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Abstract— In this paper an approach for the identification
of the dynamic parameters, i.e. base parameters, of rigid
robots is presented. By using the polynomial approximation
operator, an equation is obtained for the identification of the
parameters which solely depends on measurable signals and
thereby contains no equation error. The resulting expressions
can be evaluated online or offline by filtering the measurable
signals with FIR filters. In order to identify the parameters
on the basis of measurements, an algorithm is presented to
calculate the parameters numerically stable, even if the data is
obtained sequentially, without a singular value decomposition.
The parameters can be determined meaningfully by considering
box constraints in order to ensure physical feasibility. The
presented methods are finally used to identify the dynamic
parameters of a delta robot and compared to the standard
approach.

I. INTRODUCTION

For the application of model-based algorithms and for
the interpretation of the physical behaviour of a robot it
is essential to determine the physical parameters properly.
However, since these parameters are not always available or
can not be determined a priori for example due to aging and
other influences, it is necessary to identify the parameters
based on measurement. Therefore, parameter identification
is an important topic in robotics. There exists a multitude
of approaches and methods to identify parameters on the
basis of measurements (see, e.g., [1],[2],[3],[4],[5]). Yet
there are still problems in this context which make correct
identification difficult (see [6]). The main problems are, on
the one hand, that the time derivatives of the measured
positions are not available, the numerical issues caused by
the inadequacy of the data and the ensuring of the physical
integrity of the identified parameters.

However, this paper presents methods which offer a so-
lution for each of the three presented problems and which
can be implemented with reasonable effort both offline based
on recorded data and online on a controller. Therefore,
the polynomial approximation already introduced in [7] is
used for the evaluation of nonlinear differential algebraic
expressions. This results in an equation for identification
that depends solely on measurable signals and contains no
equation error. Furthermore, an algorithm is presented to
determine the parameters reasonably despite of inadequate
data.
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This paper is structured as follows: In the following sec-
tion a formulation of the considered parameter identification
problem is set up. Then, the polynomial approximation
presented in [7] is briefly reviewed and the application to
the obtained parameter identification problem is provided
thereafter. In section V, the modified recursive least squares
algorithm is presented, which allows the parameters to be
adjusted iteratively and thereby always numerically stable.
Subsequently, the physical feasibility of the determined pa-
rameters is examined and ensured by adapting the identifica-
tion. Finally, the proposed methods are applied to a closed-
loop delta robot and the performance is of the presented
methods is evaluated.

II. PROBLEM FORMULATION
In this paper, a generic rigid robot is considered as a

general nonlinear mechanical system consisting of nl links,
whose motion can be determined by n fully actuated rigid
joints. The motion of the robot can therefore be described
in the joint space by the generalized coordinates q(t) ∈ Rn,
such as link positions that are assumed to be available for
measurement, as well as their associated time derivatives
are q̇(t) ∈ Rn and q̈(t) ∈ Rn. The dynamic behavior can
therefore be represented by

M(q) q̈ + C(q, q̇) q̇ + g(q) + r(q̇) = τ (1a)
y = q (1b)

with the initial condition q(0), q̇(0) ∈ Rn. The output y(t) ∈
Rn of (1) is available for measurement and equal to the link
positions q. The system (1) is actuated by the input torque
τ(t) ∈ Rn. In this equation, M(q) ∈ Rn×n corresponds
to the positive definite and symmetric inertia matrix. The
vector C (q, q̇) q̇ ∈ Rn represents the Coriolis and centripetal
components and g(q) ∈ Rn is regarded as the influence
of gravitational force. Additionally, dissipative components
such as Coulomb and viscous friction are taken into account
by the vector r(q̇) ∈ Rn.

The respective matrices M(q), C (q, q̇) and the vectors
g(q) and r(q̇) each depend on specific physical parameters
which result from the physical interconnection of the nl
links. For each link k = 1, ..., nl the mass mk ∈ R, the first
moment of inertia vector col(mkrkx,mkrky,mkrkz) ∈ R3,
and the values col(Jkxx, J

k
xy, J

k
xz, J

k
yy, J

k
yz, J

k
zz) ∈ R6

of the symmetric and positive definite inertia tensor
Jk with respect to the k-th link frame can be
defined by an inertial parameter vector θk,I =
col(mk,mkrkx,mkrky,mkrkz, J

k
xx, J

k
xy, J

k
xz, J

k
yy, J

k
yz, J

k
zz)

∈ R10 (see [8]). Additionally for each actuated joint
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i = 1, ..., n the motor inertia Jmi, the Coulomb friction
parameter cfc,i and the viscous friction parameter
cfv,i are summarized in the dynamic parameter
vector θi,D = col(Jmi, cfc,i, cfv,i) ∈ R3. This yields
np = 10nl + 3n parameters for the whole rigid robot, which
are combined in the parameter vector

θ = col(θ1,I , ..., θnl,I , θ1,D, ..., θn,D) ∈ Rnp . (2)

In order for the parameter values to be physically feasible,
the conditions

mk > 0 (3a)

Jk =

 Jkxx Jkxy Jkxz
Jkxy Jkyy Jkyz
Jkxz Jkyz Jkzz

 � 0 (3b)

Jmi
> 0 (3c)

must be fulfilled for each link k = 1, ..., nl and each joint
i = 1, ..., n.

The objective is to provide a reasonable estimate of the
parameters θ based on the measured values q and τ . For this
reason, the linearity of the equation of motion of the robot
(1a) with respect to the parameters θ is exploited (see e.g.
[8]), resulting in the equivalent representation

Y (q, q̇, q̈) θ = τ (4)

for (1a) with Y (q, q̇, q̈) =
[
Y1(q, q̇, q̈), ..., Ynp

(q, q̇, q̈)
]
∈

Rn×np . Due to the structure of the robot, Y (q, q̇, q̈) in-
evitably has linear dependent columns, for all possible values
q, q̇ and q̈, which makes it difficult to identify unambigu-
ously. For this reason, it is necessary to eliminate parameters
that do not affect the equations of motion and simultane-
ously regroup linearly dependent parameters. The resulting
regrouped parameters are called base parameters θB ∈ RnB

with nB ≤ np (see [9]) and can either be derived directly
from the robot structure (see, e.g., [2]) or derived from the
symbolic interpretation of (1a). Thus, the equation (4) can
be reformulated to

YB(q(t), q̇(t), q̈(t)) θB = τ(t), (5)

with YB(q(t), q̇(t), q̈(t)) ∈ Rn×nB . Assuming n < nB ,
it is still not possible to solve (5) for θB unambigu-
ously. Therefore, by considering Ns sampling times ti, i =
1, ..., Ns, Ns ∈ N, and by stacking the sampled values of (5)
and the torque in matrices and vectors the result

ȲB θB = τ̄, (6)

yields, with the stacked regressor matrix

ȲB =


YB(q(t1), q̇(t1), q̈(t1))
YB(q(t2), q̇(t2), q̈(t2))

...
YB(q(tNs), q̇(tNs), q̈(tNs))

 ∈ RnNs×nB , (7)

and the stacked torque vector

τ̄ = col(τ(t1), τ(t2), · · · , τ(tNs
)) ∈ RnNs . (8)

It is assumed that nNs > nB applies and considering
the sampled values rankȲB = nB is valid. If furthermore
rank

[
ȲB τ̄

]
= nB is fulfilled then (6) can be unambigu-

ously solved for θB , such that (5) also applies for θB . But
since (6) is overdetermined, it can become unsolvable if
rank

[
ȲB τ̄

]
> nB , such that an error ε ∈ RnNs needs

to be introduced, which yields

ȲB θB = τ̄ + ε. (9)

However, the optimal solution θ̂B of (9) which minimizes
the Euclidean norm of ε can be obtained by the ordinary
least squares (OLS) method given by

θ̂B = Ȳ †B τ̄, (10)

with the pseudoinverse Ȳ †B which can be calculated explicitly
by

Ȳ †B = (Ȳ >B ȲB)−1Ȳ >B ∈ RnB×nNs (11)

if rankȲB = nB . If the rank constraint is not fulfilled, the
inverse of the Gram matrix (Ȳ >B ȲB does not exist, so the
formula (11) is not applicable. However, the pseudoinverse
still exists, but is not unique. It is still necessary to verify
whether the least squares optimal solution θ̂B actually meets
the conditions (3). If on the other hand rank

[
ȲB τ̄

]
= nB

and ‖ε‖ = 0 applies for the error, the least squares optimal
solution solves (5) exactly, i.e. θ̂B = θB .

For the evaluation of (5) and also of (6) it is necessary that
the time derivatives q̇ and q̈ are available. However, since
these can not be measured, it is necessary to reconstruct
them, which inevitably leads to errors even if measurement
noise and unmodelled dynamics are not taken into account.
This makes the identification of θB more challenging. Sum-
marizing, the three main issues that make a meaningful
identification of the parameters difficult can be identified for
parameter identification (see [6]):

I) The time derivatives q̇ and q̈ of the positions q are
not available for measurement and therefore have to be
reconstructed, which accordingly leads to an error in
(5) and thus to ‖ε‖ > 0 even if measurement noise and
unmodelled dynamics are neglected.

II) Rank deficiencies and numerical ill-conditioning due to
inadequate data may cause the inversion of Ȳ >B ȲB to
be numerically unstable. Furthermore, the required data
is large and requires much memory space.

III) The identified base parameters θB must be physically
feasible.

Therefore, the following section explains how the polynomial
approximation presented in [7] can be used to obtain an
equation for θB depending only on measurable signals but
containing no equation error. Then, the discussed sampling
approach can be applied, in order to obtain θB by the least
squares method. Subsequently, an algorithm is presented,
which allows the numerically stable computation of the
pseudoinverse without a complicated singular value decom-
position and at the same time results in a lower memory
usage with sequentially acquired data.
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III. POLYNOMIAL APPROXIMATION

In the following it is described how the application of the
polynomial approximation operator PN,td{·}, introduced in
[7], can be used to obtain an equation for θB by integral
transformation, such that no equation error results. For this
reason, the procedure of the polynomial approximation is
briefly reviewed in this section. For a detailed explanation
of the procedure, the reader is refered to [7].

For a quadratically Lebesgue integrable signal x(t) the
bijective transformation φT : Ĩ = [−1, 1] 7→ It,T and the
corresponding inverse mapping φ−1T , can be used to define
x̄ = x◦φT on a Hilbert space H = L2(−1, 1) with the inner
product

〈ϕi, ϕj〉 =

∫ 1

−1
ϕi(τ)ϕj(τ)w(α,β)(τ)dτ, ∀ϕi, ϕj ∈ H,

(12)
and the corresponding induced norm

‖ϕ‖ =
√
〈ϕ,ϕ〉, ∀ϕ ∈ H. (13)

The weight function w(α,β), which is given by

w(α,β)(τ) =

{
(1− τ)α(1 + τ)β , τ ∈ [−1, 1]

0, τ /∈ [−1, 1] ,
(14)

with real exponential coefficients α, β > −1 allows to
introduce an orthonormal basis P (α,β)

i , i ∈ N0 for H by the
normalized Jacobi polynomials P (α,β)

i (see [10, Sec. 4.3]).
According to the projection theorem (see, e.g., [11]) the best
fitting (in the least squares sense) approximation of N -th
order x̂ ∈ H of x̄ always exists unambiguously, and can be
evaluated at any time t− td ∈ It,T , td > 0 by

x̂(t− td) =

N∑
i=0

〈x̄, P (α,β)
i 〉︸ ︷︷ ︸
ci

P
(α,β)
i ◦ φ−1T (t− td), (15)

with the constant coefficients ci = 〈x ◦ φT , P (α,β)
i 〉. The

added delay td ≥ 0 is chosen as a zero p
(α,β)
N+1 of the

Jacobi polynomial P (α,β)
N+1 , in order to reduce the order of

the approximation error by one (see [12]). The delayed
polynomial approximation of x based on (15) can thus be
written as an integral within the original time window It,T
by

x̂(t− td) =

∫ T

0

x(t− τ)gN,td(τ)dτ =: PN,td{x}(t), (16)

with

R
(α,β)
N,td

(τ) =

N∑
i=0

P
(α,β)
i (τ) (P

(α,β)
i ◦ φ−1T (t− td)) (17)

and with the time independent kernel

gN,td(τ̄) =
2

T
(R

(α,β)
N,td

w(α,β)) ◦ φ−1T (t− τ) , (18)

yielding the definition of the polynomial approximation
operator PN,td{·} (see [7]). As already introduced in [7] the
polynomial approximation operator is linear an has further

properties, which allow further simplification of differential
algebraic expressions. The polynomial approximation of the
k-th time derivative of x with k < α, β can be determined
by the differentiation approximation operator P(k)

N,td
{x}(t),

which is given by

PN,td{x(k)}(t) =

∫ T

0

x(t− τ)g
(k)
N,td

(τ)dτ =: P(k)
N,td
{x}(t)

(19)

with the derivative of the kernel given by

g
(k)
N,td

(τ) = (−1)k
(

2

T

)k+1

(R
(α,β)
N,td

w(α,β))(k) ◦ φ−1T (t− τ).

(20)

Furthermore, in order to consider nonlinear expressions the
composition of x by a Lipschitz continuous function ψ :
R 7→ R can be considered by

PN,td{ψ(x)}(t) ≈ ψ (PN,td{x}(t)) = ψ(x̂) . (21)

The polynomial approximation of the product x1x2 of two
signals x1, x2 ∈ L2([t− T, t]) and x1 ∈ πN∗ with N∗ ∈ N
can be defined by

PN,td{x1 x2}(t) =

N∗∑
i=0

ciPN,td{(P
(α,β)
i ◦ φ−1T )x2}(t)

(22)

=

N∗∑
i=0

PN,0,ci{x1}(t)P̃N,td,i{x2}(t) (23)

with the modified polynomial approximation operator given
by

P̃N,td,i{x}(t) = PN,td{(P
(α,β)
i ◦ φ−1T )x}(t)

=

∫ T

0

x(t− τ)g̃N,td,i(τ)dτ, (24)

with the kernel

g̃N,td,i(τ) =
2

T
(P

(α,β)
i R

(α,β)
N,td

w(α,β)) ◦ φ−1T (t− τ) . (25)

The coefficients ci can be obtained by

ci =

∫ T

0

x(t− τ)gci(τ)dτ =: PN,0,ci{x}(t), (26)

with the kernel

gci(τ) =
2

T
(P

(α,β)
i w(α,β)) ◦ φ−1T (t− τ). (27)

Thus, multiplicative differential algebraic expressions can
also be polynomially approximated without the necessity of
numerically differentiating the signals, since the kernels (25)
(27) have compact support (see [7]). Note that the application
of the polynomial approximation operator corresponds to
the evaluation of time-discrete FIR filters with subsequent
processing of the filtered values (see [7]).

In the following, the polynomial approximation operator
is applied in the context of the presented problem in order
to evaluate (5) consistently solely by the measurable signals
q and τ .
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IV. POLYNOMIAL APPROXIMATION OF THE
REGRESSION

The approach to obtain an expression for θB only depend-
ing on measurable signals is achieved by the application of
the polynomial approximation operator to both sides of the
equation (4) and yields

PN,td{YB(q, q̇, q̈)}(t)θB = PN,td{τ}(t). (28)

By further decomposition according to (19)-(27) it is possible
to evaluate (28) solely on the basis of measurable values q
and τ , which will be explained in the following.

If the polynomial approximation operator PN,td{·} is
applied to the signals q and τ , the approximated values q̂
and τ̂ can be represented as a truncated series of Jacobi
polynomials to the order N

q̂ = PN,td{q}(t) =

N∑
i=0

cq,iP
(α,β)
i ◦ φ−1T (t− td) (29)

and

τ̂ = PN,td{τ}(t) =

N∑
i=0

cτ,iP
(α,β)
i ◦ φ−1T (t− td). (30)

An analog representation for the time derivatives q̇ and q̈ can
be obtained by applying the differentiation approximation
operator to q, which is given by

ˆ̇q = P(2)
N,td
{q}(t) =

N∑
i=0

cq,iP
(α,β)
i ◦ φ−1T (t− td) (31)

and

ˆ̈q = P(2)
N,td
{q}(t) =

N∑
i=0

cτ,iP
(α,β)
i ◦ φ−1T (t− td). (32)

It is furthermore possible to apply the polynomial approxima-
tion operator directly to the differential algebraic expressions
in the j-th column of YB(q, q̇, q̈). By using the partial
approximation (22) and composition (21) with subsequent
integration by parts can therefore also be represented as the
truncated series

PN,td{YB,j(q, q̇, q̈)}(t) =

N∑
i=0

cj,iP
(α,β)
i ◦ φ−1T (t− td),

(33)

for j = 1, ...., nB , in which the right hand side depends
solely on the measurable variable q (see [7]).

By substituting the columns of YB(q, q̇, q̈) and the torque
vector τ by the approximated expressions (33) and (30) in

(5) the truncated series expansion

θB,1

N∑
i=0

c1,iP
(α,β)
i ◦ φ−1T (t− td)︸ ︷︷ ︸

=PN,td
{YB,1(q,q̇,q̈)}(t)

+ · · ·

+ θB,nB

N∑
i=0

cnB ,iP
(α,β)
i ◦ φ−1T (t− td)︸ ︷︷ ︸

=PN,td
{YB,nB

(q,q̇,q̈)}(t)

=

N∑
i=0

cτ,iP
(α,β)
i ◦ φ−1T (t− td)︸ ︷︷ ︸

=PN,td
{τ}(t)

. (34)

results. This series is equivalent to the projection of both
sides of (5) onto the orthonormal base {P (α,β)

i }Ni=0, which
introduces no equation error. Furthermore, all components of
(34) only depend on the measurable variables q and τ . The
resulting equation can be brought into the matrix form

Y ∗B θB = τ∗, (35)

with the projected regressor matrix

Y ∗B =
[
PN,td{YB,1}(t) · · · PN,td{YB,nB

}(t)
]
∈ Rn×nB ,

(36)

and the projected torque vector τ∗ = PN,td{τ}(t) ∈ Rn.
Analogous to (6) the equation can now be evaluated for
the times t1, ..., tNS

yielding the stacked regressor matrix
Ȳ ∗B and stacked torque vector τ̄∗. The least squares optimal
estimation of the parameters θ̂B thus results in

θ̂B = (Ȳ ∗B)†τ̄∗, (37)

which is the exact solution for (35) and for (5). Since for the
evaluation of the integrals of each individual approximation
operator (15), (19), (24) and (26) the respective kernels are
each independent of time t, these integral transformations can
be realized for each element of the stacked regressor matrix
as well as the torque vector as a time-discrete FIR filter (see
[7]), which can be evaluated either online or offline solely
on the basis of the measurable positions q and the torques
τ .

Note furthermore that the effect of measurement noise on
the respective elements in the regressor matrix and the torque
vector can be influenced by the parameters N,T, α and β,
in order to achieve damping and even exact suppression of
specific frequencies (see [13]).

Since the pseudoinverse needs to be calculated for (37),
the Gram matrix (Ȳ ∗B)>Ȳ ∗B must be inverted according to
(11), if rankȲ ∗B = nB is assumed. The inversion becomes
numerically unstable if the matrix is ill-conditioned. For this
reason, the following section provides an algorithm which
allows the base parameters θB to be estimated on the basis
of an initial guess θB,0, by calculating the pseudoinverse
numerically stable without a singular value decomposition.
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V. MODIFIED RECURSIVE LEAST SQUARES
In order to overcome problem II, the insufficiency of

the measured data and the limitation of the memory space,
an algorithm is presented in this section, which allows
the computation of the estimated parameters iteratively and
thereby ensures the numerical stability during the inversion
of the matrix (Ȳ ∗B)>Ȳ ∗B for the pseudoinverse. The presented
procedure is similar the approach of hybrid recursive least
squares and also based on sequentially obtained data blocks
(see [14]). The inversion, however is calculated explicitly to
avoid error accumulation as in recursive algorithms (see, e.g.,
[6]).

Note further that the procedure described below can be
used independently of the polynomial approximation pre-
sented. Therefore, the stacked regressor matrix, the parameter
and the stacked torque vector are defined generally by Ȳ ∈
RnNs×np ,θ ∈ Rnp and τ̄ ∈ RnNs , which can be respectively
substituted by the polynomial approximations and/or the base
parameters.

It should be mentioned at this point that the ordinary least
squares OLS method always produces the best results in
least squares sense if the measured values are recorded for
the whole trajectory, which must excite all parameter values
(see, e.g., [15]). It is furthermore not possible to consider
a priori known parameter values. However, it is not always
possible to guarantee both prerequisites, which is the reason
for the necessity of a procedure which leads iteratively to
meaningful parameter values even with data determined in
sections.

Assuming that the data is obtained sequentially, so that
both the stacked regressor matrix Ȳ and the stacked torque
vector τ̄ can be split into ns ∈ N individual sequences

τ̄ = col(τ̄1, τ̄2, · · · , τ̄ns) (38)

and

Ȳ = col(Ȳ1, Ȳ2, · · · , Ȳns
) (39)

with the respective data sequence Ȳk ∈ Rnnk×np , τ̄k ∈
Rnnk , nk ∈ N, such that

∑ns

k=0 nk = Ns. Furthermore,
the accumulated regressor matrix Y k is defined by Y k =
col(Ȳ1, ..., Ȳk), which contains the information received up
to the k-th step. The Gram matrix K = Ȳ >Ȳ ∈ Rnp×np

can then be calculated recursively in each step according to

Kk+1 = Kk + Ȳ >k+1Ȳk+1 = Y
>
k+1Y k+1

=


〈Y 1
k+1, Y

1
k+1〉 〈Y 1

k+1, Y
2
k+1〉 · · · 〈Y 1

k+1, Y
np

k+1〉
〈Y 1
k+1, Y

2
k+1〉 〈Y 2

k+1, Y
2
k+1〉 · · · 〈Y 2

k+1, Y
np

k+1〉
...

...
. . .

...
〈Y 1
k+1, Y

np

k+1〉 〈Y 2
k+1, Y

np

k+1〉 · · · 〈Y
np

k+1, Y
np

k+1〉


(40)

with the inner vector product denoted by 〈·, ·〉 and Y jk+1

denoted as the j-th column of Yk+1, j = 1, ..., np. Based
on an initial guess θ0 the parameters may be updated in
each step by

θk+1 = θk +K−1k+1Ȳ
>
k+1(τ̄k − Ȳk+1θk). (41)

The inverse K−1k+1 =
(
Y >k+1Yk+1

)−1
must be calculated in

each step. There are two possible cases which can lead to
instability of the inversion. On the one hand, if a column
in Yk+1 is not sufficiently excited and on the other hand
if the columns are linearly dependent. The first case can
easily be checked using the principal diagonal entries of the
matrix Kk+1, since the values 〈Y jk+1, Y

j
k+1〉, j = 1, ..., np are

given here. The investigation of the second issue, however,
is more complicated. It is necessary to obtain the orthogonal
components of the respective columns. One strategy to
achieve this is given by the Gram-Schmidt process, which
can be used to form the orthogonal base to the columns
of Yk+1. The orthogonal basis vectors can be determined
successively using

v1 = Y 1
k+1 (42a)

v2 = Y 2
k+1 −

〈Y 2
k+1, v1〉
〈v1, v1〉

v1 (42b)

...

vnp
= Y

np

k+1 −
np−1∑
i=1

〈Y np

k+1, vi〉
〈vi, vi〉

vi. (42c)

If the j-th column Y jk+1 depends strongly on the others,
this can be determined by the fact that the squared absolute
value ‖vj‖2 = 〈vj , vj〉 of the vector vj becomes very small.
More precisely, the value of 〈vj , vj〉 can be compared with
a minimum value σ2

j ∈ R+ of the corresponding column
Y jk+1 to check whether the orthogonal part is sufficiently
excited. Then, Yk+1 must be removed, since it does not
provide any relevant information for identification and hence,
identifying the j-th parameter is therefore not reasonable.
Thus, when calculating the inverse K−1k+1, the j-th row and
column will be ignored and set to zero so that the j-th
parameter is taken at its initial value θj,0. For this, the
absolute values of the orthogonal vectors vj , j = 1, ..., np
have to be determined respectively. According to the relation
(42), the orthogonality of the vectors, i.e. 〈vk, vl〉 = 0, k, l =
1, ..., j, k 6= l and the commutativity of the inner product, i.e.
〈vk, vl〉 = 〈vl, vk〉,∀k, l ∈ N, the squared absolute value can
be expressed by

〈vj , vj〉 = 〈Y jk+1, Y
j
k+1〉 −

j−1∑
i=1

〈Y jk+1, vi〉2

〈vi, vi〉
. (43)

Furthermore, based on (42) the inner product of any column
Y jk+1, j = 1, ..., np with a orthogonal vector vl, l = 1, ..., j
can be reformulated to

〈vl, Y jk+1〉 = 〈Y lk+1, Y
j
k+1〉 −

l−1∑
i=1

〈Y jk+1, vi〉〈Y lk+1, vi〉
〈vi, vi〉

.

(44)

Assuming that 〈vi, vi〉 6= 0, i = 1, ..., np, an upper triangular
form K̃k+1 of Kk+1 can be obtained by the Gauss elimina-
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tion and yields

K̃k+1 =


〈v1, v1〉 〈v1, Y 2

k+1〉 · · · 〈v1, Y
np

k+1〉
0 〈v2, v2〉 · · · 〈v2, Y

np

k+1〉
...

...
. . .

...
0 0 · · · 〈vnp

, vnp
〉

 , (45)

such that for the i-th row of K̃k+1 the first i − 1 elements
are zero, the i-th element is 〈vi, vi〉 and the l = i+ 1, ..., np
elements are 〈vi, Y lk+1〉. The proof is provided by induction.
The base case is fulfilled for i = 1 by the first row of Kk+1,
since v1 = Y 1

k+1. Consider the calculation of the i+1-th row
of the matrix K̃k+1 based on K̃k+1 as the induction step.
The calculation of the first j = 1, ..., i elements K̃i,j

k+1 of the
matrix K̃k+1 based on Kk+1 results in

K̃i+1,j
k+1 = Ki+1,j

k+1 −
j−1∑
l=1

al〈vl, Y jk+1〉 − aj〈vj , vj〉

= 〈Y jk+1, Y
i+1
k+1〉 −

j−1∑
l=1

al〈vl, Y jk+1〉 − aj〈vj , vj〉
!
= 0,

(46)

with the values al, l = 1, ..., j ∈ R which need to be
determined. These can be set to

al =
〈vl, Y i+1

k+1〉
〈vl, vl〉

(47)

which is also proven by induction. The base case for j = 1
is fulfilled, since

K̃i+1,1
k+1 = 〈Y 1

k+1, Y
i+1
k+1〉 −

〈v1, Y i+1
k+1〉

〈v1, v1〉
〈v1, v1〉 = 0. (48)

The inductive step for j + 1 is given by

K̃i+1,j+1
k+1 = 〈Y j+1

k+1 , Y
i+1
k+1〉 −

j∑
l=1

〈vl, Y i+1
k+1〉

〈vl, vl〉
〈vl, Y j+1

k+1 〉︸ ︷︷ ︸
(44)
= 〈vj+1,Y

i+1
k+1 〉

−
〈vj+1, Y

i+1
k+1〉

〈vj+1, vj+1〉
〈vj+1, vj+1〉︸ ︷︷ ︸

=〈vj+1,Y
i+1
k+1 〉

!
= 0. (49)

Thus, for all j = 1, ..., i the elements of K̃i+1,j
k+1 vanish, if

the values al, l = 1, ..., i are chosen according to (47). The
values al are the factors of the l = 1, ..., i rows which need to
be substracted from the i+1-th. Based on these results, it can
be shown that the i + 1-th element K̃i+1,i+1

k+1 is determined
by

K̃i+1,i+1
k+1 = Ki+1,i+1

k+1 −
i∑
l=1

al〈vl, Y i+1
k+1〉

(47)
= 〈Y i+1

k+1 , Y
i+1
k+1〉 −

i∑
l=1

〈vl, Y i+1
k+1〉

〈vl, vl〉
〈vl, Y i+1

k+1〉

(50)
(43)
= 〈vi+1, vi+1〉, (51)

which also fulfills the induction step for i + 1. The j =
i+ 2, ..., np elements of the row are given by

K̃i+1,j
k+1 = Ki+1,j

k+1 −
i∑
l=1

al〈vl, Y jk+1〉

(47)
= 〈Y i+1

k+1 , Y
j
k+1〉 −

i∑
l=1

〈vl, Y i+1
k+1〉

〈vl, vl〉
〈vl, Y jk+1〉 (52)

(44)
= 〈vi+1, Y

j
k+1〉. (53)

Therefore, by induction it can be proven that the i + 1-th
row and therefore for all i = 1, ..., np the i-th rows of the
matrix K̃k+1 have the form (45). Furthermore the form (45)
is a necessary partial result of the inversion of Kk+1 if the
Gauss-Jordan algorithm is used.

For this purpose the Gauss-Jordan algorithm is modified in
order fulfill the parameter identification task and simultane-
ously evaluate 〈vi, vi〉, i = 1, ..., np. A confidence parameter
si, i = 1, ..., nB can thus added and assigned to each specific
parameter, which marks whether the specific parameter has
been identified (si = 1), or whether the value of the initial
parameter was left due to insufficient excitation (si = 0)
or due to linear dependency with other columns in the
regressor matrix (si = −1). The parameter si can be used
subsequently to interpret the reason for the ill-conditioning
of Kk+1. The presented algorithm is shown in Fig. 1. Note
further that the parameter values are only adapted and thus
identified if the corresponding column in the regressor is not
linearly dependent to the others and the respective excitation
is sufficient. Otherwise, if si = 0 or si = −1, the parameter
value θi remains at its initial value θ0,i. The determined
confidence parameters allow a subsequent interpretation if
the dependency of several parameters is too similar or if a
value was not excited during the movement. Thus, either a
simplification of the parameter values or an adjustment of
the identification trajectory can be made subsequently.

VI. FEASIBILITY OF PARAMETERS

To ensure that the base parameters can be correctly iden-
tified, it is necessary to check whether obtained estimate
θ̂B is valid w.r.t. (3). Considering the iterative adaptation
of the parameters by the presented modified least squares
method, it is possible to verify the corresponding parameters
in each adaptation step. In this paper it is assumed that the
limitations of the base parameters can be described by box
constraints, analogous to [16]. In this case, the constraints of
any parameter θ can each be described by

θi ∈
[
θi, θi

]
=: Iθi , ∀i = 1, ..., np. (54)

By applying set arithmetic, the limits θi, θi can be transfered
to the base parameters θB yielding θB,i, θB,i. Thus, the
parameter adaption in line 37 in Fig. 1 can be limited to
the corresponding upper and lower bounds θB,i and θB,i.
Thereby, the parameters are always determined feasible, but
can become suboptimal in least squares sense. Note that
complex constraints which result for example for the inertia
matrix J i can be rewritten according to the parallel axis
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Initialization:
1: for i = 1 to np do
2: si = 0; . Initialize all si with zero
3: end for
4: θ0 = θ0; . Set parameter value to initial guess

5: K0 =

0 · · · 0
...

. . .
...

0 · · · 0

 ; . Set initial value of K

6: k = 0;

Iteration:
7: Kk+1 = Kk + Ȳ >k+1Ȳk+1 . Update K
8: M = [Kk+1|I] . Set augmented matrix M
9: . Calculate upper triangular form

10: for i = 1 to np do
11: if M(i, i) > σ2 then . Evaluate 〈vj , vj〉 > σ2

12: si = 1; . Parameter is identifiable
13: for j = i+ 1 to np do
14: M(j, :) = M(j, :)− M(j,i)

M(i,i)M(i, :);

15: end for
16: else . Parameter is not identifiable
17: if Kk+1(i, i) > σ2 then
18: si = −1; . Due to linear dependency
19: else
20: si = 0; . Due to insufficient excitation
21: end if
22: M(i, :) = 0;
23: M(:, i) = 0;
24: end if
25: end for
26: . Invert matrix
27: for i = 1 to np do
28: if M(i, i) > 0 then
29: M(i, :) = M(i, :)/M(i, i);
30: for j = 1 to i− 1 do
31: M(j, :) = M(j, :)− M(j,i)

M(i,i)M(i, :);

32: end for
33: end if
34: end for
35: K−1k+1 = M(1 : np, np + 1 : 2np); . Set inverse
36: . Update parameters
37: θk+1 = θk +K−1k+1Ȳ

>
k+1(τ̄k − Ȳk+1θk);

38: k = k + 1;

Fig. 1. Iterative parameter adaption by the modified recursive least squares
method

theorem (see [8]) and thus be limited by the maximum and
minimum values of the masses and moments, which can be
obtained from geometric information or from CAD data for
example (see, e.g., [3]). Note also that if the corresponding
constraints can not be considered as fixed box constraints,
it is still possible to apply a nonlinear optimization subse-
quently in order to determine physically feasible parameters
θ that match the base parameters θ̂B . Possible approaches
for this were presented in [17] and [3].

VII. RESULTS

The presented methods were used to identify the dynamic
parameters of a closed-loop delta robot of autonox24. This
is operated by three Siemens motors of the type 1FK7033-
4CK71-1RH2, a SIMATIC 1517 TF controller and SINAM-
ICS S120 drives. The experimental setup is shown in Fig.
2.

Fig. 2. Experimental setup of the delta robot to be identified.

The identification was done offline based on 20000 samples
with the corresponding position and torque values of the
three axes based on an example trajectory and the sample
time TS = 4ms. The identified base parameters are shown in
Tab. I for the ordinary least squares method with zero phase
Savitzky Golay filters (OLS filtered), for the ordinary least
squares method with the presented polynomial approxima-
tion (OLS with PA) and for the presented modified recursive
least squares method with polynomial approximation (MRLS
with PA). The window size of the Savitzky Golay filters has
been chosen to L = 11 and second order polynomials have
been considered. The parameters of the presented polynomial
approximation have been chosen to T = 44ms, N =
1, N∗ = 2 and td = 14.7ms. It is shown in Tab. I that the
identified parameter values of the MRLS procedure converge
to those of the OLS, since the trajectory has been chosen such
that rankȲB = nB . In order to rate the identified values,
a simulation model was implemented and excited by the
actually measured torque. Thus, the different parameter sets
can be evaluated by comparing them with the real measured
values qm.

Based on the graph in Fig. 3 it is shown that both
parameter values allow a good approximation of the system
behaviour, but do not exactly reproduce it, due to unmod-
elled dynamics. However, as shon in Fig. 3 the parameters
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TABLE I
IDENTIFIED PARAMETER VALUES

parameter unit OLS
filtered

OLS
with PA

MRLS
with PA

cfc,1 N 2.1006 2.2910 2.2910
cfc,2 N 2.2885 2.4565 2.4565
cfc,3 N 2.2406 2.4722 2.4722
cfv,1 Nsrad−1 1.1139 0.9937 0.9937
cfv,2 Nsrad−1 1.2097 1.0965 1.0965
cfv,3 Nsrad−1 1.0165 0.8747 0.8747
Jm1 + J1 kgm2 0.0691 0.0716 0.0716
Jm2 + J2 kgm2 0.0711 0.0732 0.0732
Jm3 + J3 kgm2 0.0690 0.0712 0.0712
m1‖r1‖ kgm 0.0526 0.0526 0.0526
m2‖r2‖ kgm 0.0442 0.0446 0.0446
m3‖r3‖ kgm 0.0567 0.0552 0.0552
m4 kg 0.4586 0.4802 0.4802
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Fig. 3. Simulation results of the positions q1, q2 and q3 with the identified
parameters ( OLS filtered) and ( OLS with PA) and the actual
measured values qm ( ) as well as ‖q − qm‖ for ( OLS filtered)
and ( OLS with PA) the delta robot.

according to the presented method (OLS with PA) achieve
better results w.r.t. the euclidian norm ‖q − qm‖. It should
also be noted that in contrast to the method with Savitzky
Golay filters, the identified parameters in OLS or MRLS
with PA lead to similar parameter values even for a different
parametrization (i.e. N, td, α and β) of the FIR filter. The
presented method based on the polynomial approximation
is therefore more robust w.r.t. the parametrization of the
polynomial approximation.

VIII. CONCLUDING REMARKS

In this paper a method was presented to identify the dy-
namic and inertial parameters of a rigid robot. The equation

to obtain the parameters can be evaluated solely on the basis
of measurable values by means of polynomial approximation.
Furthermore, an algorithm was presented, with the help of
which the parameters can be determined physically feasible
and sequentially, despite possibly inadequate data. The pre-
sented methods can be applied independent of each other and
without any restriction to other parameter identification prob-
lems. In further research work, additional enhancements in
identification and the extension of the procedure to problems
of fault detection w. r. t. parameter faults will be investigated.
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