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Abstract— A crucial problem in human-robot collaboration is
to achieve seamless coordination among the agents. Robots have
to adapt to human behaviour, which is highly uncertain. In fact,
humans can perform each task in many ways and with different
speeds, occasional errors and short pauses. This paper offers
a robust method to monitor the advancement of the current
human activity in real-time in order to predict its duration.
The algorithm learns online templates of new variants of the
task and uses them as references for a Dynamic Time Warping-
based algorithm. The proposed strategy has been tested within a
realistic assembly task. Results show its ability to give accurate
predictions also in case of peculiar variants, such as those
associated with errors.

I. INTRODUCTION

In recent years, human-robot collaboration has been rec-
ognized as a paradigm to increase performance, quality, and
flexibility of production in complex manufacturing environ-
ments. The concurrent presence of the collaborating agents
in a shared workspace allows exploiting their strengths, such
as the operator’s cognitive skills and the robot’s accuracy
[1]. A crucial problem to achieve an effective collaboration
is the seamless coordination among the agents. Robots must
be aware at all times of what humans are doing and adapt
to their behaviour, which is highly uncertain.

The problem of monitoring human activity has been
addressed at different levels [2], such as the recognition of
the current task [3]-[5] and the prediction of future ones
[6]-[8]. Moreover, monitoring the evolution of the current
human activity and predicting its duration allows correctly
allocating tasks and reacting to unexpected changes [9]-
[11]. This is a tough challenge, since the human is neither
fully controllable nor repeatable: even when the operator
is instructed on the task to perform, it is impossible to
control its execution. At each repetition, he/she will complete
the same activity with different speeds and movements.
Besides, many operations can be performed in multiple ways,
following different sequences of actions. The possibility of
execution errors and pauses must be also taken into account.
This work focuses on estimating the progress of the current
human task considering such sources of variability.

As far as previous works are concerned, [12] presents
a strategy to evaluate the advancement of repetitive activ-
ities, which requires the observation of task-specific features
to learn motion primitives and their effect on the overall
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progress. [13] proposes a method that combines optimization,
supervised learning, and unsupervised learning to build a
Bayesian model for partial temporal sequences alignment.
Pauses in task execution are explicitly taken into account.
In [14] the worker is supported during assembly tasks
with information on the progress and the correctness of
operations. Instead, [15] detects errors in human activity by
monitoring object manipulations. Abnormal behaviours are
defined beforehand by domain experts using first-order logic.
The method developed in [16] is robust against occlusions. It
leverages a probabilistic representation of motion primitives
learned from demonstration to align observations to the
best fitting model. The problem of parsing complex tasks
is tackled in [17], where trained Bayesian networks can
also handle operation variants. The one being executed is
retrieved in real-time by detecting specific primitive actions.
Though unrelated to human monitoring, [18] presents a local
alignment of vehicle trajectories that works offline based on
Dynamic Time Warping (DTW). Vehicles can change roads
following a path that is unknown a priori. Thus, trajectories
do not align entirely with any of the known references.

This paper offers a robust real-time method to monitor
the progress of the ongoing human activity and predict its
duration. It builds on the work presented in [19], which
exploits a modified version of the DTW. The human’s hands
movements are tracked and aligned to a reference template
of the activity. Then, the expected duration is extrapolated
from the average pace. Unlike other works, our approach
does not require any offline training, but learns online from
previous repetitions of the same activity. Besides, it handles
lack of data due to occlusions or tracking errors.

However, [19] fails in the presence of task variants, as it
considers only one template per activity. This paper extends
the work to address this issue without the need to define
all feasible variants in advance, but requiring only minimal
prior knowledge of the task to monitor. It exploits a richer
template, able to efficiently encode the entire structure of the
task with all its known variants. Previously unseen variants
are automatically recognized at run-time and added to the
activity template. As an example, we focused on assembly
operations, where more than one assembly sequence is
feasible to obtain the same product. Also, the possibility to
execute error variants has been considered (e.g. the operator
delivers an incomplete product).

In the remainder of the paper, Section II summarizes the
DTW-based algorithm developed in [19]. Section III presents
the main contributions of the paper, i.e. the management of
task variants and errors. Section IV describes the experi-
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mental set-up used to test the proposed method in a realistic
assembly task. Results are then discussed in Section V.

II. PROGRESS-BASED ESTIMATE OF TASK DURATION

In most scenarios, especially in an industrial setting, the
human is expected to repeat a given activity multiple times,
i.e. a finite set of primitive actions needed to fulfil a task.
In case of low variability, one could predict the duration
of the ongoing human activity using data collected from
past repetitions of the same task. Let 7 be the set of past
durations and 7, the elapsed time from the start of the current
task, then an estimate 7' of its duration is the conditional
expectation of past durations that are longer than T:

T(T.) = Ef[r |7 > T.] (1)

However, the human may work at various speeds and
perform the task in different ways, which may take more or
less time than usual. Thus, data from past executions are in-
sufficient for accurate predictions, but additional information
on the present activity is needed. Given a real-time estimate
of the advancement adv(T,) of the task, one can extrapolate
a better prediction from the average rate of progress.

In the following, the method proposed in [19] to estimate
the advancement and the duration of the ongoing activity is
summarized before extending the work in Section III.

The algorithm receives as input a multivariate time se-
quence describing the human movements, namely the Carte-
sian positions of the operator’s index fingers and wrists. A
modified version of the DTW algorithm compares the input
to a reference template of the activity, which is learnt online
from past repetitions of the same task. The method is robust
against nonlinear variations in the time dimension, as well
as against lack of data due to tracking errors or occlusions.

Let X = (x1,...7|x|) be the input sequence that de-
scribes the partial execution of the ongoing activity and ¥ =
(Y1, - .- yjy)) the reference template sequence. The algorithm
builds a | X|-by-|Y| matrix where each element stores the
cumulative distance D(i,j) of the optimal warping for the
subsequences X ) = (z1,...2;) and Y = (yy,...y;):

D(i,j) = 0 + ||z — y;ll

6:mlH{D(Z—17J),D(Z,j—1)7D(Z—k,j—1)} @

where k = 1,... L, is added to handle occlusions (with
Loyc. the number of missing samples), and constraints are
included to handle the limit cases D(0, j) and D(¢,0).

The warping path ¢(¢) is a non-decreasing function that
associates each point of X with the index of optimal trun-
cation j; for the reference sequence Y, so that Y U?) best
matches the subsequence X (). That is, for i = 1,...|X]:

j=1,...[Y]
Fig. 1 shows an example of a DTW matrix and warping
path in the presence of an occlusion.
Since the relative motion of the hands is not bound to
be synchronous during human activity, the DTW algorithm
is applied once for each hand. Two warping paths ¢ (7)
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Fig. 1: Example of DTW Matrix. The warping path is high-
lighted in blue. Circles indicate the elements considered to compute
D(7,6) according to (2), the red ones mark the extension that
accounts for the occlusion length.
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Fig. 2: Results obtained using (1) (blue) and the DTW-based
algorithm from [19] (red). Actual task duration in green.

and ¢°* (i) are obtained, which are merged weighting more
the one that estimates the highest advancement. The obtained
path is then modified to increase robustness during low infor-
mation sections of the task. When a pause in the progress is
detected, we impose a linear growth of the warping path with
speed equal to the average rate of progress of the activity.
A saturation on forced growth is in place to account for real
stops in the execution. One can refer to [19] for more detail.
Then, the advancement of the current task at time 7 is:
o(1X1)

adv(T,) = v 3)
where (E is the modified warping path returned by the
algorithm. Finally, the expected duration is estimated as:

7T, = Er[r|T>Te] adv(T.) <« @
‘ 7ad:{(&T6) adv(T.) > «

where (1) is used to neglect the initial transient, when little
information on the ongoing execution is available, until the
advancement exceeds the threshold o.

Fig. 2 compares results obtained using (1) and the DTW-
based algorithm in case of a task that lasted longer than
average. The first method underestimates its duration based
on past data, while DTW exploits information on the reduced
pace of the current activity for more accurate predictions.

III. MONITORING OF TASK VARIANTS

In general, the human can perform the same task in
multiple ways and the execution times among the different
variants can change considerably. In this case, the algorithm
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Fig. 3: Example of template tree of a task with three variants.
Label for the i-th node is (0;,d;, ;). After ng, two DTWs run
concurrently, one for each branch. The width of the blue arrows is
proportional to their current probability.

presented in Section II offers poor performance, as it is not
possible to determine a unique template that is consistent
with the operator’s movements for all variants.

Instead of handling each variant separately, i.e. having one
reference for each variant and running multiple instances
of the DTW-based algorithm concurrently, a richer template
must be considered, able to efficiently describe the structure
of the task with all its known variants. Besides significantly
reducing the computational load to preserve real-time perfor-
mance, this allows improving the estimate of task progress,
recognizing variants and learning the template. However, a
method to recognize task variants in real-time and to compare
each execution with the correct reference is needed.

With this aim, the task is segmented online relying on the
automatic detection of a set of features F' = {fi,... fip|}.
A variant V; € V of the task is then defined as the ordered
sequence of features that occur from its start to its end. Fea-
tures identify specific events during human activity (i.e. the
picking of a specific part or tool during assembly operations)
and are defined a priori based on general knowledge of the
task. The definition of the features should allow capturing
all possible behaviours of the operator and applying the
algorithm presented in Section II at the segment level, i.e.
the prototypical execution of each segment can be described
by a single temporal sequence. Even so, there is no need
to explicitly know and define all variants beforehand, as
the template is built at run-time, adding previously unseen
variants and learning better references for the known ones.

In the following, Section III-A describes how to build
and update the template, Section III-B addresses the online
recognition of variants, and Section III-C deals with the
estimate of the advancement and the duration of the task.

A. Reference template structure

From the definition of variant, each execution of the task
is described by a sequence of segments, which are delimited
by the detection of two features. The set 1" collects all known
reference sequences ¢;; of |t;;| samples that describe the
human’s motion along the segment that goes from f; to f;.

Conventionally, the start of the activity is associated with
a fictitious feature fy common to all variants. Then, variants

differ from each other after a possible common initial part,
defined by the same sequence of features, during which the
operator performs the actions in the same way. As a result,
the structure of the task can be represented as a tree, with
nodes associated with segments and branches marking the
presence of variants at that point of the execution.

More formally, let © = (N, A) be the template tree of
the task, with NV the set of nodes and A the set of arcs. A
node n; € N is defined as a 5-tuple n; = (0;,d;, pi, Ci, ;)
where o; and d; are the origin and destination features of
the segment, respectively (for the root node oy = dy = fp).
Each node is associated with the reference template t,, 4,
that describes the execution of the segment from o; to d;.
For complex tasks, more than one node with the same origin
and destination may exist, i.e. 3 # j : 0; = 0; A d; = dj,
which refers to the same common template. p; is the parent
node, which has the destination equal to the child’s origin.
C; is the set of children that collects all nodes whose parent
is n;. Arcs in A link parents to children, ie. a;; € A &
n; = p;. Finally, r; is the number of times the segment has
been already executed during past repetitions of the activity.

Given the tree, a variant V,, = (fo, ... fx) is equivalently
defined as the ordered set of N-1 nodes connecting the root
to a leaf, and referring to the segments that compose the task.

When the task to be monitored is performed for the first
time, the template tree is empty. In fact, the proposed method
does not rely on an offline training phase but learns online
from past repetitions of the same activity. This increases
applicability in dynamic environments, such as present-day
manufacturing, which is characterized by fast changes in
production and, consequently, in human activities. As a
result, the first execution of the task cannot be monitored but
is taken as the first reference. Each time the occurrence of a
feature is detected, i.e. a segment of the task is completed, a
new node is added to the tree and the temporal sequence that
describe the human’s movements is taken as the reference
template for such segment in the set 7.

During subsequent repetitions of the same task, the algo-
rithm starts to monitor the first segment. To do so, it runs
one instance of the DTW-based algorithm for each child of
the root node. In this way, the ongoing human operation is
compared to all the known variants that depart from the root
node. The algorithm understands which is the most probable
variant being performed and evaluates the advancement and
the expected duration of the task accordingly. When the next
feature is detected, marking the end of the current segment,
the algorithm proceeds to monitor the next segment.

Then, new instances of DTW are run for each child n; of
the current node to monitor the next part of the task. The
input is the sequence of the human hand positions collected
from the start of the segment to the current time, which is
compared to the reference sequence t,, 4, € 1T'. Conversely,
if none of the known children corresponds to the performed
segment, i.e. the human is following a new variant, a new
branch is added to the template tree. From this point, the
progress of the activity cannot be estimated, but the template
is updated to include the new variant in the task structure.
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Any time a segment is completed, if the temporal sequence
that describes its last execution is shorter than the current
template in 7', the former is taken as the new reference for
such segment. The underlying idea is that a shorter activity
is more likely to be free from pauses and errors. Moreover,
improved operator training also leads to faster executions.

Fig. 3 shows an example of template tree for a task with
three variants after eight repetitions of the activity. The set
of reference sequences is T = {to1, to2, t12, t13, to1, t23 }s
noting that nodes ns and n7 refer to the same segment.

B. Early recognition of task variants

During the monitoring of a task, the exact segment being
executed is unknown. While the origin feature is known, the
destination is determined only after the completion of such
segment. However, early information on which variant is the
one being performed is crucial to estimate the progress of
the task. This is true both when there is a fork in the tree,
as well as when the current node has a single child, since
the human might always follow a new variant.

The proposed method for the early recognition of task vari-
ants computes a probability value for each of the branches
departing from the current node 7, related to the last com-
pleted segment. To do so, it exploits a similarity measure that
derives from the cumulative distances provided by the DTW
applied at the segment level. For each n; € C, two DTW
matrices are present, to monitor the movements of the right
and the left hand, respectively. A unique cost D; is taken as:

D;(k) = min{D;" (k), D (k)}
D;*(k) = min D;*(k,j)  D§*(k) = min D{*(k, j)
J J

where k is the number of samples in the input sequence, and
D:%(k, j) and D% (k, j) are the last rows of the two DTW
matrices computed according to (2). Then, the similarity
measure D;(k) is given by the convex combination of two
different costs with respect to a design parameter v € [0, 1]:
D;(k) = vDj(k) + (1 — ) Di'(k)

D;(k)
k
In particular, D} is the cumulative distance normalized over
the input length, which is a global measurement of the
similarity between the input and reference sequences and
evolves smoothly during the evolution of the task. Instead,
DY considers the local rate of growth of the DTW cost
and is more reactive in detecting changes in the operator’s

movements with respect to the reference template.

Given the similarity measure, the current probability P; of
each branch is computed using a recursive Bayesian classifier
(similar to the one presented in [5]). The prior probability of
each child n; of n is based on historical data and given by:

P0) ="

Di(k) =

D} (k) = Di(k) — Di(k — 1)

with 7 the past executions of n. The value is updated with
each new input sample according to the following recursive
rule:

Pi(k) o< Pi(k — 1) - f(Di(k)) (5)

where f is the probability density function of a Gaussian
distribution with zero mean and standard deviation o = 0.27,
whose value has been determined as the one minimizing the
classification error during preliminary experiments. As the
cost D; (k) increases, i.e. the sequences are more dissimilar,
the probability tends to decrease.

The sum of all probabilities returned by (5) might be
greater than 1. Thus, a normalization is introduced as:

P,(k)
max{1,) ", Pi(k)}
Notice that values are normalized only when their sum is

greater than 1. By doing so, 1 -3 P; is the probability that
the operator is performing an unknown variant of the task.

Pi(k) =

C. Estimate of task advancement and expected duration

Since the DTW-based algorithm is applied at the segment
level, (3) would return the advancement of the current
segment instead of the one of the whole task. As variants
might differ in length, the advancement of the task depends
on which variant is considered as the one being executed.
Still, we aim to find a single value that best describes the
overall progress of the activity and leads to the most accurate
prediction of its duration. To do so, all the variants that are
feasible at the current time instant must be considered, as
we cannot know the future human behaviour.

Let V; = {V, € Vin; € V,} be the set of variants that
contain n; € C and consider a partition V,, = (VP VPost)
VPre = (ng,...7n), VP°' = (n;,...). Note that V" is
common among all V,; € V;. Then, the advancement of the
task assuming the i-th branch that departs from # to be the
correct one is computed as:

_ L+ Gilk)

advi(Te) - Lp?”e +Lpost

LPre = Z |t07‘,,d7’,

n;EVpre

(6)

with k£ the number of available input samples at time 7,
LP"¢ the length of the fraction of the task template that has
been already executed, and L? °st an estimate of the length
of the remaining part of the task template to be performed,
considering all variants belonging to the i-th branch V.
Let [y, be the length of the part of the reference template
of V, that remains to be performed and 7y, the probability
to be the variant performed by the human based on past data:

v, = Z Ito; a1 v, = H 1

Tp,
njEVfOSt njevfost pPj

Then, LY 5t is computed as the value that minimizes the
average error with respect to the length L* of the true variant:

post __ : * 2 _
LY = arg min g my, (L* =y, )" = E v, lv,
Ve €V; Ve €V;

Referring again to Fig. 3, when a new repetition of the
activity starts, the current node is set to n = ng. Since two
branches are present (V; = {Vi} and V4 = {V4, V3}), two
instances of the DTW-based algorithm monitor the ongoing
task with templates ¢y and tp2 associated with V; and Vg,
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respectively. Since no segment has been already completed
LPre = (. Besides, LY = Iy, and L2°*" = 0.67ly, +
0.33ly;, being for instance ly, = |to1]|[t12]|t23]-

Assuming that the i-th branch is the one being executed,
one can predict the duration 7; of the activity from (4)
using the task progress computed with (6). Then, the final
prediction of the duration of the task is obtained by weighting
the values obtained for each branch according to their current
probability to be the one performed by the human:

T(T.) = Y Pi(k) Ti(T.) + (1 - > Pi(k)>T(Te)

ng 66

The last term accounts for the possibility that the operator
is following an unknown variant, with T(T.) the average
duration of the task computed from (1). As the algorithm
becomes more certain about the variant being performed, the
influence of unlikely branches vanishes and the prediction
converges to the value related to the correct variant.

In case a new node is added to the template at the end
of a segment, i.e. the human is following a new variant, the
remaining part of the activity cannot be monitored. Instead,
the next segments are added to the tree and T'(T.) is returned
as the best duration estimate for the ongoing task.

IV. EXPERIMENTAL SET-UP

The proposed method has been tested on a realistic as-
sembly task. During the experiments, the movements of the
human have been tracked using a Microsoft Kinect v2. The
sensor directly provides the Cartesian positions of the wrists,
while finger data are extracted from images with the help of
coloured markers placed on the operator’s gloves [19].

The task consisted in the partial assembly of a wheeled
base, during which only two wheels were mounted (Fig. 4).
The product parts were stored in boxes on the worktable as
shown in Fig. 4: wheels for the left (1) and right (2) casters,
screws to fix the casters to the base (3), swivel forks (4),
and screws and nuts to fix the wheel to the fork (5). Besides,
zones are present to store defective parts (6), the bases, and
the completed products (not shown in the picture).

For the purpose of task segmentation, features have been
defined as the operator reaching specific locations in the
workspace, defined as spheres, with one index finger. In
addition to fyp that marks the start of the activity, fi is
associated with location 1 as shown in Fig. 4, f, with
location 2, f3 with location 3, f; with location 6, and f5
with the output zone, which marks the end of the task.

Out of all variants that can be described with the defined
features, we have considered six, which lead to the template
tree in Fig. 5. The variants differ in the assembly sequence
used to complete the product. In V; the human mounts the
left fork on the base, completes the caster fixing the wheel to
the fork, mounts the right fork, and finally the right wheel.
In V3 operations are inverted: the human first assembles the
left caster (fork plus wheel), fixes it to the base, then moves
to the right caster which is mounted in the same way. During
Vs the operator fixes both forks, then assembles the wheels.

(0i,d;) n;
@ @ 80”07}”1; nii
0,J3 ni
OEE R
2,J1 n20
) @ ) g
FOROY © Fh =
3,J2 n4,n7,N13
® OO @ &5
(19) () (Fof)

Ve Vy v, 4 Vs Vs

Fig. 5: Template tree of the assembly task performed during
experiments. Note that many nodes link to the same segment.

Variants that describe error cases are also present. During
V5 and V5 the operator finds a defective screw while fixing
the right wheel. Thus, he/she has to stop and throw the screw
in the waste zone before continuing. In V,; the human forgets
to mount the left wheel and delivers an incomplete product.

V. EXPERIMENTAL RESULTS

The experimental campaign aimed to verify the variant
recognition mechanism and the update of the template tree,
and to assess the performance of the proposed algorithm in
terms of prediction errors of the activity duration.

A. Variant recognition

The process of building the template from scratch has been
repeated three times, assembling each time 15 products fol-
lowing a random sequence of variants. Overall, the algorithm
always recognizes the correct variant as soon as the actions
of the human differ from the known templates.

To exemplify its behaviour, we can focus on the three-way
branch (formed by V5, V; and V%) that stems from node n7
in Fig. 5, as it represents the most critical point for variant
recognition. Let us consider the case when Vs and V, are
already known, i.e. are included in the template tree, and V>
is performed for the first time by the operator (Fig. 6). The
first segments (fo, f3), (f3, f3), (f3, f2) are common among
the three variants. Thus, the algorithm is not aware of the
new variant and the task is monitored as if it was V4 or V.
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Fig. 6: Recognition of variant V>, known V4 and Vs. Both children
of n7 are deemed as wrong (= 8.5 s) and node ng is added to
the tree. Graphs show P; (top, solid), D; (top, dashed) and adv;
(bottom) for segments (f2, f1) (red) and (f2, f5) (blue).

After node ny, a fork is already present: one instance of the
DTW-based algorithm runs for each of the two branches and
their probabilities are updated with each new sample.

At first, the algorithm cannot decide which is the correct
variant, since the initial part of segments (f2, f1), (fe, f5)
and (fo, f4) is common, as the operator mounts the first
wheel. Then, either he/she fixes the second (V§), or delivers
an incomplete product (V,), or finds a defective screw (1%).
As soon as the human movements differ from both known
templates (= 8.5 s after the start of the current segment), the
algorithm recognizes the presence of a new variant: the costs
of both DTWs increase and probabilities drop to zero. It can
be also noticed that the advancement of the wrong variants
remains below 0.5 at the end of the segment.

Fig. 7 shows a full example of one execution of V; when
the variant is already known. Vj represents an error variant
that is rarely performed and lasts less than average. Initially,
the expected duration is overestimated, as the prediction
favours more usual variants, like V. As information become
available, the prediction converges to the actual task duration.
Notice that the correct branch is recognized even if it has the
lowest prior probability.

B. Performance evaluation

To evaluate performance, the proposed Multi-variant (MV)
algorithm is compared to other two methods. The first one is
the Single-Variant (SV) algorithm developed in [19], which
describes the prototypical execution of the task with a single
template sequence. The second is an ideal method, referred to
as the Prophet algorithm (PA), which has perfect knowledge
of the variant being performed. It behaves as an SV algorithm
trained only on past executions of the variant to monitor.

Results come from 33 repetitions of the assembly task.
Respectively, the six variants have been repeated 12, 3, 6,
2, 3, and 7 times, reflecting the fact that error ones are
infrequent in a real case. To neglect the learning transient,
data from previous experiments have been used as a training
set to build the template. The average duration of the task
has been 105.0 s, from a minimum of 72.9 s to a maximum

of 131.0 s, thus showing high variability. The performance
index is the average error in the prediction of the duration,
normalized over the actual duration of the task 7™*:

L (T T(r) — 7]

m = e d
e 7 |, T T

Fig. 8 shows examples of the results obtained by the three
methods following different task variants. MV consistently
gives more accurate predictions than SV, while PA attains
the best results. SV fails as the only template sequence it
considers is compared to the input regardless of the variant
being performed. Since the algorithm takes the shortest past
execution of the activity as the reference, this is likely to be
one of Vj, i.e. when an incomplete product is delivered.

Table I reports the errors obtained for the different meth-
ods. While SV attains a median error (g5q) of 17.99% of the
task duration, MV gives accurate predictions, with a median
error of 4.76%, which means less than 5 s for the average
activity. Besides, the prediction becomes more precise as the
task progresses, with the error that reduces to 2.01% if only
the last 20 s of each execution are considered. The error
dispersion is also significantly reduced, with the interquartile
range that halves from 6.98% to 3.04%.

The improvement mainly comes from the fact that the
availability of more data reduces the uncertainty of unknown
quantities, such as the rate of advancement of the task (from
which the expected duration is extrapolated) or the estimate
of Lyost, used in (6). Also, LP"¢, whose value is certain,
grows with the number of completed segments, while L,
lowers becoming less important. This kind of uncertainty
may produce peaks or valleys in the duration estimate in the
first part of the task, similar to the one shown in Fig. 8a.

Fig. 8b reports the results of one execution of V5, which
is an infrequent variant and lasts longer than average. The
presence of the more probable variant Vg in the same part of
the template tree leads to an underestimation of the duration
of the ongoing task. When the operator performs segment
(f2, f5), the probability of the correct variant raises and the
prediction converges to the actual operation duration.

From Table I we can also notice that MV and PA attain the
same performance, with the median of the error difference
smaller than +0.5%. This is a major result, which means that
the presence of several variants of the task does not worsen
the estimate of its duration. An example is shown in Fig. 8c
for one instance of Vg. Despite the monitoring of the task
requires the evaluation of three forks in the template, one of
which composed of three branches, the predictions of MV
and PA can be mostly superimposed. Note that the slightly
better performance attained by MV in the last 20 s may be
due to the more data it has available for template learning.

VI. CONCLUSION

The paper presented a robust method for the real-time
monitoring of human task advancement, able to handle the
variability of human behaviour and the presence of different
variants of the same activity. To recognize the one being
performed by the operator, the algorithm exploits real-time
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