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Abstract— This work investigates the problem of simulta-
neous tracking and jamming of a rogue drone in 3D space
with a team of cooperative unmanned aerial vehicles (UAVs).
We propose a decentralized estimation, decision and control
framework in which a team of UAVs cooperate in order to
a) optimally choose their mobility control actions that result
in accurate target tracking and b) select the desired transmit
power levels which cause uninterrupted radio jamming and
thus ultimately disrupt the operation of the rogue drone.
The proposed decision and control framework allows the
UAVs to reconfigure themselves in 3D space such that the
cooperative simultaneous tracking and jamming (CSTJ) objective
is achieved; while at the same time ensures that the unwanted
inter-UAV jamming interference caused during CSTJ is kept
below a specified critical threshold. Finally, we formulate this
problem under challenging conditions i.e., uncertain dynamics,
noisy measurements and false alarms. Extensive simulation ex-
periments illustrate the performance of the proposed approach.

I. INTRODUCTION

In the recent years the demand for consumer drones
(i.e., UAVs) has been skyrocketed [1]. This new gadget
has become extremely appealing to the consumers and has
nowadays become ubiquitous. Drones however, like every
new emerging technology, can potentially introduce new
threads and risks for the public safety. Indeed, consumer
drones have created a big risk for public safety especially
around airports and restricted airspaces. In fact, numerous
times airports have been shut down [2] because of rogue
drones, causing long delays to the flights schedule and
inconvenience to the passengers.

Unfortunately, no adequate solution exist for this problem
as of today. Various approaches developed in academic and
industrial labs have been focused on a) drone detection
techniques [3] based on RF signal sniffing, computer vision
and sensor fusion, and b) interception techniques [4] such
as net-casting, RF denial systems, high-power laser and
even trained eagles [5]. According to [6], solutions for
safeguarding drones are still in their infancy and considerable
more work is needed in order for this technology to reach
the required level of maturity.

This paper deals with the deployment of a team of UAVs
(i.e., agents) in 3D space with the ultimate purpose of inter-
cepting and downing a single rogue drone (i.e., target). In
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Fig. 1. The figure illustrates the problem of cooperative simultaneous
tracking and jamming tackled in this work.

particular, in this work we propose a multi-UAV cooperative
simultaneous tracking and jamming (CSTJ) framework in
which a team of autonomous UAVs cooperate in order to
continuously track and jam a rogue drone in the air, thus
forcing it to enter failsafe mode [7] and auto-land or return
to its base. More specifically, we focus on a realistic scenario
in which the rogue drone moves in 3D space with uncertain
and noisy dynamics. Each UAV is equipped with a 3D range-
finding sensor [8] which returns noisy target measurements.
In addition, we assume that the UAVs exhibit a limited
sensing range and that they can detect the presence of the
rogue drone inside their sensing range with probability less
that 1. Due to imperfections of the 3D range-finding sensor
we assume that, in addition to the target measurements the
UAVs receive multiple false-alarm measurements at each
time-step. Finally, we assume that the UAVs are equipped
with a directional antenna which they use to transmit power
to the rogue drone at discrete power-levels.

In the proposed framework the UAVs cooperate in order
to: a) accurately track the rogue drone and b) choose the
optimal transmit power levels from their on-board antennas
which maximize the received power at the rogue drone and
thus jamming its communications and sensing circuitry. At
the same time the cooperative UAVs make sure that the
power interference between them is kept below a specified
critical interference threshold which in this work is assumed
to be fixed and known. The main contributions of this work
are the following:
• We formulate the problem of cooperative simultaneous
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tracking and jamming of a rogue drone in challenging
conditions e.g., uncertain dynamics, noisy measure-
ments, false alarms, uncertain detection and with UAVs
that exhibit limited sensing range.

• We propose a novel decentralized estimation, decision
and control framework that allows a team of cooperative
UAVs to reposition themselves in 3D space at each
time-step in order to accurately track-and-jam a rogue
drone in the air, while at the same time avoiding the
critical interference between them and thus remaining
operational.

• We demonstrate the performance of the proposed ap-
proach through extensive simulation experiments.

The rest of the paper is organized as follows. Section II
provides a brief overview of the existing literature on this
topic by single and multiple agents. Section III develops
the system model and Section IV formulates the problem
and illustrates the proposed system architecture. Section V
discuses the details of the proposed approach and Section VI
conducts an extensive performance evaluation. Finally, Sec-
tion VII concludes the paper and discusses future directions.

II. RELATED WORK

A recent report by the U.S. Homeland Security Committee
regarding the security threat posed by UAVs and possible
countermeasures states that the interceptor UAV technology
is currently immature and that interceptor UAVs equipped
with reliable and accurate detection, tracking and defense
capabilities are of essence [9]. Initial works [3], [10] on
this problem investigate the detection and tracking of small
UAVs using various methodologies including thermal, RF
and audio/video signals. The work in [11] provides a com-
prehensive overview of the technologies utilized for drone
surveillance and discusses the state-of-the-art anti-drone sys-
tems. The works in [12]–[15] investigate the problem of
target tracking with single and multiple autonomous UAVs
but without considering jamming capabilities. The work in
[16] develops a UAV based solution for localizing a GPS
jammer whereas the authors in [17] propose a low-cost
ground jamming system that uses a 3D MIMO radar and
a directional antenna to counteract the operation of small
UAVs. A more relevant work to the proposed system is
described in [18] where a consumer UAV is outfitted with
antennas and commodity radios in order to autonomously
localize another drone using its telemetry radio signature.
Moreover, the work in [19], develops an approach where a
swarm of defense UAVs forms a cluster around a single rogue
UAV in order to restrict its movement and escort it outside of
the restricted airspace. The authors assume however, that a
high-quality UAV monitoring system is in place which is able
to accurately detect and track the rogue UAV. Finally, in [20]
the authors investigate the problem of cooperative control
and task allocation in mission-planning and demonstrate their
approach in radar jamming.

Complementary to the aforementioned techniques, the
proposed system investigates the problem of simultaneous
tracking and jamming of a rogue drone with a team of

cooperative autonomous UAVs. Compared to the existing
techniques the proposed framework proposes a novel esti-
mation, decision and control framework for the combined
problem of tracking-and-jamming by multiple UAVs while
considering the induced interference between them. This
problem formulation, to the best of our knowledge has not
been investigated before.

III. SYSTEM MODEL

A. Rogue Drone Dynamics

Let us assume that the rogue drone evolves in 3D space
with dynamics that can be expressed by the following
discrete-time dynamical model:

xt = Φxt−1 + Γνt (1)

where xt = [x, y, z, ẋ, ẏ, ż]>t ∈ X denotes the drone’s state
at time t which consists of the position and velocity compo-
nents in 3D cartesian coordinates and νt ∼ N (0,Σv) denotes
the perturbing acceleration noise which is drawn from a zero
mean multivariate normal distribution with covariance matrix
Σv. The matrices Φ and Γ are defined as:

Φ =

[
I3 ∆T · I3
03 I3

]
,Γ =

[
0.5∆T 2 · I3

∆T · I3

]
(2)

where ∆T is the sampling period, I3 is the identity matrix
of dimension 3 × 3 and 03 is the zero matrix of dimension
3×3. In this work we assume that the drone dynamics obey
the Markov property i.e., the state of the drone at the next
time step depends only upon the state of the previous time
step as shown in Eqn. (1).

B. UAV Dynamics

Suppose that we have in our disposal a set of controllable
UAV agents S = {1, 2, ..., |S|}, where |S| denotes the
cardinality of the set, i.e., the number of available UAVs.
Each UAV j ∈ S is subject to the following discrete time
dynamics:

sjt = sjt−1+

∆R[l1] sin(l2∆φ) cos(l3∆θ)
∆R[l1] sin(l2∆φ) sin(l3∆θ)

∆R[l1] cos(l2∆φ)

 , l1 = 1, ..., |∆R|
l2 = 0, ..., Nφ
l3 = 1, ..., Nθ

(3)
where sjt−1 = [sjx, s

j
y, s

j
z ]>t−1 ∈ R3 denotes the state (i.e.,

position) of UAV j (i.e., (x, y, z) coordinates) at time t− 1,
∆R is a vector of possible radial step sizes (∆R[l1] returns
the value at index l1), ∆φ = π/Nφ, ∆θ = 2π/Nθ and the
parameters (|∆R|, Nφ, Nθ) determine the number of possible
control actions. We denote the set of all admissible control
actions of UAV j at time t as Ujt = {sj,1t , sj,2t , ..., s

j,|Ut|
t } as

computed by Eqn. (3).

C. UAV Sensing Model

The UAVs exhibit a limited sensing range for detecting a
target, which is modeled by the function pD(xt, st) that gives
the probability that a target with state xt = [x, y, z, ẋ, ẏ, ż]>t
at time t is detected by the UAV with state st = [sx, sy, sz]

>
t .

More specifically a target with state xt and position coordi-
nates Hxt (where H is a matrix that extracts the (x, y, z)
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coordinates of a target from its state vector) is detected by
a UAV with state st with probability which is given by:

pD(xt, st) =

{
pmax
D if dt < R0

max{0, pmax
D − η(dt −R0)} if dt ≥ R0

(4)
where dt = ‖Hxt − st‖2 denotes the Euclidean distance
between the UAV and the target in 3D space, pmax

D is the
detection probability for a target which resides within R0

distance from the UAV’s position and finally η captures the
reduced effectiveness of the UAV to detect a distant target.

Additionally, each UAV is equipped with a 3D range
finding sensor which provides noisy measurements yt =
[ρ, θ, φ]>t ∈ Y (i.e., radial distance ρ, azimuth angle θ and
inclination angle φ) from the detected target xt according to
the following measurement model:

yt = h(xt, st) + wt (5)

where h(xt, st) is given by:‖Hxt − st‖2 , tan−1(
δy
δx

), tan−1(

√
δ2
x + δ2

y

δz
)

> (6)

where δy = y − sy , δx = x − sx, δz = z − sz and wt ∼
N (0,Σw) is zero mean Gaussian measurement noise with
covariance matrix Σw = diag[σ2

ρ, σ
2
θ , σ

2
φ] and σρ is range

dependent and given by σρ = σρ0 + βρ ‖Hxt − st‖2.
Finally, due to the imperfection of the 3D range-finding

sensor, at time t, a UAV agent receives (in addition to
the target measurement) with an average Poisson rate of
λc a number of false alarm measurements c1t , . . . , c

n
t ∈

Y, E(n) = λc which are uniformly distributed inside
the measurement space according to the density function
pc(ct). To summarize, at each time-step each UAV receives
a collection of measurements:

Υt =
⋃{

a ⊂ {∅, yt}, b ⊆ {c1t , . . . , cnt }
}

(7)

D. UAV Wireless Propagation Model

Each UAV carries a directional antenna which is used
as the main mechanism for jamming the rogue drone. The
antenna profile in cartesian 3D coordinates is described
by a circular right angle cone which is given by: [x =
u cos(v), y = u sin(v), z = ha

r u] for u ∈ [0, r], v ∈
[0, 2π] where ha characterizes the effective antenna range,
r = tan( θa2 )ha is the circular base radius and θa is the
opening angle of the cone which determines the antenna’s
conic lobe A. At any point in time t, the antenna is auto-
rotated to point in the direction of the vector ~et = x̃t − st,
where x̃t and st are the predicted position of the rogue drone
and the state of the UAV, respectively. This is illustrated
in Fig. (2). The UAV emitted transmit power varies over a
discrete set of power levels, P jt,ω, ω ∈ {1, . . . ,Ω}, j ∈ S
while the received power at the rogue drone xt from a UAV
with state st is governed by the following path-loss model:

Λ(st, xt) = EF + 10nelog10 (‖st − xt‖2) +AF (8)

Fig. 2. The figure illustrates the agent antenna model used in this work
and described in Sec. III-D. In the illustrative example above 3 UAV agents
aiming their antennas (with θa = 60deg and h = 15m) at the position of
the target (i.e., rogue drone) to be jammed.

where the term EF models the near field loss effects, ne is
the path-loss exponent and AF models the attenuation effects
[17]. We should point out here that due to the directional
antenna of the UAVs, Eqn. (8) is valid only when xt resides
inside the conic lobe A of the antenna of the UAV. When
the rogue drone xt resides outside of A, it receives no power
from the UAV.

IV. PROBLEM STATEMENT AND SYSTEM OVERVIEW

In this paper we are interested in making optimized
decisions on the UAV mobility controls (ujt ∈ Ujt ,∀j ∈
S) and UAV transmit power levels (P jt,ω,∀j ∈ S) of the
cooperative UAVs in order to counteract the operation of
a rogue drone. The problem of cooperative simultaneous
tracking and jamming (CSTJ) tackled in this work can now
be stated as follows: At each time step t we would like
to find the optimal joint UAV mobility control actions ujt ∈
Ujt ,∀j ∈ S and at the same time choose the transmit power
level P jt,ω,∀j ∈ S for each UAV agent so that a) the UAVs
maintain tracking of the rogue drone, b) the received power
at the rogue drone is maximized and c) the in-between UAV
interference is limited below a specified critical threshold.

A closer look at this problem however easily reveals its
combinatorial complexity. Suppose we have in our disposal
|S| autonomous UAVs, each of which exhibits |Ut| mobility
control actions and transmits in Ω different power levels.
Then the number of joint mobility and power control actions
that need to be evaluated at each time-step is given by
(|Ut|Ω)|S|, which quickly becomes computationally pro-
hibitive to compute.

For this reason, instead of tackling the above joint problem
we propose an alternative suboptimal decentralized approach,
as depicted in Fig. 3, which allows us to solve instances
of the problem in real-time. In essence we decouple the
joint problem and we propose a cascaded control architecture
which is composed of a Tracking control module which gives
input to a Jamming control module. This cascaded controller
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pj(xt−1 |Z1:t−1)

pj(xt |Z1:t−1)
predict
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j
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Jamming Ctrl. Module 
Power optimization 
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Fig. 3. The figure illustrates the proposed cooperative simultaneous tracking
and jamming (CSTJ) system architecture.

is used by each UAV to determine its own optimal mobility
and power control actions at each time step. Then we process
the UAVs in a sequential fashion i.e., as it is shown in Fig. 3,
the UAV j+ 1 will take into consideration the actions taken
by the already decided UAVs 1, . . . , j when optimizing its
CSTJ objective.

Each UAV uses stochastic filtering to compute and prop-
agate in time the probability distribution of the state of the
rogue drone. Briefly, in stochastic filtering [21], [22] we are
interested in the posterior filtering density p(xt|Z1:t) of some
hidden state xt ∈ X at time t given all measurements up to
time t i.e., Z1:t = z1, ..., zt, with zt ∈ Z . Assuming an initial
density on the state p(x0), the posterior density at time t can
be computed using the Bayes recursion as:

p(xt|Z1:t−1) =

∫
p(xt|xt−1)p(xt−1|Z1:t−1)dxt−1 (9)

p(xt|Z1:t) =
p(zt|xt)p(xt|Z1:t−1)∫
p(zt|xt)p(xt|Z1:t−1)dxt

(10)

where Eqn. (9) and (10) are referred to as the prediction and
update steps respectively and the functions p(xt|xt−1) and
p(zt|xt) are the known transitional density and measurement
likelihood function respectively. At each time step the hidden
state xt is usually extracted from the posterior distribution
using the expected a posteriori (EAP) or the maximum a
posteriori (MAP) estimators. Finally, at each time-step the
UAVs fuse their local estimation results to produce the final
estimate for the state of the rogue drone.

V. COOPERATIVE SIMULTANEOUS TRACKING AND
JAMMING

A. Tracking Control Module

In this subsection we describe the operation of the Track-
ing Control Module, as depicted in Fig. 3, which is responsi-
ble for actively controlling the movement of a UAV in order
to maintain tracking of the rogue drone. More specifically,
we seek to find the optimal mobility control action ujt ∈ Ujt
that must be taken at time-step t by each UAV j ∈ S so
that the state of the rogue drone is estimated as accurately
as possible.

First, observe from the UAV sensing and measurement
models (i.e., Eqn. (4) and Eqn. (5) respectively) that the
control action ujt ∈ Ujt taken by UAV j at time-step t affects
the probability of detecting the rogue drone and also the
quality of the received measurements yjt . The state estimation

of the rogue drone depends on the received measurements
which in turn depend on the applied control actions. For
this reason we consider the UAV action which maximizes
the probability of target detection (and thus the reception of
target measurements) as our control strategy for maintaining
tracking. That said, we denote the tracking control objective
for agent j as ξj(xjt , u

j
t ), and so the problem to solve

becomes:

ûjt = arg max
ujt∈U

j
t

ξj(xt, u
j
t ) = arg max

ujt∈U
j
t

pjD(xt, u
j
t ) (11)

where xt is the state the rogue drone. However, since xt
is not available until the control action ûjt is applied, we
approximate it as xjt ∼ x̃

j
t :

x̃jt =

∫
xtp

j(xt|Υ1:t−1)dxt (12)

In essence each agent computes the predictive density
pj(xt|Υ1:t−1) (i.e., Eqn. (9)) and extracts the expected
predicted target state for time t. Note that in Eqn. (12) we
have used Υt to denote the UAV measurements as described
by Eqn. (7). In Sec. V-C we discuss in more detail how we
use Υt to estimate the state of the rogue drone.

B. Jamming Control Module

The solution of the problem presented in Eqn. (11) pro-
vides the optimal mobility control actions but only with
respect to target tracking. These mobility control actions
however, are not necessarily optimal for the objective of
jamming. More specifically, in order to jam the rogue
drone, the agents need to transmit a specific amount of
power towards the target while at the same time ensuring
that the power interference between them is kept below a
predefined critical threshold ∆. This is necessary so that
the cooperative agents do not interfere with each other and
remain operational at all times. In order to achieve the joint
objective of tracking and jamming of the target, we utilize
a cascaded control architecture in which we first find the
optimal mobility control actions which result in a satisfactory
tracking accuracy and then we perform a second optimization
step where we refine further these mobility actions to achieve
jamming control. To do that, instead of finding the mobility
control actions which maximize Eqn. (11), we first compute
for each agent j the set Ũjt = {ũj1t , ũ

j2
t , ...} of all mobility

control actions, which satisfy:

Ũjt = {ujt ∈ Ujt | ξj(x̃
j
t , u

j
t ) > ϑ} (13)

where ϑ ∈ [0, 1] is the desired threshold for the tracking
objective. In the second step, we select the optimal mobility
control actions and the levels of transmit power for each of
the cooperative UAVs which maximize the received jamming
power at the rogue drone.

To do that, each UAV decides in a sequential fashion
its mobility and power control actions that maximize the
received power at the rogue drone while satisfying the inter-
ference constraints on the power received from all previously
decided UAVs. As discussed in Sec. III-D, we consider a
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predefined discrete set of power levels Ω form which a UAV
can chose its transmit power. Let D be the set of all UAVs
that have made a decision on their actions and D̄ the set
of undecided UAVs. Then the optimal decision and control
problem for UAV j can be formulated according to (P1)
below:

(P1) max

Ω∑
ω=1

|Ũjt |∑
k=1

bkω1Aj (x̃
j
t )P

j
t,ωΛ(ũjkt , x̃

j
t ) (14)

s.t.

Ω∑
ω=1

∑
i∈D

bkω1Ai(ũ
jk
t )P̂ itΛ(ûit, ũ

jk
t ) < ∆j (15)

Ω∑
ω=1

|Ũjt |∑
k=1

bkω1Aj (û
i
t)P

j
t,ωΛ(ũjkt , û

i
t) + (16)∑

l∈D,l 6=i

1Al(û
i
t)P̂

l
tΛ(ûlt, û

i
t) < ∆i, ∀i ∈ D

bkω ∈ {0, 1},
Ω∑
ω=1

|Ũjt |∑
k=1

bkω = 1 (17)

In (P1) the best mobility control action is selected and the
transmit power is chosen for each UAV j which maximizes
the received power at the rogue drone while ensuring that
the interference level between the cooperating UAVs is
maintained below the critical threshold ∆j . The indicator
function 1Aj (x) checks if x is within the conic antenna
lobe Aj of UAV j and returns 1, otherwise returns 0.
The constraint in Eqn. (15) ensures that the interference
caused to agent j ∈ D̄ when taking action ũjkt ∈ Ũjt with
respect to all UAVs (i ∈ D ⊆ S) that have already made
their mobility and power-level decisions (i.e., ûit and P̂ it ) is
below the critical threshold. On the other hand, Eqn. (16)
computes a) the interference caused by UAV j ∈ D̄ to
UAV i ∈ D that has already made a decision when UAV
j applies mobility control ũjkt and power-level P jt,ω and b)
the interference caused to UAV i by all UAVs l 6= i ∈ D that
have made a decision and transmit in power-level P̂ lt . Then,
this constraint ensures that the interference caused to UAV
i ∈ D from all the already decided UAVs l ∈ D and the
UAV j ∈ D̄ is still within the acceptable interference limit
∆i. Finally, the selection of a single combination of control
actions (i.e., mobility and power-level) is ensured by Eqn.
(17) using the binary variable bkω . In essence, (P1) will find
ω ∈ [1, . . . ,Ω] and k ∈ [1, . . . , |Ũt|] for each agent j ∈ S
such that the applied power-level P̂ jt and mobility control
ûjt maximize Eqn. (14) while satisfying the interference
constraints. The sequential optimization approach of (P1)
along with the proposed cascaded control architecture allow
for the evaluation of fewer mobility control actions at each
time-step and reduces the exponential complexity of the joint
problem to linear in the number of agents and total control
actions.

C. Rogue Drone State Estimation

The objective here is to use stochastic filtering in order es-
timate the state of the rogue drone given its uncertain dynam-

ics, noisy measurements and false-alarms as described in Sec.
III. In order to do that we need to compute the expressions for
the transitional density and measurement likelihood function
as discussed in Sec. IV. From our modeling assumptions
we already know that p(xt|xt−1) = N (xt; Φxt−1,ΓΣvΓ>)
is a multivariate Gaussian transitional density according to
the target dynamics of Eqn. (1). What is left is to compute
the expression for the likelihood function p(zt|xt) (see Eqn.
(10)) which in our case becomes p(Υt|xt, st). This can be
computed as:

p(Υt|xt, st) = [1− pD(xt, st)] e
−λc

∏
`∈Υt

λcpc(`) + (18)

e−λcpD(xt, st)
∑
`∈Υt

gy(`|xt, st)
∏
ε∈Υt
ε 6=`

λcpc(ε)

where the function gy(yt|xt, st) = N (yt;h(xt, st),Σw) is
due to Eqn. (5). To obtain the above expression we first
use the fact that if the UAV receives only false alarm
measurements (i.e., no measurement from the rogue drone)
then Υt = {c1t , ..., c|Υt|} and p(Υt|xt, st) is given by:

|Υt|! [1− pD(xt, st)] Pois(|Υt|)
∏
`∈Υt

pc(`) (19)

where the function Pois(|Υt|) =
λ|Υt|c e−λc

|Υt|! is the Poisson
distribution with rate parameter λc and gives the probability
of obtaining exactly |Υt| false alarm measurements at time
t and

∏
`∈Υt

pc(`) is the joint spatial density of the false
alarms. The above expression is multiplied by |Υt|![1 −
pD(xt, st)] to account for all possible permutations of the
measurement sequence and for the fact that the target has
not been detected, which explains the first line in Eqn. (18).

The second line of Eqn. (18) is due to the more general
case in which the UAV receives measurements from the
rogue drone yt in addition to false alarms e.g., Υt =
{yt, c1t , c2t , . . .}. In this case the joint likelihood accounts for
the detection of the rogue drone and its measurement i.e.,
pD(xt, st)gy(yt|xt, st), multiplied by the joint density of the
remaining |Υt|−1 measurements which are considered false
alarms (i.e., (|Υt|−1)!·Pois(|Υt|−1)

∏
` ∈ Υt, ` 6= yt

pc(l)).
Finally, we have to sum over all possible |Υt| ways in which
we can select yt from Υt.

To summarize each UAV j propagates in time the filtering
density pj(xt|Υ1:t) and computes the EAP state for the rogue
drone as x̂jt =

∫
xtp

j(xt|Υ1:t)dxt and its covariance matrix
Kj

x̂jt
= E[(x − x̂jt )(x − x̂

j
t )
>]. Finally, the UAVs exchange

their local estimates with each other and apply sequential
covariance intersection [23] to compute the final fused state
x̂t of the rogue drone. The resulting CSTJ algorithm is shown
below in Alg. 1.

VI. EVALUATION

A. Simulation Setup

In order to evaluate the performance of the proposed
approach we have conducted several numerical experiments.
For these experiments we have used the following setup: The
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Fig. 4. The figure shows the trajectories of 4 agents for the task of cooperative simultaneous tracking and jamming of a rogue drone.

Algorithm 1 Proposed Cooperative Simultaneous Tracking
and Jamming approach

Require: pj(xt−1|Υ1:t−1),Ujt , P
j
t,ω ∀ j, ω,D ⊆ S

1: Compute the predictive density pj(xt|Υ1:t−1) using Eq.
(9).

2: Compute the predicted target state at time t, x̃jt using
Eqn. (12)

3: Obtain the set of optimized tracking control actions Ũjt
by solving Eqn. (13)

4: Solve P1 to obtain the optimal mobility control action
ûjt and power-level P̂ jt .

5: Execute the optimal mobility and power control actions.
6: Receive the target measurement set Υj

t .
7: Compute posterior density pj(xt|Υ1:t) by plugging in

Eqn. (18) into Eqn. (10)
8: Estimate target state x̂jt and its covariance matrix Kj

x̂jt
.

9: Produce the final state estimate x̂t by fusing together
the information from line 8 using sequential covariance
intersection [23].

UAV agents and the rogue drone maneuver in a 3D space
with dimensions 100m×100m×100m. The target dynamics
are according to Eqn. (1) with Σv = diag[2, 2, 2]m/s2 and
∆T = 1s. The agent dynamics are according to Eqn. (3)
with ∆R = [1, 3, 5], Nφ = 2 and Nθ = 4. The agent
sensing model is given by Eqn. (4) with pmax

D = 0.99, η =
0.02m−1 and R0 = 2m. The agent’s measurement model is
given by Eqn. (5) with parameters σθ = σφ = π/50rad,
σρ0

= 2m and βρ = 0.05m−1 and finally λc = 15. For
the antenna model we have ha = 100m and θa = 80deg.
Additionally, the UAV agents transmit in the following power
levels [off,−10, 0, 7, 10]dB, the agent interference level ∆
is set at −50dB, the path-loss exponent is 2.5, the near

field loss effects EF are set to 32.4dB and the attenuation
effects AF are computed based on a 2GHz carrier frequency
as AF = 20log10(2) = 6.0206dB. Finally, the tracking
threshold ϑ is set to ϑ = 0.8 and the filtering approach
described in Sec. V-C is implemented as a SIR particle
filter [24] in order to handle the non-linear sensing model
described in Sec. III-C.

B. Results

Figure 4a shows a simulated scenario over 10 time-steps in
which 4 agents cooperate in order to simultaneously actively
track and jam a single target. More specifically, agents 1,
2, 3 and 4 (shown in different colors) are spawned from
[29, 30, 23], [24, 25, 24], [23, 28, 21] and [23, 27, 37] respec-
tively. The target initial state is [21, 21, 30, 1.8, 1.6, 1.1] as
indicated by the black circle and moves along the black line
with final position marked with × as shown in the figure. The
agents maneuver around the target in order to achieve their
CSTJ objective. More specifically, the agents cooperatively
choose their control actions in each time step which result
in the optimal tracking and jamming performance while at
the same time accommodating their in-between interference
constraints. Interestingly, to achieve this the agents follow
interleaving trajectories to avoid the interference between
them. Moreover, it is shown that these optimized control
decisions also allow for a satisfactory tracking performance.
As time progresses the estimated target trajectory (i.e., cyan
line) converges to the ground truth (i.e., black line). This is
also evident by the tracking error (i.e., the Euclidian distance
between the estimated and the ground truth target position)
shown in Fig. 4e. In more detail, the agents try to maximize
the target received power while at the same time keeping
the interference between them below the critical threshold
∆. In order to meet the interference constraints the agents
can either (a) optimize their mobility controls and move to a
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Fig. 5. The figure shows a performance comparison between CSTJ and
CT.

non-interfering position or (b) optimize the antenna power-
level and possibly transmit at a lower power-level. At the
same time the agents need to accurately track the target over
time in order to be able to steer their antenna towards the
direction of the target. Figure 4b shows the agents being
jammed (due to interference), Fig. 4c shows at which power-
levels the agents transmit power and finally Fig. 4d shows
the target received power and the amount of received power
for each agent due to interference. As we can observe at
time-step t = 1, agent 1 is jamming agent 2, and transmits
with full power at 10dB. Agent 2 however, manages to move
to a position at t = 1 in which the interference caused
by agent 1 remains below the critical threshold as shown
in Fig. 4d. Moreover, at the beginning of this experiment
(i.e., t = 1..3) the target received power is relatively low
compared to later time-steps (Fig. 4d). This is because, at
the beginning of the experiment the target estimated position
deviates significantly from the true position (due to the high
initial uncertainty on the target position) and thus the agents
are having difficulty steering their antennas at the direction of
the target. This however, changes as the agents improve their
cooperative estimation over time. Moreover, it is shown that
between time-steps t = 3..5 agent 3 is jamming agent 2 and
for this reason agent 3 adjusts its power-levels accordingly
in order to keep the received power at agent 2 below the
critical threshold as shown in Fig. 4c and Fig. 4d. What
we have discussed so far briefly illustrates the operation
of the proposed system. We should point out here that the
parameters of the agent dynamical model i.e., Eqn. (3), used
for this simulation have been chosen in order to produce the
illustrated Manhattan-like trajectories in order to aid visual
inspection and analysis.

Next, we compare the performance of the proposed system
(CSTJ) against a baseline method which performs cooper-
ative tracking (CT) with jamming capabilities. In CT the
UAVs are capable of jamming the rogue drone, however the
interference between the UAVs is not taken into account.
Additionally, in CT each agent maximizes its own tracking
objective as discussed in Sec. V-A and then their local results
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Fig. 6. The figure shows the effect of the number of UAVs on the
performance of the proposed system.

are fused using covariance intersection in order to compute
the final target state. This experiment aims to investigate
the pros and cons of the proposed system in terms of
tracking performance, jamming performance and the ability
of the system to maintain the UAVs below the specified
interference threshold. Since, in CT the UAVs do not posses
the capability of switching/deciding between the different
transmit power levels, for this experiment we assume that in
both methods (CSTJ and CT) the UAV antenna is always on
and transmits with constant power at 7db. For this test we
used the following procedure: First, we randomly initialize a
target inside the surveillance area. Then we spawn randomly
4 agents inside a sphere with radius 5m centered at the target
birth location and we run CSTJ and CT for 50 time-steps
monitoring the target received power, the tracking error and
the interference between the UAVs. The above procedure
is repeated 50 times. Figure 5 shows the average values of
(a) target received power, (b) tracking error and (c) UAV
interference for the 50 trials. More specifically, Fig. 5a shows
that the target received power obtained with CT is on average
1.7dB higher in each time-step compared to what is obtained
with CSTJ. Moreover, with CT the tracking error shown in
Fig. 5b is on average 0.3m lower compared to the error
achieved with CSTJ. These results are quite reasonable since
with the addition of the jamming objective in CSTJ, the
UAVs do not always take the optimal control actions that
result in the best possible tracking performance. In contrast,
they consider the joint tracking and jamming objective which
might result in control decisions that deviate for the optimal
in terms of tracking accuracy. In addition since CT does not
considers any interference constraints between the agents,
it usually achieves higher target received power as the
agents can get closer to the target which explains the results
obtained. However, the advantage of the proposed CSTJ
framework is depicted in Fig. 5c. More specifically, the
proposed system can maintain the interference between the
UAVs below the critical threshold of -50dB while achieving
reasonable tracking and jamming performance. On the other
hand the CT does not considers these constraints and as a
result the system becomes unstable and fails as the UAVs
receive very large amounts of power. This is because in CT
the UAVs can get extremely close to each other.

Finally, we investigate how the number of agents affects
the performance of the proposed approach. In order to do
that we follow a similar setup with the one described in the
previous paragraph. We randomly initialize a target inside the
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surveillance area and we vary the number of agents that are
randomly spawned around the target (within a 5m radius).
We let our system to run for 50 time-steps and we measure
the average power received at the target and the average
tracking error. Figure 6 shows the averaged results of this
experiment over 50 Monte-Carlo trials. For this test we set
the agent power-levels as [off, 0, 7, 10]dB and their mobility
control parameters as ∆R = [1, 3], Nφ = 2 and Nθ = 4.

As we can observe from Fig. 6a the average received
power at the target increases significantly between 2 and 8
agents and then slows down. For more than 8 agents we can
say that the target received power almost reaches a plateau.
A similar pattern is also shown for the tracking error in
Fig. 6b. Interestingly, this behavior is due to the following
reason: as the number of agent increases the number of
available mobility control actions that the agents can find
which result in good tracking performance and satisfy the
interference constraints decreases. We have observed that as
the number of agent increases, the agents either a) switch off
their antenna and transmit no power since they cannot find
a position to move into in which the interference constraints
are met or b) move to a distant position (with respect
to other UAVs) and transmit with minimum power. This
limitation can be alleviated (with extra computational cost)
by increasing the the number of degrees of freedom of
the system i.e., increasing the number of mobility control
actions, the power-levels and reducing the antenna opening
angle θa.

VII. CONCLUSION

In this paper we have studied the problem of simultaneous
tracking and jamming of a rogue drone with a team of
cooperative UAV agents. We have presented a novel es-
timation, decision and control framework that allows the
UAVs to reconfigure their positions at each time-step so that
the tracking-and-jamming objective is achieved while taking
into account the interference induced between them. Finally,
we have demonstrated the effectiveness of the proposed
technique through extensive simulation experiments. Future
work, will focus on the real-world implementation of the
proposed system, and its extension to multiple targets.
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