targets. Through the
aggregation, we obtain the rotation matrix between the eye
camera coordinate system and the scene camera coordinate
system. To improve the accuracy of depth estimation, envi-
ronmental point cloud data is applied in the PoR’s estimation.
Once we identified the final gaze vector, the PoR is calculated
as it is the closest point to the final gaze vector. Based
on the experiment results and the comparison with other
state-of-the-art approaches, the proposed method achieves a
relatively accurate measurement in depth with encouraging

angular estimation precision.
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