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Abstract— A practical robotic bin-picking system requires a
high grasp success rate for various objects. Also, the system
must be capable of coping with various constraints and their
changes flexibly. To resolve these issues, this study proposes a
novel deep learning-based method that exploits a simulator to
generate desired grasping actions. The features of this method
are as follows: (1) Grasping conditions for any object can be
flexibly customizable in the simulated environment to improve
the real-world grasping actions. (2) Sensor input (RGB image)
is directly regressed to grasping actions by using convolutional
processing. Owing to these features, the system using the
proposed method can grasp objects with geometric variations,
semi-transparent objects, and objects with a biased center of
gravity. Experimental results on a real robot system show that
the proposed method exhibits a high grasp success rate for four
types of objects with different physical and geometric properties
as well as additional constraints of grasping condition.

I. INTRODUCTION

Bin picking is a task wherein a single object is picked out
of a cluttered bin. It is not a core part of assembly lines.
Manual bin-picking is a time-consuming task; therefore,
industrial warehouses must automate it to achieve enhanced
productivity. To realize a practical bin-picking system, it
is necessary to achieve a high grasping success rate for
various objects with different physical properties such as
the geometric shape (irregular), mass distribution, and sur-
face friction. In addition, to improve the quality of post-
processing work, it is necessary for the system to be capable
of coping with various constraints and their changes flexibly;
these constraints can be enforced on parameters such as the
grasping position, grasping posture, and posture change after
grasping (Fig. 1).

Several studies have been conducted to resolve the prob-
lems discussed earlier. For example, there are methods that
estimate the posture of an object loaded in bulk by three-
dimensional matching of the sensor data with a geometric-
shape model of the object [1], [2]; then, the grasping posture
is determined based on analytic grasping quality metrics [3],
[4]. These methods are not effective when the object shapes
are irregular because it is difficult to allow geometric vari-
ations owing to the inherent properties of three-dimensional
matching. In contrast, a method proposed in a prior study
matches the geometric shape of a hand with sensor data to
grasp various objects [5]. This method does not consider
the geometry of the entire object. Therefore, it is difficult
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Flexible applicability to various constraints and their changes

Capability to grasp various objects

Fig. 1. The difficulty of a practical bin-picking in the industrial field.
For a practical bin-picking system, the system is necessary to grasp various
objects and be able to cope with various constraints and their changes. In
this paper, we provide a solution for this problem.

to grasp objects without the information necessary for suc-
cessful object grasping that depends on the geometric shape
of the entire object (e.g., a center of gravity). Further, the
method cannot adapt to additions or changes in constraints
on the grasping condition.

Several other studies have investigated deep learning-
based methods [6], [7]. Many studies have demonstrated
that using this method is a good approach to successfully
grasping a variety of objects. Furthermore, features suitable
for different scenes can only be changed by retraining. To
reduce the cost incurred by learning-data collection, some
studies have leveraged the power of simulations [8], [9], [10],
[11]. The purpose is to collect diverse datasets and generalize
a grasping technique to realize robust grasping of unknown
objects, as needed in logistics applications. From another
point of view, the proposed method proves that grasping
can be re-planned in response to changes in environmental
conditions where the state is known. If this is explicitly used,
the practicality of industrial bin-picking can be improved. In
these works, successful grasping was realized by maximizing
the criteria represented by learned deep neural networks. For
this reason, the generated grasp is often different from that
determined in advance. Therefore, it is difficult to apply
when the grasp that satisfies the pre-determined constraint
is required.

Therefore, the purpose of this study is to propose a novel
learning-based method for a practical robotic bin-picking

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9040



system. To this end, we propose a system that enables a
robot to successfully perform real-world grasping tasks by
planning the grasp through simulations. We combine the
solutions of the following: (1) building a successful grasp
space via an analytic method using a simulator, (2) learning
a neural-network model to predict the grasp space from the
input, and (3) realizing domain adaptation to generalize the
simulation model for the real world. In addition, an RGB
image is used as an input to neural networks because it is
less affected by different objects.

In this study, we compare the grasping success rates
of methods proposed in previous studies with that of the
method proposed in this study using four types of objects
with different physical properties. We also verify whether
the required grasp can be achieved in two cases commonly
encountered in the industrial field, i.e., grasping fragile and
heavy objects when the robot is not allowed to change the
object posture after grasping. Experimental results indicate
that the proposed method is capable of grasping various
types of objects and adapting to various constraints and their
changes.

II. PROBLEM STATEMENT

In this section, we formulate the problem of bin-picking.

A. System Configuration and Assumption

Fig. 2 illustrates the system configuration. The system is
composed of a robot arm, a parallel-jaw gripper, objects, and
a camera. Σw, Σc are the coordinate frames attached to the
base of the robot arm and the camera, respectively.

We make the following assumptions in this paper:
• The parameters of transformation wTc from Σw to Σc

and camera’s intrinsic parameters are known.
• For efficient grasping performance, a parallel-jaw grasp

is limited with four degrees of freedom (DoF), including
translational movements in X-Y -Z axes of Σw and
rotations around Z-axis of Σw. The direction of Z-axis
of Σc is aligned with the direction of −Z-axis of Σw.

B. Parameterization

The grasp parameters are illustrated in Fig. 3. Let gs =
(ps, ϕs, ωs) for s ∈ {w, c} denote a grasp, where ps =
[xs, ys, zs]

T ∈ R3 is a center position of the grasp, ϕs

is a rotation angle, and ωs is a stroke of the gripper. The
subscripts w and c mean that grasp is defined Σw and Σc,
respectively. Let cs1, c

s
2 ∈ R3 for s ∈ {w, c} denote contact

positions between the gripper fingers and the object. Let ns
1

and ns
2 denote normal vectors at the contact points. ps is

calculated by ps = 0.5 (cs1 + cs2). We assume the geometry
of the cross-section of the gripper finger as rectangle, where
width is l1, height is l2, and depth is l3.

Let I ∈ RH×W denote RGB Image with height H and
width W . Let gi =

(
pi, ϕi, ωi

)
denote gc projected on I ,

which is parameterized by the center position of the grasp
pi, a rotation angle, ϕi, and stroke of the gripper. Let li1,li2
denote l1,l2 projected on I , respectively. gc can be converted
into gi by applying a sequence of known transforms (gi =

Robot Arm

Camera

Robotic Hand (Parallel-jaw Gripper)

Fig. 2. System configuration and coordinate system.

Fig. 3. Illustration of parameterization

iTc (g
c)) and the inverse transformation can be calculated

(gi = iTc (g
c)).

C. Objective

The objective of this study is to generate successful
grasp space G∗ for various objects, as well as to cope
with constraints and their changes flexibly. However, it is
challenging to build or rebuild G∗ in a real world. A practical
alternative is to build G∗ in the simulation that requires the
solution to three complex problems.

1) Existence of Domain Shift between Simulation and
Real World: There is a domain distribution shift between
the simulation and the real world. We assume a covariate
shift, and the problem is to minimize the discrepancy in the
marginal distribution of I between simulation and real world.

2) Regression to the Successful Grasp Space: Given I ,
building G∗ is the problem to estimate the conditional
probability p (G∗|I). To represent the distribution, we use
a deep convolutional neural network G∗ (I;θ) : I →
G∗ parameterized by θ and we formulate the problem as
following optimization problem:

θ∗ = argmin
θ∈Θ

L (G∗, G∗ (I;θ)) , (1)

where L (·, ·) indicates a loss function.
3) Building of the Successful Grasp Space: When prob-

lems 1) and 2) are resolved, building the appropriate
grasp space in simulator such that the mapped grasp space
G∗ (I;θ) converges a subspace of G∗ is required.

III. METHOD

In this section, we propose a system for solving three
problems that we defined in the previous section. Fig. 4
illustrates the schematic of the system. The system inputs are
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Fig. 4. Schematic overview of our proposed bin-picking system. The
system inputs are a small number of RGB images in the real world, an
object mesh, a scene configuration, and constraints. If these input data are
changed, the picking operation of the robot is changed according to the data
by the same process. Please refer to the supplementary video, which gives
an overview of our system.

a small number of real-world RGB images, a polygon mesh
of the object, a scene configuration (i.e., camera parameters,
a bin shape, etc.), and additional constraint conditions param-
eterized by the gripper’s graspable positions on the object.
The system is divided into some of its functional compo-
nents. A physical simulation of randomly placing objects
in a bin is conducted, and several data are generated (e.g.,
RGB Image and Depth Image). The synthetic RGB image is
transferred to the real-world domain (see Section III-A). An
analytical method is employed to build a successful grasp
space considering the constraints, from which grasp labels
are created (see Section III-B). The tuple of the transferred
RGB Image and the grasp labels are used to train G∗ (I;θ)
(see Section III-C). In the real world, a robotic arm can
grasp the object by using G∗ (I;θ), which is trained in the
simulation.

Comparing to the other 3-D matching-based systems that
require the query model, the proposed method directly infers
the grasp pose from the image without explicit modeling.
This feature enables the system to handle a greater vari-
ety of graspable objects. Using RGB images as the input
of G∗ (I;θ) also reduces the influence of the difference
between objects on the sensor performance. Furthermore,
by changing the additional constraints in the simulator, the
system can cope with various constraints in the real world.

A. Sim-to-Real Domain Adaptation

To minimize a discrepancy in the marginal distribution
of I between the simulation and the real world is known
as domain adaptation. In this paper, we apply the method
proposed by Zhu et al. [12], which is one of the unsupervised
domain adaptation methods.

B. Building of the Successful Grasp Space

We propose the method to build a successful grasp space.
Let G̃∗ be “semi-suitable” grasping space, where “semi-
suitable” means is not always a subspace of G∗. We define
G̃∗ as a finite set of grasps in the pixel coordinate frame:

G̃∗ =
{
gi
t|t ∈ {1, . . . , Nt}

}
, (2)

where gi
t is t-th grasp in the pixel coordinate frame. Nt is a

cardinal number. To build G̃∗, we assume an ideal situation
for a successful grasp and define the grasp space which
satisfies the situation as G̃∗

base. In addition, we define the
grasp space which is necessary for additional constraints as
G̃∗

additional. G̃
∗ is an intersection of these grasp spaces:

G̃∗ = G̃∗
base ∩ G̃∗

additional. (3)

By changing G̃∗
additional, the ground-truth grasp labels gen-

erated from G̃∗ and the output of G∗ (I;θ) are refined
to satisfy the constraints, which means that the system
can easily deal with various constraints and corresponding
changes.

1) Building G̃∗
base: We define the following condition as

the ideal state for grasping:
• The ideal state before grasping

(1) Low risk for collision with other objects and the
bin.

• The ideal state after grasping
(2) No breaking the pile of objects stacked in a bin.
(3) High ability to resisting external forces such as

gravity.
G̃∗

base is built to satisfy the above conditions in the simulator.
First, to satisfy condition (2), i.e., to prevent grasped object
applying force on other objects, we select the object that has
low overlap with other objects. Specifically, we sort each
object in the simulation according to height and select the
objects that exhibit a lower overlap with other instance masks
than a given threshold. Next, to satisfy condition (3), for each
selected object, we generate grasp candidates that satisfy
force closure [15], [16], [17]. Force closure of parallel-jaw
is expressed as follows:

∥n1 + n2∥22 ≤ α, (4)

cos−1

(
nT

1 (c1 − c2)

∥c1 − c2∥2

)
< tan−1 µ, (5)

cos−1

(
nT

1 (c2 − c1)

∥c2 − c1∥2

)
< tan−1 µ, (6)

where µ is a static friction coefficient. α ∈ R is a constant
to relax the constraint that the normal vectors are opposite
[17]. To reduce the processing time, we calculate the contact
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position and normal vector pair for a range where the Depth
Image gradient is larger than a given threshold. Significant
differences between the actual and simulated shapes will
affect the close force calculation. Thus, we assume that the
shape of a polygon mesh resembles the actual dimensions
of the real-world object. Finally, to satisfy condition (1), we
calculate the possibility of collision of the grasp candidates
with the objects and the bin. Let D denote Depth Image.
Let D (u, v) denote the value of D at the position [u, v]

T in
the pixel coordinate frame. Let Dcollision denote the collision
region of grasp with the objects and the bin. The value of
Dcollision is expressed as follows:

Dcollision (u, v) =

{
1 if D (u, v) ≤ zc + l3
0 otherwise

. (7)

We define the region of the gripper rectangle which is
projected to image plane as Dgripper, which takes the value
of 1 inside of the region and 0 outside of the region. We select
the grasp with the low intersection Dcollision ∩ Dgripper as
collision-free. The set of collision-free grasp candidates is
used as ground-truth grasps for training (see Section III-C).

2) Building G̃∗
additional: To cope with various constraints

and their changes, G̃∗
additional

can be constructed arbitrarily.
In this paper, we consider two application scenes: (1) A grasp
is limited to a designated area, and (2) a grasp is limited
around the center of gravity. We deal with two constraints by
restricting the graspable region. Specifically, among grasps
belonging to G̃∗

base, we use grasps whose contact points are
in the region as ground-truths.

C. Regression to the Successful Grasp Space

We propose a model architecture of G∗ (I;θ) and the
method for optimizing (1) by a training dataset of a pair
I and G̃∗.

1) Model Architecture: Fig. 5 illustrates a model architec-
ture. Given I , the model infers a finite set of grasps in the
pixel coordinate frame:

G∗(I;θ) =
{
gi
d (I;θ) |d ∈ {1, . . . , Nd}

}
, (8)

where gi
d (I;θ) =

(
pi
d (I;θ) , ϕ

i
d (I;θ) , ω

i
d (I;θ)

)
is d-th

grasp in the pixel coordinate frame parameterized by θ. Nd is
a cardinal number. To represent G∗(I;θ), we define “default
grasp” and associate a set of default grasps with each feature
map cell at the top of the network (Fig. 6). In other words,
for each feature map cell, the network outputs an offset and
an angle from the default grasp. The transformation from
these network outputs to gi

d (I;θ) of each feature map is
expressed as follows:

pi
d (I;θ) =

[
W (buo,d + bw,dlu,d (I;θ))
H (bvo,d + bh,dlv,d (I;θ))

]
, (9)

ϕi
d (I;θ) =

1

2
tan−1

(
lsin 2ϕi,d (I;θ)

lcos 2ϕi,d (I;θ)

)
, (10)

ξ = max (Wbw,d exp (lw,d (I;θ)) ,

Hbh,d exp (lh,d (I;θ)))
, (11)

ωi
d (I;θ) =



ξ

− sinϕi
d (I;θ)

if−π

2
≤ϕi

d (I;θ)<−π

4
ξ

− cosϕi
d (I;θ)

if−π

4
≤ϕi

d (I;θ)< 0

ξ

cosϕi
d (I;θ)

if 0 ≤ϕi
d (I;θ)<

π

4
ξ

sinϕi
d (I;θ)

if
π

4
≤ϕi

d (I;θ)≤
π

2

, (12)

where lm,d (I;θ) for m ∈
{
u, v, w, h, sin 2ϕi, cos 2ϕi

}
are

the network outputs. In addition, the network outputs a
score that indicates “graspable” for each map cell. The
transformation is as follows:

Sk
d (I;θ) =

exp
(
lkS,d (I;θ)

)
∑

k exp
(
lkS,d (I;θ)

) , k ∈ {0, 1} , (13)

where lkS,d (I;θ) is the network output. Sk
d (I;θ) is the score,

which indicates graspable. k = 0 corresponds to ungraspable
and k = 1 corresponds to graspable.

2) Training: To train the network, we need to assign
ground-truth gi

t to specific outputs of G∗(I;θ). We calculate
the Jaccard overlap between box of gi

t and box of gi
d in the

same way is proposed in image recognition literature [18],
[19]. We assign label “Pos” with Jaccard overlap higher than
a threshold (0.5), and assign label “Neg” with the others.
After assigned these labels, we optimize the following loss
function :

L (G,G (I;θ)) =
1

Nd
(Lloc + Langle + Lability) , (14)

where Lloc is loss for offset, Langle is loss for angle, Lability

is loss for score. There loss term are expressed as follows:

Lloc =
∑

d∈Pos,t,m∈m1

Itd LL1

(
lm,d (I;θ)− ltm,d

)
, (15)

Langle =
∑

d∈Pos,t,m∈m2

Itd LL1
(tanh (lm,d (I;θ))−m) , (16)

Lability = −
∑

d∈Pos

∑
t

Itd log
(
S1
d (I;θ)

)
−

∑
d∈Neg

log
(
S0
d (I;θ)

)
,

(17)

where Itd is an indicator for matching the d-th default grasp
with the t-th ground-truth grasp. LL1

(·) indicates Smooth
L1 loss [18]. m1 = {u, v, w, h}, m2 =

{
sin 2ϕi, cos 2ϕi

}
.

During Training, most of the default grasp poses are label
“Neg.” Therefore, we apply hard negative mining proposed
by Liu et al. [19].

3) Inference: During inference, we select grasps with
S1
d (I;θ) higher than 0.8. Transformation wTc

(
cTi

(
gi
d, z

c
d

))
requires zc. In this paper, we use depth value from the depth
sensor.
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Fig. 5. Architecture of G∗(I;θ). The architecture uses the one-shot detection method [6]. An input image I is processed through a Feature Pyramid
Networks (FPN)-style architecture [13] to extract multi-scale feature maps. Several convolutional layers and a prediction layer process these feature maps
to generate a set of grasps and scores. The ResNet [14] is used as a backbone network. The blue boxes denote a convolution/normalization/activation layer
and the green boxes denote a transposed convolution/normalization/activation layer. The prediction layer (orange box) denotes the transformations defined
by (9)–(13).

Fig. 6. Illustration of “default grasp” in the case of 3×3 feature map cells.
Sky-blue colored areas and orange-colored areas denote the default grasp
and a bounding box surrounding the grasp, respectively. In each cell, the
default grasp is represented by an angle and the bounding box which is
parameterized by the position

(
buo,d, bvo,d

)
and size

(
bw,d, bh,d

)
(left).

G∗(I;θ) generates the grasp pose by inference these deviations (right).

IV. EXPERIMENTS

We evaluated and compared the performances of Fast
Graspability Evaluation (FGE) (Domae et al. [5]) as a non-
learning-based method, and Dex-Net (Mahler et al. [9]) as
a learning-based method. For Dex-Net, we used the code
published by the authors, and for FGE, we reproduced and
implemented [5]. The parameter values for both methods
were set in the code according to literature.

A. Experimental Settings

The experimental setup is shown in Fig. 7. The robot
performed the pick and place tasks. Ten sets of ten con-
secutive tasks were performed, i.e., a total of 100 grasps
were performed for each object. After the ten consecutive
tasks had been performed, the state of the piled objects in
the parts box was reset (the number of objects in the box
was restored). Whether or not the operation was successful
was decided automatically according to the total weight of
the other box on which the picked objects were placed. In
addition, when the force sensor Z-axis value of the world
coordinate frame was 5 N or more, the grasp was counted
as failure. When a grasp failed, or no grasp inference result

Robot arm Force sensor

RGB-D Sensor

Parts box

Gripper

Fig. 7. Experimental setup. RGB-D camera: Intel RealSense D435, Robot
arm: YASKAWA GP-7, Gripper: RobotiQ 2F-85 (toe length 100 [mm]),
Force sensor: WACOH-TECH WEF-6A1000-30-RCD-B．

was obtained, the experiment was continued by changing the
state of objects pose.

Four types of objects with different physical and geometric
properties were used to evaluate the performances (Fig. 8).
The simulation was built by Unity, which is an off-the-
shelf game engine. The parameter of the environment in
the simulation was set from the actual dimensions of the
experimental environment. The polygon mesh generated for
each object employs 3-D scan data or CAD data. The number
of vertices in each mesh in (a)–(d) was 38,623, 31,660,
32,248, and 3,083, respectively. The number of the domain
adaptation training data was five times the number of objects,
and that of the training the grasp space was 2,000.

We assumed that the scenes that grasped (b) and (d) had
the following restrictions:

• The object (b) with fragile points had a limited range
of graspable positions.

• Since the grasp force of the gripper is limited, the center
of gravity should be taken into account while grasping
the heavy object (d), i.e., graspable positions are limited
to a certain distance from the center of gravity of object.

G̃∗
additional was built to meet these constraints, as shown in

Fig. 9.
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(a) (b)

(c) (d)

Fig. 8. Four types of objects having different geometric and physical
properties: (a) Fixed rigid objects (40 pieces, approx. 30 g); (b) Objects
whose geometries change locally (30 pieces, approx. 38 g); (c) Semi-
transparent objects (15 pieces, approx. 12 g); (d) Heavy object with a biased
center of gravity (15 pieces, approx. 550 g).

(b) (d)

Fig. 9. Setting the graspable area: The green region indicates the
graspable area, and the red region indicates the ungraspable area. (b) and
(d) correspond to object (b) and object (d) respectively, as shown in Fig. 8.

B. Experimental Results

1) Performance Comparison of Various Objects: Table I
shows the comparative results of the grasp success rate. The
success rate (multiple) includes cases where multiple objects
were picked up at the same time. The proposed method
achieved the highest grasp success rate across all objects, and
the average grasp success rate was 89.8 % (90.5 %). Fig. 10
shows the results of the grasping positions and orientations
in each method. In FGE and Dex-Net, there is a tendency to
detect points at high positions where the amount of change
in depth is outstanding. Unlike this, in the proposed method,
the grasp pose on the image plane that has a high possibility
of a successful grasp was obtained as output.

Achieving a high grasp success rate for different geometric
and physical properties suggests that the proposed system
could be applied to various objects. Furthermore, the cause
of failure was different between the proposed method and
other methods. As shown in Fig. 10, the comparison method
outputs the grasping pose at the edges or corners of the
objects. Because of this, grasping often failed due to insta-
bility or collisions with other objects. On the other hand, the
main factors that caused the proposed method to fail were
system errors such as errors in the depth information and
hand-object slippage. This result suggests that building G̃∗

TABLE I
SUCCESS RATE FOR THE PICK-AND-PLACE TASK

Method
Success Rate (Grasp of Multiple Objects):

(a) (b) (c) (d)
FGE [5] 74 (74) 59 (68) 35 (35) 38 (38)
Dex-Net [9] 71 (71) 62 (66) 34 (34) 63 (63)
Ours 91 (91) 83 (86) 99 (99) 86 (86)

(d)(b)(a) (c)

R
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D
ep
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G
E
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ex
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Fig. 10. Grasping pose estimation results for four types of objects by using
different methods. (a)–(d) correspond to the objects (a)–(d) shown in Fig. 8.
Sky-blue colored areas denote the gripper poses.

in a simulator to be a subspace of the target grasp space
G∗ is useful for grasping in real-world scenarios. It also
suggests that the systematic and accidental errors inherent to
the system and the objects affect the grasping performance,
and it is necessary to consider them in future works.

Next, we discuss the objects (c) and (d), that have large
differences in the grasp success rate. For the semi-transparent
object (c), there was a 60 % difference in the success rate
between the proposed method and the comparison methods.
It is considered that this difference was caused by the missing
data of the depth image as shown in Fig. 10. This also
shows the superiority of the proposed method using only
RGB images as input. In object (d), the grasp success rate
of FGE was extremely low, compared to the other two
methods. This was caused by the result of the extraction
of candidate regions where FGE estimated grasp poses. The
effect of this extraction was more critical for heavy the
object (d), in which the grasped position affects the success
or failure, compared to lightweight objects such as (a) and
(b). This may be improved by applying a different instance
recognition, but it is necessary to solve additional tasks by
sensing in real-world scenarios. On the contrary, learning-
based methods that implicitly recognize instances did not
show such a tendency among (a), (b), and (d). This suggests
that the method is robust against the differences between
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objects and sensor performances.
2) Effect of Grasp Conditions Customization: In this sec-

tion, the definition of the grasp success judgment is changed
based on the constraints of the scene, and the adaptability
of the proposed method to different scenes is evaluated by
the performance difference with and without G̃∗

additional.
Specifically, if object (b) is grasped of the specified region,
it is considered as a failure. Also, if object (d) is grasped and
its pose is changed after being lifted, even if it is successfully
transported as shown in Fig. 11, the task is considered as a
failure.

Fig. 12 shows a comparison of the grasping pose estima-
tion results for object (c) and object (d), by using G̃∗

base and
G̃∗

base ∩ G̃∗
additional. As a result of adding G̃∗

additional, the
grasping pose was changed to satisfy the constraints defined
in Section IV-A. Table II shows the comparison results of
the grasp success rate (the value in parentheses indicates
the percentage evaluated by the criteria of IV-B.1). When
G̃∗

additional was added, the grasp success rate was improved,
compared to when only G̃∗

base was applied. In addition,
compared with other methods, the case where G̃∗

additional

was applied achieved the highest grasp success rate, and the
average grasp success rate was 81.5 % (84.5%). These results
indicate that the proposed method coped with the change
of constraints in the real world by only modifying how to
generate the grasp space in the simulation environment.

In contrast, the other methods showed comparatively low
grasping success rates, particularly in the case of FGE. Since
FGE is a non-learning-based method, it does not have enough
ability to adapt the new scenes. Learning-based methods that
automatically extract the feature amount show the capability
of adapting to the change of application scenes.

C. Discussion

The experimental results show that the proposed sys-
tem enables the grasping of objects with different physical
properties, and show that the grasp planned or re-planned
in the simulator is transferred appropriately to the real-
world robotic system. The wide-object-coverage and ease
of changing grasp motions according to their constraint are
valuable for bin-picking in industrial settings. However, this
study has some limitations.

Another limitation is its customizability. We proposed a
customizable bin-picking system; this means we can plan or
re-plan a real-world grasp in the simulator, which is safer,
cheaper, and provides more information than real-world sit-
uations can. On the other hand, further discussion on how to
customize a successful grasp space is necessary. In this study,
the semi-suitable grasp space is built by considering force
closure proposed in [15], [16]. Several other force closure
conditions have been proposed, such as studies that consider
the shape uncertainty [17] and the contact surface flexibility
[21]. Applying these more robust force closure conditions
to build a grasp space in the simulation could improve
the real-world grasp performance. However, it should be
noted that a successful grasp in the simulation is only a
necessary condition for a successful grasp in the real-world

Fig. 11. Failure to grasp heavy object with a biased center of gravity.
The grasp was far from the center of gravity, and the grasping force was
insufficient. Hence, the object slipped and dropped.

G̃∗
base G̃∗

base ∩ G̃∗
additional

(b)

G̃∗
base G̃∗

base ∩ G̃∗
additional

(d)
Fig. 12. Comparison of grasping pose estimation results for object (b)
and object (d) by using G̃∗

base and G̃∗
base ∩ G̃∗

additional. Sky-blue colored
areas indicate the gripper poses.

TABLE II
SUCCESS RATE FOR THE PICK-AND-PLACE TASK WITH THE ADDITIONAL

CONSTRAINT OF GRASP QUALITY

Method
Successful Rate (Include worse grasp):

(b) (d)

FGE [5] 15 (59) 24 (38)

Dex-Net [9] 8 (62) 34 (63)

G̃∗
base 67 (78) 43 (81)

G̃∗
base ∩ G̃∗

additional 83 (83) 80 (86)

environment, and the reality gap still remains to be filled in
the motion space.

One such limitation is the covariate shift assumption.
In the physical robot experiments, that the grasp appeared
to succeed on RGB Image; however, it sometimes failed,
which indicates that there is a “reality gap” between the
simulation and the real world in motion space. Improving the
simulation performance to fill this reality gap is expensive.
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Thus, it is necessary and more practical to learn more
successful grasp motions in real-world grasp trials via a
model that has been previously trained in the simulator. This
problem has been recently defined as “micro-data learning”
by Chatzilygeroudis et al. [20].

Finally, we have to consider the cost of building the
simulation environment. Our system needs the collection of
real-world RGB images, which is a tedious task. Domain
Randomization [11], [22] could be an attractive alternative
for reducing the collection of real-world data. However,
unplanned domain randomization can be a more time-
consuming task than domain adaptation via real-world data
collection.

V. CONCLUSIONS

In this paper, we proposed a novel robotic bin-picking
system that has the potential of being applied to various
objects and application scenes in industries. Directly infer-
ring the grasp space from raw sensor data with deep neural
networks, explicit modeling of the object was eliminated,
which expands the range of objects to which the system can
be applied. In addition, to reduce the influence of the dif-
ference between objects on the sensor performance, an RGB
image was taken as the input of the network. Furthermore,
we proposed a method of analytically generating a training
dataset of successful grasp spaces in a simulator. Combining
these and minimizing the discrepancy between simulations
and real-world scenarios, a successful grasp space built in
the simulator was realized in the real-world. The proposed
method achieved an average grasp success rate of about 89.8
% for four objects with different geometrical and physical
properties in real-world grasp evaluation. The method was
also able to cope with additional constraints in the real-
world, i.e., the restriction of the graspable area, by only
modifying the grasp space that satisfied these constraints in
the simulation environment (the average success rate was
81.5 %). The wide coverage of systems as shown in these
results is very useful in industrial applications, where cost-
effectiveness is a desired quality. In a future work, we wish
to extend our method to take into account errors inherent in
systems and objects that were not considered in this study,
and thereby improve the performance.
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